| 
					引用本文:
						|  |  
    					|  |  
    					| A100钢在动态薄液膜和人工海水环境中的应力腐蚀行为对比研究 |  
						| 郭昭, 李晗, 崔中雨(  ), 王昕, 崔洪芝 |  
					| 中国海洋大学材料科学与工程学院 青岛 266100 |  
						|  |  
    					| Comparative Study on Stress Corrosion Behavior of A100 Ultrahigh-strength Steel Beneath Dynamic Thin Electrolyte Layer and in Artificial Seawater Environments |  
						| GUO Zhao, LI Han, CUI Zhongyu(  ), WANG Xin, CUI Hongzhi |  
						| School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China |  
								郭昭, 李晗, 崔中雨, 王昕, 崔洪芝. A100钢在动态薄液膜和人工海水环境中的应力腐蚀行为对比研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1303-1311.	
																												Zhao GUO,
																								Han LI,
																								Zhongyu CUI,
																								Xin WANG,
																												Hongzhi CUI. 
				Comparative Study on Stress Corrosion Behavior of A100 Ultrahigh-strength Steel Beneath Dynamic Thin Electrolyte Layer and in Artificial Seawater Environments[J]. Journal of Chinese Society for Corrosion and protection, 2023, 43(6): 1303-1311.
 
					
						| 
								
									|  
          
          
            
             
			              
            
									            
									                
																																															
																| 1 | Niu Y E, Zhao P P, Li N, et al. Research status and application of ultra-high strength steel at home and abroad [J]. J. Ordnance Equip. Eng., 2021, 42(7): 274 |  
																| 1 | 牛艳娥, 赵芃沛, 李宁 等. 国内外超高强度钢的研究现状及应用 [J]. 兵器装备工程学报, 2021, 42(7): 274 |  
																| 2 | Zhao B, Xu G X, He F, et al. Present status and prospect of Ultra High strength steel applied to aircraft landing gear [J]. J. Aeronaut. Mater., 2017, 37(6): 1 |  
																| 2 | 赵 博, 许广兴, 贺 飞 等. 飞机起落架用超高强度钢应用现状及展望 [J]. 航空材料学报, 2017, 37(6): 1 |  
																| 3 | Dong J H, Han E-H, Ke W. Introduction to atmospheric corrosion research in China [J]. Sci. Technol. Adv. Mater., 2007, 8: 559 doi: 10.1016/j.stam.2007.08.010
 |  
																| 4 | Feng L M, Shen H Q, Zhu Y J, et al. Insight into generation and evolution of sea-salt aerosols from field measurements in diversified marine and coastal atmospheres [J]. Sci. Rep., 2017, 7: 41260 doi: 10.1038/srep41260
															     																     																     		pmid: 28120906
 |  
																| 5 | Zhang X, Zhang J X, Chen Q M, et al. Effect of direct current electric field intensity and electrolyte layer thickness on oxygen reduction in simulated atmospheric environment [J]. Corros. Sci., 2019, 148: 206 doi: 10.1016/j.corsci.2018.12.013
 |  
																| 6 | Zhao J B, Zhao Q Y, Chen L H, et al. Effect of different surface treatments on corrosion behavior of 300M steel in Qingdao marine atmosphere [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 504 |  
																| 6 | 赵晋斌, 赵起越, 陈林恒 等. 不同表面处理方式对300M钢在青岛海洋大气环境下腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2019, 39: 504 doi: 10.11902/1005.4537.2019.032
 |  
																| 7 | Huang H L, Bu F R. The influence of different locations on copper corrosion with different external electric fields under a chloride-containing thin electrolyte layer [J]. Corros. Eng. Sci. Technol., 2019, 54: 257 doi: 10.1080/1478422X.2019.1576351
 |  
																| 8 | Huang H L, Bu F R, Tian J, et al. Influence of direct current electric field on corrosion behavior of tin under a thin electrolyte layer [J]. J. Electron. Mater., 2017, 46: 6936 doi: 10.1007/s11664-017-5727-y
 |  
																| 9 | Martin H J, Horstemeyer M F, Wang P T. Comparison of corrosion pitting under immersion and salt-spray environments on an as-cast AE44 magnesium alloy [J]. Corros. Sci., 2010, 52: 3624 doi: 10.1016/j.corsci.2010.07.009
 |  
																| 10 | Sun F L, Ren S, Li Z, et al. Comparative study on the stress corrosion cracking of X70 pipeline steel in simulated shallow and deep sea environments [J]. Mater. Sci. Eng., 2017, 685A: 145 |  
																| 11 | Hu Y B, Dong C F, Luo H, et al. Study on the hydrogen embrittlement of aermet100 using hydrogen permeation and SSRT techniques [J]. Metall. Mater. Trans., 2017, 48A: 4046 |  
																| 12 | Thomas R L S, Scully J R, Gangloff R P. Internal hydrogen embrittlement of ultrahigh-strength AERMET 100 steel [J]. Metall. Mater. Trans., 2003, 34A: 327 |  
																| 13 | Zhang T, Chen C M, Shao Y W, et al. Corrosion of pure magnesium under thin electrolyte layers [J]. Electrochim. Acta, 2008, 53: 7921 doi: 10.1016/j.electacta.2008.05.074
 |  
																| 14 | Wang L W, Liang J M, Li H, et al. Quantitative study of the corrosion evolution and stress corrosion cracking of high strength aluminum alloys in solution and thin electrolyte layer containing Cl-  [J]. Corros. Sci., 2021, 178: 109076 doi: 10.1016/j.corsci.2020.109076
 |  
																| 15 | Wu W, Hao W K, Liu Z Y, et al. Comparative study of the stress corrosion behavior of a multiuse bainite steel in the simulated tropical marine atmosphere and seawater environments [J]. Constr. Build. Mater., 2020, 239: 117903 doi: 10.1016/j.conbuildmat.2019.117903
 |  
																| 16 | Cheng X Q, Jin Z, Liu M, et al. Optimizing the nickel content in weathering steels to enhance their corrosion resistance in acidic atmospheres [J]. Corros. Sci., 2017, 115: 135 doi: 10.1016/j.corsci.2016.11.016
 |  
																| 17 | Zhao Q Y, Fan Y, Fan E D, et al. Influence factors and corrosion resistance criterion of low-alloy structural steel [J]. Chin. J. Eng., 2021, 43: 255 |  
																| 17 | 赵起越, 范 益, 范恩点 等. 低合金结构钢腐蚀的影响因素及其耐蚀性判据 [J]. 工程科学学报, 2021, 43: 255 |  
																| 18 | Yu M, Dong Y, Wang R Y, et al. Corrosion behavior of ultra-high strength steel 23Co14Ni12Cr3Mo in simulated seawater environment [J]. J. Mater. Sci. Eng., 2012, (1): 42 |  
																| 18 | 于 美, 董 宇, 王瑞阳 等. 23Co14Ni12Cr3Mo超高强钢在模拟海水环境中的腐蚀行为 [J]. 材料工程, 2012, (1): 42 |  
																| 19 | Zhai S X, Yang X Y, Yang J L, et al. Corrosion properties of quenching-partitioning-tempering steel in simulated seawater [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 398 |  
																| 19 | 翟思昕, 杨幸运, 杨继兰 等. 淬火-配分-回火钢在模拟海水环境中的腐蚀性能研究 [J]. 中国腐蚀与防护学报, 2020, 40: 398 doi: 10.11902/1005.4537.2019.272
 |  
																| 20 | Sun B Z, Zhou X C, Li X R, et al. Stress corrosion cracking behavior of 316L stainless steel with varying microstructure in ammonium chloride environment [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 811 |  
																| 20 | 孙宝壮, 周霄骋, 李晓荣 等. 不同组织的316L不锈钢在NH4Cl环境下应力腐蚀行为与机理 [J]. 中国腐蚀与防护学报, 2021, 41: 811 doi: 10.11902/1005.4537.2020.172
 |  
																| 21 | Ai F F, Chen Y Q, Zhong B, et al. Stress corrosion cracking behavior of T95 oil well pipe steel in sour environment [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 469 |  
																| 21 | 艾芳芳, 陈义庆, 钟 彬 等. T95油井管在酸性油气田环境中的应力腐蚀开裂行为及机制 [J]. 中国腐蚀与防护学报, 2020, 40: 469 doi: 10.11902/1005.4537.2019.282
 |  
																| 22 | Wu L F, Li S M, Liu J H, et al. SCC evaluation of ultra-high strength steel in acidic chloride solution [J]. J. Cent. South Univ., 2012, 19: 2726 doi: 10.1007/s11771-012-1333-6
 |  
																| 23 | Hardie D, Charles E A, Lopez A H. Hydrogen embrittlement of high strength pipeline steels [J]. Corros. Sci., 2006, 48: 4378 doi: 10.1016/j.corsci.2006.02.011
 |  
																| 24 | Tian H Y, Cui Z Y, Ma H, et al. Corrosion evolution and stress corrosion cracking behavior of a low carbon bainite steel in the marine environments: Effect of the marine zones [J]. Corros. Sci., 2022, 206: 110490 doi: 10.1016/j.corsci.2022.110490
 |  
																| 25 | Shao X F, Cao B, Ce L X, et al. Relations between hydrogen-induced cracking and anode dissolution of pipeline steel X70 in near-neutral environment [J]. J. Chin. Soc. Corros. Prot., 2008, 28: 76 |  
																| 25 | 邵绪分, 曹 备, 车立新 等. X70管线钢近中性环境氢致开裂与阳极溶解的关系 [J]. 中国腐蚀与防护学报, 2008, 28: 76 |  
																| 26 | Larignon C, Alexis J, Andrieu E, et al. The contribution of hydrogen to the corrosion of 2024 aluminium alloy exposed to thermal and environmental cycling in chloride media [J]. Corros. Sci., 2013, 69: 211 doi: 10.1016/j.corsci.2012.12.005
 |  
																| 27 | Huang Y L, Zhu Y Y. Hydrogen ion reduction in the process of iron rusting [J]. Corros. Sci., 2005, 47: 1545 doi: 10.1016/j.corsci.2004.07.044
 |  
             
												
											    	
											        	|  | Viewed |  
											        	|  |  |  
												        |  | Full text 
 | 
 
 |  
												        |  |  |  
												        |  | Abstract 
 | 
 |  
												        |  |  |  
												        |  | Cited |  |  
												        |  |  |  |  
													    |  | Shared |  |  
													    |  |  |  |  
													    |  | Discussed |  |  |  |  |