Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (1): 159-165     CSTR: 32134.14.1005.4537.2022.074      DOI: 10.11902/1005.4537.2022.074
  研究报告 本期目录 | 过刊浏览 |
高温蒸气环境中FeCr合金氧化机理的分子模拟研究
绳淦文, 祁晶(), 卢平, 徐洪, 洪苗敏
南京师范大学能源与机械工程学院 南京 210046
Molecular Simulation on Oxidation Mechanism of FeCr Alloy in High Temperature Steam Environment
SHENG Ganwen, QI Jing(), LU Ping, XU Hong, HONG Miaomin
School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210046, China
全文: PDF(4629 KB)   HTML
摘要: 

超 (超) 临界机组FeCr合金管与高温蒸气反应形成氧化膜,该氧化膜剥落容易导致爆管故障,严重危害机组安全运行。本文基于ReaxFF反应分子动力学,从原子尺度揭示FeCr合金高温蒸气氧化机理。研究结果表明,在氧化初期,合金表面Cr原子促进蒸气分解,向内迁移的O原子氧化合金,形成内层FeCr氧化膜。随后,在内层氧化膜生长内应力作用下,金属原子逐层向外迁移,并由于氧化膜内Fe原子和Cr原子迁移速率的差异,形成双层结构的氧化膜,这与实验观察结果一致。蒸气温度对FeCr合金氧化特性有重要影响,并且随着蒸气温度的升高,氧化膜对合金的保护作用逐步降低。

关键词 FeCr合金氧化超临界机组分子模拟微尺度    
Abstract

The reaction of FeCr alloy, as tube material of the ultra (super) critical unit, with high-temperature steam may result in the formation a protective oxide scale. However, the spallation of the oxide scale can easily lead to tube burst failure and seriously endanger the safe operation of the unit. Based on the molecular dynamics of the ReaxFF reaction, this paper reveals the mechanism related with the high-temperature steam oxidation of FeCr alloy on atomic scale. The results showed that at the initial oxidation stage, the Cr atoms on the surface of the alloy could induce the steam decomposition, and the inwardly diffused O atoms oxidized the alloy to form an inner FeCr oxide. Subsequently, under the inner oxide growth stress, the metal atoms migrated outward layer by layer. Due to the difference in the diffusion rate of Fe atoms and Cr atoms in the oxide scale, a double-layered oxide scale was formed, which was consistent with the experimental observations. The steam temperature has an important influence on the steam oxidation characteristics of FeCr alloys. With the increasing steam temperature, the protective effect of the formed oxide scale on the alloy gradually decreased.

Key wordsFeCr alloy    oxidation    ultra-supercritical units    molecular simulation    microscale
收稿日期: 2022-03-15      32134.14.1005.4537.2022.074
ZTFLH:  TK225  
基金资助:国家自然科学基金(51676035)
作者简介: 绳淦文,男,1998年生,硕士生

引用本文:

绳淦文, 祁晶, 卢平, 徐洪, 洪苗敏. 高温蒸气环境中FeCr合金氧化机理的分子模拟研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 159-165.
Ganwen SHENG, Jing QI, Ping LU, Hong XU, Miaomin HONG. Molecular Simulation on Oxidation Mechanism of FeCr Alloy in High Temperature Steam Environment. Journal of Chinese Society for Corrosion and protection, 2023, 43(1): 159-165.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.074      或      https://www.jcscp.org/CN/Y2023/V43/I1/159

图1  合金高温蒸气氧化分子动力学模型
图2  氧化过程中顶层Fe、Cr原子和底层O原子的Z方向坐标演变曲线
图3  1100 K氧化过程中合金表面蒸气分子消耗量演变曲线
图4  合金表面蒸气吸附和分解
图5  合金表面原子迁移
图6  合金表面四层金属原子平均电荷变化
图7  不同时刻氧化膜元素分布
图8  氧化膜内Fe、Cr原子的均方位移
图9  不同温度下合金表面消耗的蒸气分子数
图10  模拟2000 ps后不同反应温度的氧化膜厚度
1 Yang Q P, Lin W J, Wang Y M, et al. Industry development and frontier technology roadmap of thermal power generation [J]. Proc. CSEE, 2017, 37: 3787
1 杨倩鹏, 林伟杰, 王月明 等. 火力发电产业发展与前沿技术路线 [J]. 中国电机工程学报, 2017, 37: 3787
2 Xu H, Qi J, Chen Y F, et al. Investigating the role of oxygenated treatment on oxide exfoliation in TP347H alloy tube based on finite element method [J]. Proc. CSEE, 2020, 40: 5979
2 徐洪, 祁晶, 陈有福 等. 基于有限元的溶氧蒸汽环境TP347H管氧化膜剥落特性分析 [J]. 中国电机工程学报, 2020, 40: 5979
3 Guo X L, Chen K, Gao W H, et al. A research on the corrosion and stress corrosion cracking susceptibility of 316L stainless steel exposed to supercritical water [J]. Corros. Sci., 2017, 127: 157
doi: 10.1016/j.corsci.2017.08.027
4 Qi J, Zhou K Y, Huang J L, et al. Influence of temperature on the oxide spallation of T91 alloy superheater tubes in power plant [J]. Appl. Therm. Eng., 2018, 128: 244
doi: 10.1016/j.applthermaleng.2017.08.139
5 Liang Z Y, Gui Y, Wang Y G, et al. Corrosion behavior and mechanism of heat-resistant steel T91 in supercritical carbon dioxide environment [J]. Therm. Power Gener., 2020, 49(10): 73
5 梁志远, 桂雍, 王云刚 等. 超临界二氧化碳环境下耐热钢T91腐蚀行为机理研究 [J]. 热力发电, 2020, 49(10): 73
6 Pronobis M, Wojnar W. Preliminary calculations of erosion wear resulting from exfoliation of iron oxides in austenitic superheaters [J]. Eng. Failure Anal., 2013, 32: 54
doi: 10.1016/j.engfailanal.2013.01.051
7 Liang Z Y, Jin X, Zhao Q X. Investigation of overheating of the final super-heater in a 660 MW power plant [J]. Eng. Failure Anal., 2014, 45: 59
doi: 10.1016/j.engfailanal.2014.06.022
8 Zhu Z L, Xu H, Jiang D F, et al. Influence of temperature on the oxidation behaviour of a ferritic-martensitic steel in supercritical water [J]. Corros. Sci., 2016, 113: 172
doi: 10.1016/j.corsci.2016.10.020
9 Jiang D F, Xu H, Zhu Z L, et al. Influence of exposure environment on the corrosion resistance of 2-9% Cr steels [J]. Oxid. Met., 2017, 87: 189
doi: 10.1007/s11085-016-9665-5
10 Zhang N Q, Yue G Q, Lv F B, et al. Oxidation of low-alloy steel in high temperature steam and supercritical water [J]. Mater. High Temp., 2017, 34: 222
doi: 10.1080/09603409.2017.1286549
11 Choudhry K I, Mahboubi S, Botton G A, et al. Corrosion of engineering materials in a supercritical water cooled reactor: characterization of oxide scales on Alloy 800H and stainless steel 316 [J]. Corros. Sci., 2015, 100: 222
doi: 10.1016/j.corsci.2015.07.035
12 Chen K, Zhang L F, Shen Z. Understanding the surface oxide evolution of T91 ferritic-martensitic steel in supercritical water through advanced characterization [J]. Acta Mater., 2020, 194: 156
doi: 10.1016/j.actamat.2020.05.016
13 Zhang N Q, Cao Q, Gui J J, et al. Oxidation and chromia evaporation of austenitic steel TP347HFG in supercritical water [J]. Mater. High Temp., 2018, 35: 461
doi: 10.1080/09603409.2017.1381803
14 Cao C, Jiang C Y, Lu J T, et al. Corrosion behavior of austenitic stainless steel with different Cr contents in 700 ℃ coal ash/high sulfur flue-gas environment [J]. Acta Metall. Sin., 2022, 58: 67
14 曹超, 蒋成洋, 鲁金涛 等. 不同Cr含量的奥氏体不锈钢在700 ℃煤灰/高硫烟气环境中的腐蚀行为 [J]. 金属学报, 2022, 58: 67
doi: 10.11900/0412.1961.2020.00496
15 Srisrual A, Pitaksakorn K, Promdirek P. Influence of water vapor on oxide scale morphology of Incoloy800HT at 850 ℃ [J]. Appl. Mech. Mater., 2018, 875: 36
doi: 10.4028/www.scientific.net/AMM.875.36
16 Shen Z, Tweddle D, Yu H B, et al. Microstructural understanding of the oxidation of an austenitic stainless steel in high-temperature steam through advanced characterization [J]. Acta Mater., 2020, 194: 321
doi: 10.1016/j.actamat.2020.05.010
17 Töpfer J, Aggarwal S, Dieckmann R. Point defects and cation tracer diffusion in (Cr x Fe1- x )3- δ O4 spinels [J]. Solid State Ionics, 1995, 81: 251
doi: 10.1016/0167-2738(95)00190-H
18 Li Y H, Xu T T, Wang S Z, et al. Predictions and analyses on the growth behavior of oxide scales formed on ferritic-martensitic in supercritical water [J]. Oxid. Met., 2019, 92: 27
doi: 10.1007/s11085-019-09912-2
19 Bischoff J, Motta A T, Eichfeld C, et al. Corrosion of ferritic-martensitic steels in steam and supercritical water [J]. J. Nucl. Mater., 2013, 441: 604
doi: 10.1016/j.jnucmat.2012.09.037
20 Lin Z Z, Liu L, Liu C. Selective adsorption of CO2/N2 mixtures in carbon nanotubes: A molecular simulation study [J]. J. Eng. Thermophys., 2021, 42: 1369
20 林志忠, 刘浪, 刘朝. 碳纳米管吸附分离CO2/N2混合物的分子模拟研究 [J]. 工程热物理学报, 2021, 42: 1369
21 Ai L Q, Huang H S, Zhou Y S, et al. The oxidation of Fe/Ni alloy surface with supercritical water: a ReaxFF molecular dynamics simulation [J]. Appl. Surf. Sci., 2021, 553: 149519
doi: 10.1016/j.apsusc.2021.149519
22 Hong S, van Duin A C T. Molecular dynamics simulations of the oxidation of aluminum nanoparticles using the ReaxFF reactive force field [J]. J. Phys. Chem., 2015, 119C: 17876
23 Xu H, Qi J. Reactive molecular dynamics study of the oxidation behavior of iron‐based alloy in supercritical water [J]. Mater. Corros., 2021, 72: 1555
24 Van Duin A C T, Dasgupta S, Lorant F, et al. ReaxFF: a reactive force field for hydrocarbons [J]. J. Phys. Chem., 2001, 105A: 9396
25 Hong D K, Cao Z, Yang C M, et al. Catalytic effect of calcium on reaction of phenol using reactive molecular dynamics simulation [J]. CIESC J., 2019, 70: 1788
25 洪迪昆, 操政, 杨昌敏 等. 钙催化苯酚反应的分子动力学模拟 [J]. 化工学报, 2019, 70: 1788
26 Saha T K, Purkait P. Understanding the impacts of moisture and thermal ageing on transformer's insulation by dielectric response and molecular weight measurements [J]. IEEE Trans. Dielect. Elect. Insul., 2008, 15: 568
27 Maher K D, Bressler D C. Pyrolysis of triglyceride materials for the production of renewable fuels and chemicals [J]. Bioresour. Technol., 2007, 98: 2351
doi: 10.1016/j.biortech.2006.10.025
28 Li X X, Mo Z, Liu J, et al. Revealing chemical reactions of coal pyrolysis with GPU-enabled ReaxFF molecular dynamics and cheminformatics analysis [J]. Mol. Simul., 2015, 41: 13
doi: 10.1080/08927022.2014.913789
29 Zeng Y F, Wu G N, Yang Y, et al. Study on the pyrolysis mechanism of silicon insulating oil and the influence of moisture on it based on molecular simulation [J]. Proc. CSEE, 2020, 40: 1369
29 曾奕凡, 吴广宁, 杨雁 等. 基于分子模拟的硅绝缘油高温裂解及水分的影响机理研究 [J]. 中国电机工程学报, 2020, 40: 1369
30 Shin Y K, Kwak H, Vasenkov A V, et al. Development of a ReaxFF reactive force field for Fe/Cr/O/S and application to oxidation of butane over a pyrite-covered Cr2O3 catalyst [J]. ACS Catal., 2015, 5: 7226
doi: 10.1021/acscatal.5b01766
31 Mohammadtabar K, Eder S J, Bedolla P O, et al. Reactive molecular dynamics simulations of thermal film growth from di-tert-butyl disulfide on an Fe(100) surface [J]. Langmuir, 2018, 34: 15681
doi: 10.1021/acs.langmuir.8b03170 pmid: 30475634
32 Qiao Y J, Wang P, Qi W, et al. Mechanism of Al on FeCrAl steam oxidation behavior and molecular dynamics simulations [J]. J. Alloy. Compd., 2020, 828: 154310
doi: 10.1016/j.jallcom.2020.154310
33 Qi J, Xu H, Liang Z Y, et al. The role of Cr atom in the early steam oxidation of Fe‐based alloys: an atomistic simulation [J]. Mater. Corros., 2021, 72: 465
34 Das N K, Shoji T, Takeda Y. A fundamental study of Fe-Cr binary alloy-oxide film interfaces at 288 ℃ by computational chemistry calculations [J]. Corros. Sci., 2010, 52: 2349
doi: 10.1016/j.corsci.2010.04.006
35 Wang H T, Han E H. Ab initio molecular dynamics simulation on interfacial reaction behavior of Fe-Cr-Ni stainless steel in high temperature water [J]. Comput. Mater. Sci., 2018, 149: 143
doi: 10.1016/j.commatsci.2018.03.025
36 Meng K, Xu J L, Dai Z H, et al. Molecular dynamics simulation of influence of water molecules on formation process of nascent soot particles [J]. CIESC J., 2019, 70: 2237
36 孟凯, 许建良, 代正华 等. 水分子对初始碳烟颗粒形成过程影响的分子动力学模拟 [J]. 化工学报, 2019, 70: 2237
37 Chu Q Z, Shi B L, Liao L J, et al. Reaction mechanism of the aluminum nanoparticle: physicochemical reaction and heat/mass transfer [J]. J. Phys. Chem., 2020, 124C: 3886
38 Das N K, Shoji T. Adsorption and diffusion of H and O on an Ni (1 1 1) surface containing different amounts of Cr [J]. Appl. Surf. Sci., 2018, 445: 217
doi: 10.1016/j.apsusc.2018.03.134
39 Jiang D E, Carter E A. Diffusion of interstitial hydrogen into and through bcc Fe from first principles [J]. Phys. Rev., 2004, 70B: 064102
[1] 於琛钧, 张天翼, 张乃强, 朱忠亮. 组织老化对P92钢在超临界水中氧化行为影响研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1349-1357.
[2] 任岩, 张鑫涛, 盖欣, 徐敬军, 张伟, 陈勇, 李美栓. 四元MAX(Cr2/3Ti1/3)3AlC2 在高温空气以及水蒸气气氛中的氧化行为研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1284-1292.
[3] 顾玉慧, 董亮, 宋沁峰. 微型金属氧化物pH电极的制备及腐蚀防护应用进展[J]. 中国腐蚀与防护学报, 2023, 43(5): 971-982.
[4] 王军阳, 易戈文, 万善宏, 姜军. 钢材表面氧化铁皮结构演变机理与应用控制技术研究进展[J]. 中国腐蚀与防护学报, 2023, 43(5): 948-956.
[5] 宇波, 李彰, 周凯旋, 田浩亮, 房永超, 张晓敏, 金国. MoSi2 改性YGYZ作为陶瓷面层的多层热障涂层体系的抗高温氧化性能研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 812-820.
[6] 袁磊, 谢新, 陈明辉, 李烽杰, 王福会. 20钢及其搪瓷涂层在400 ℃下的氧化和NaCl腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 890-895.
[7] 郭涛, 黄峰, 胡骞, 刘静. 9Ni钢铸坯在900~1250 ℃空气中的高温氧化行为[J]. 中国腐蚀与防护学报, 2023, 43(4): 882-889.
[8] 吴嘉豪, 吴量, 姚文辉, 袁媛, 谢治辉, 王敬丰, 潘复生. Mg-Gd-Y-Zn-Mn合金不同微弧氧化表面MgAlLa层状双羟基金属氧化物复合涂层的性能研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 693-703.
[9] 黄志凤, 雍奇文, 房蕊, 谢治辉. AZ31镁合金表面超疏水耐腐蚀镍基复合涂层[J]. 中国腐蚀与防护学报, 2023, 43(4): 755-764.
[10] 胡倩, 高佳仪, 郭瑞生, 史俊勤, 王显宗. 微纳结构对阳极氧化铝超滑表面长期耐蚀性的影响机制研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 773-780.
[11] 刘姝妤, 耿树江, 王金龙, 王福会, 孙清云, 吴勇, 段海涛, 夏思瑶, 夏春怀. K444合金表面CVD铝化物涂层的高温氧化和固态Na2SO4诱导的空气腐蚀[J]. 中国腐蚀与防护学报, 2023, 43(3): 553-560.
[12] 宋健, 周文晖, 王金龙, 孙文瑶, 陈明辉, 王福会. 不同Y2O3含量的YSZ块体材料在模拟海洋环境下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 359-364.
[13] 贺南开, 王永欣, 周升国, 周大朋, 李金龙. Inconel 718合金在580 ℃下水蒸气环境中的氧化行为及摩擦学性能[J]. 中国腐蚀与防护学报, 2023, 43(2): 271-279.
[14] 蒋芳芳, 云虹, 彭莉, 张依豪, 李卫顺, 代文静, 王保峰, 徐群杰. 原位聚合聚苯胺改性NiFe-LDH复合涂层的防护性能研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 312-320.
[15] 刘欢欢, 刘光明, 李富天, 孟令奇, 夏侯俊招, 顾佳磊. TP439不锈钢在800 ℃高温水蒸气中的初期氧化行为[J]. 中国腐蚀与防护学报, 2023, 43(2): 377-383.