Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (1): 29-37     CSTR: 32134.14.1005.4537.2022.060      DOI: 10.11902/1005.4537.2022.060
  综合评述 本期目录 | 过刊浏览 |
区域性大气腐蚀图绘制技术研究进展
樊志彬(), 李辛庚, 王晓明, 王倩
国网山东省电力公司电力科学研究院 济南 250002
Review of Regional Atmospheric Corrosion Mapping Technologys
FAN Zhibin(), LI Xingeng, WANG Xiaoming, WANG Qian
State Grid Shandong Electric Power Research Institute, Jinan 250002, China
全文: PDF(615 KB)   HTML
摘要: 

大气腐蚀图是一种在地理地图上描述目标区域大气环境腐蚀性强弱的图示方法,可为工程的防腐设计、运行维护和寿命预测等提供数据支持,对于节支防腐成本和保障工程安全意义重大。大气腐蚀图由最初的栅格、等值线图发展到了更为直观、更方便读取的色斑图。剂量响应函数的发展解决了从暴露试验中难以获取足够腐蚀数据的问题,绘图者可通过环境数据快速地计算出目标区域的大气腐蚀数据。在大气腐蚀图绘图中主要使用反距离加权和克里金插值模型实现数据空白区域的赋值,但是相关模型的适用性和误差分析未见研究报道。基于大气腐蚀图绘制技术的发展现状,建立能够反映材料腐蚀机理、适用性更强且误差更小的剂量响应函数和研究更适用于大气腐蚀数据的空间插值模型是大气腐蚀图绘制技术的发展方向。

关键词 大气腐蚀腐蚀图剂量响应函数空间插值    
Abstract

Atmospheric corrosion map is a graphical method for describing the corrosivity of the atmospheric environment of a designated area on a geographic map, which can provide data support for the anti-corrosion design, maintenance, and life prediction of the outdoor projects. It is of great significance to save anti-corrosion cost and ensure the safety of the project. Atmospheric corrosion maps have evolved from the initial grid and contour maps to more intuitive and easy-to-read colorful maps. The development of the dose response function solves the problem that it is difficult to obtain sufficient corrosion data from the exposure test, and the atmospheric corrosion data of the target area can be calculated quickly by using the environmental data. The inverse distance weighting and kriging interpolation models are mainly used in constructing atmospheric corrosion maps to predict the assignment of data blank areas, but the relevant applicability and error analysis of the models have not been reported yet. Based on the development of atmospheric corrosion mapping technologys, the development directions of atmospheric corrosion mapping technology may be proposed as follows: the establish Dose Response Functions that reflect the corrosion mechanism of materials, with greater applicability and less error, and to study spatial interpolation models that are more suitable for atmospheric corrosion data.

Key wordsatmospheric corrosion    corrosion map    dose response function    spatial interpolation
收稿日期: 2022-03-06      32134.14.1005.4537.2022.060
ZTFLH:  TG174  
基金资助:国家电网有限公司总部科技项目(5200-202016471A-0-0-00)
通讯作者: 樊志彬,E-mail:fan200403707@163.com,研究方向为电网材料腐蚀防护及数据挖掘技术
Corresponding author: FAN Zhibin, E-mail: fan200403707@163.com
作者简介: 樊志彬,男,1987年生,高级工程师

引用本文:

樊志彬, 李辛庚, 王晓明, 王倩. 区域性大气腐蚀图绘制技术研究进展[J]. 中国腐蚀与防护学报, 2023, 43(1): 29-37.
FAN Zhibin, LI Xingeng, WANG Xiaoming, WANG Qian. Review of Regional Atmospheric Corrosion Mapping Technologys. Journal of Chinese Society for Corrosion and protection, 2023, 43(1): 29-37.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.060      或      https://www.jcscp.org/CN/Y2023/V43/I1/29

RegionOrganizationTimeData sourcesNumber of sites / piecesRegional area km2Resolution km2Graphical formInterpolation modelReferences
BritishCIRIA1971Exposed Samples318224410010×10Grid---[8, 9]
OsloNILU Norwegian Institute for Air Research1985DRF---454---Isolines---[27]
Yucatán PeninsulaCentro de InvestigacioÂn y de Estudios Avanzados, Unidad MeÂrida1999Exposed Samples14197600---Points---[10]
KoreaAndong National University2011Environmental Factors, Exposed Samples21100210---Color blocks---[11, 12]
AustraliaCSIRO1999Environmental Factors, Exposed Samples47542000---Points---[40]
Australia and VietnamCSIRO and IMS2012Environmental Factors, Exposed Samples75(Vietnam), 8 (Vietnam)7617930 (Australia), 329556 (Vietnam)5×5Color blocksEnvironment Model and Inverse Distance Weighting[42]
IndiaCentral Electrochemical Research Institute2004Exposed Samples402980000---Points---[7]
SpainCentro Nacional de Investigaciones Metalúrgicas (CENIM)2010DRF1005059250.5×0.5Color blocksKriging[36]
Abu DhabiCSIRO and ADWEA2011Environmental Factors---67340---Color blocksEnvironment Model[41]
SlovakiaUniversity of Zilina2015DRF---49037---Color blocks---[28,29]
Greater AthensNational Observatory of Athens2013DRF20412---Color blocksKriging[38]
SwitzerlandEMPA2004DRF>60412840.25×0.25Color blocksInverse Distance Weighting and Kriging[32]
European Part of RussiaRussian Academy of Sciences2002DRF---4268350150×150Grid---[34]
IstanbulFatih University2013DRF505343---Color blocksKriging[39]
Peninsular MalaysiaUniversiti Tenaga Nasional2013DRF17130590---Color blocksInverse Distance Weighting[43]
CzechSVUOM Ltd.2015DRF---788662×2Color blocksKriging[30,31]
RussiaRussian Academy of Sciences2019DRF6213170982000.5 Latitude×1 LongitudeColor blocks---[35]
Canary IslandsUniversidad de L as Palmas de Gran Canaria2016Exposed Samples397273---------[13]
ChilePontificia Universidad Católica de Valparaíso2016Exposed Samples31756626---Color blocks---[14]
Europe

Royal Institute of Technology, Sweden

Corrosion and Metals Research Institute, Sweden

2006DRF------50×50Color blocksKriging[33]
MadridCentro Nacional de Investigaciones Metalúrgicas (CENIM)2013DRF326070.5×0.5Color blocksKriging[37]
South AfricaUniversity of the Witwatersrand2019Exposed Samples1001219090---Color blocks---[15]
表1  国外典型大气腐蚀图
RegionOrganizationTimeData sourcesNumber of sites / piecesRegional area / km2Resolution km2Graphical formInterpolation modelReferences
LiaoningInstitute of Metal Research, Chinese Academy of Sciences1992Exposed Samples192148600---Isolines---[44, 45]
ShenyangInstitute of Metal Research, Chinese Academy of Sciences1992Exposed Samples36164---Isolines---[46]
HainanInstitute of Metal Research, Chinese Academy of Sciences1998Exposed Samples2035400---Isolines---[47]
ChongqingChongqing University2005DRF---82402---Grid---[48]
ChinaUniversity of Science and Technology Beijing2014Exposed Samples and DRF499600000---Color blocksInverse Distance Weighting[49, 50]
FujianShanghai University of Electric Power2017Exposed Samples16124000---Color blocksInverse Distance Weighting[54]
GuangdongSouth China University of Technology2018Exposed Samples and DRF150179700---Color blocksKriging[55]
表2  国内典型大气腐蚀图绘制
1 Hou B R. The Cost of Corrosion in China [M]. Beijing: Science Press, 2017
1 侯保荣. 中国腐蚀成本 [M]. 北京: 科学出版社, 2017
2 Koch G H, Brongers M P H, Thompson N G, et al. Cost of corrosion in the United States [A]. Kutz M. Handbook of Environmental Degradation of Materials [M]. Norwich: William Andrew, 2005: 3
3 Li X G, Zhang D W, Liu Z Y, et al. Materials science: share corrosion data [J]. Nature, 2015, 527: 441
doi: 10.1038/527441a
4 Koch G, Varney J, Thompson N, et al. International measures of prevention, application, and economics of corrosion technologies study [R]. Houston: NACE International, 2016
5 Cao C N. Natural Environment Corrosion of Chinese Materials [M]. Beijing: Chemical Industry Press, 2005
5 曹楚南. 中国材料的自然环境腐蚀 [M]. 北京: 化学工业出版社, 2005
6 Tang Q H, Zhang X Y. Mapping of typical atmospheric corrosion at home and abroad [J]. Equip. Environ. Eng., 2010, 7(4): 81
6 唐其环, 张先勇. 国内外典型大气腐蚀图及其绘制 [J]. 装备环境工程, 2010, 7(4): 81
7 Natesan M, Venkatachari G, Palaniswamy N. Corrosivity and durability maps of India [J]. Corros. Prev. Control, 2005, 52: 43
8 Shaw T R. Corrosion map of the British isles: la pollution atmospherique-une carte de corrosion DANs LES ILEs Britanniques [A]. EnglundHM, BeeryWT. Proceedings of the Second International Clean Air Congress [M]. New York: Academic Press, 1971: 121
9 Shaw T R. Corrosion Map of the British Isles [M]. West Conshohocken: ASTM International, 1978
10 Maldonado L, Veleva L. Corrosivity category maps of a humid tropical atmosphere: the Yucatán Peninsula, México [J]. Mater. Corros., 1999, 50: 261
doi: 10.1002/(ISSN)1521-4176
11 Kim Y S, Lim H K, Kim J J, et al. Corrosion cost and corrosion map of Korea-based on the data from 2005 to 2010 [J]. Corros. Sci. Technol., 2011, 10: 52
12 Kim Y S, Lim H K, Kim J J, et al. Corrosivity of atmospheres in the Korean peninsula [J]. Corros. Sci. Technol., 2011, 10: 109
13 Santana J J, Santana J, González J E, et al. Atmospheric corrosivity map for steel in Canary Isles [J]. Br. Corros. J., 2001, 36: 266
doi: 10.1179/000705901101501721
14 Vera R, Puentes M, Araya R, et al. Mapa de corrosión atmosférica de Chile: resultados después de un año de exposición [J]. Rev. Constr., 2012, 11: 61
15 van Rensburg D T J, Cornish L A, van der Merwe J. Corrosion map of South Africa's macro atmosphere [J]. South Afr. J. Sci., 2019, 115: #4901
16 Dean S W, Reiser D B. Analysis of Long-Term Atmospheric Corrosion Results from ISO CORRAG Program [M]. West Conshohocken: ASTM International, 2002
17 Knotkova D, Boschek P, Kreislova K. Results of ISO CORRAG Program: Processing of One-Year Data in Respect to Corrosivity Classification [J]. ASTM Spec. Tech. Pub., 1995, 1239: 38
18 Chico B, De la Fuente D, Díaz I, et al. Annual atmospheric corrosion of carbon steel worldwide. An integration of ISOCORRAG, ICP/UNECE and MICAT databases [J]. Materials, 2017, 10: 601
doi: 10.3390/ma10060601
19 Kucera V, Tidblad J, Kreislova K, et al. UN/ECE ICP materials dose-response functions for the multi-pollutant situation [J]. Water, Air, Soil Pollut.: Focus, 2007, 7: 249
20 Castaño J G, Botero C A, Restrepo A H, et al. Atmospheric corrosion of carbon steel in Colombia [J]. Corros. Sci., 2010, 52: 216
doi: 10.1016/j.corsci.2009.09.006
21 Pintos S, Queipo N V, de Rincón O T, et al. Artificial neural network modeling of atmospheric corrosion in the MICAT project [J]. Corros. Sci., 2000, 42: 35
doi: 10.1016/S0010-938X(99)00054-2
22 Morcillo M. Atmospheric Corrosion in Ibero-America: The MICAT Project [J]. ASTM Spec. Tech. Pub., 1995, 1239: 257
23 Vilche J R, Varela F E, Acuña G, et al. A survey of Argentinean atmospheric corrosion: I—Aluminium and zinc samples [J]. Corros. Sci., 1995, 37: 941
doi: 10.1016/0010-938X(95)00006-6
24 Leuenberger-Minger A U, Buchmann B, Faller M, et al. Dose-response functions for weathering steel, copper and zinc obtained from a four-year exposure programme in Switzerland [J]. Corros. Sci., 2002, 44: 675
doi: 10.1016/S0010-938X(01)00097-X
25 Tidblad J, Kucera V, Mikhailov A A, et al. UN ECE ICP materials: dose-response functions on dry and wet acid deposition effects after 8 years of exposure [A]. SatakeK, ShindoJ, TakamatsuT, et al. Acid Rain 2000 [M]. Dordrecht: Springer, 2001: 1457
26 Mikhailov A A, Tidblad J, Kucera V. The classification system of ISO 9223 standard and the dose–response functions assessing the corrosivity of outdoor atmospheres [J]. Prot. Met., 2004, 40: 541
doi: 10.1023/B:PROM.0000049517.14101.68
27 Haagenrud S E, Henriksen J F, Gram F. Dose-response functions and corrosion mapping for a small geographical area [A]. Proceedings of the Fall 1985 meeting of the Electrochemical Society [C]. Las Vegas, 1985: 215
28 Kozák J, Ivašková M, Koteš P. Atmosphere aggressivity state mapping in Slovak republic for corrosion of construction materials [J]. Mater. Sci. Forum, 2015, 811: 49
doi: 10.4028/www.scientific.net/MSF.811
29 Ivaskova M, Kotes P, Brodnan M. Air pollution as an important factor in construction materials deterioration in Slovak Republic [J]. Procedia Eng., 2015, 108: 131
doi: 10.1016/j.proeng.2015.06.128
30 Kreislova K, Geiplova H, Skorepova I, et al. Method for creation of actual maps of atmospheric corrosivity for the Czech Republic [A]. Proceeding of EUROCORR 2015 [C]. Graz, Austria, 2015
31 Kreislová K, Geiplová H, Skořepová I, et al. Nové mapy korozní agresivity Èeské republiky/Up-dated maps of atmospheric corrosivity for Czech Republic [J]. KOM-Corros. Mater. Prot. J., 2015, 59: 81
32 Reiss D, Rihm B, Thöni C, et al. Mapping stock at risk and release of zinc and copper in Switzerland—dose response functions for runoff rates derived from corrosion rate data [J]. Water, Air, Soil Pollut., 2004, 159: 101
33 Wallinder I O, Bahar B, Leygraf C, et al. Modelling and mapping of copper runoff for Europe [J]. J. Environ. Monit., 2007, 9: 66
doi: 10.1039/B612041E
34 Mikhailov A A. Estimating and mapping the material corrosion losses in the European part of Russia with unified doze—response functions [J]. Prot. Met., 2002, 38: 243
doi: 10.1023/A:1015617405346
35 Panchenko Y, Marshakov A, Igonin T, et al. Corrosivity of atmosphere toward structural metals and mapping the continental Russian territory [J]. Corros. Eng., Sci. Technol., 2019, 54: 369
36 Chico B, de la Fuente D, Vega J M, et al. Corrosivity maps of Spain for zinc in rural atmospheres [J]. Rev. Metal., 2010, 46: 485
doi: 10.3989/revmetalm.2010.v46.i6
37 de la Fuente D, Vega J M, Viejo F, et al. Mapping air pollution effects on atmospheric degradation of cultural heritage [J]. J. Cult. Heritage, 2013, 14: 138
doi: 10.1016/j.culher.2012.05.002
38 Kambezidis H D, Kalliampakos G. Mapping atmospheric corrosion on modern materials in the Greater Athens area [J]. Water, Air, Soil Pollut., 2013, 224: 1463
39 Karaca F. Mapping the corrosion impact of air pollution on the historical peninsula of Istanbul [J]. J. Cult. Heritage, 2013, 14: 129
doi: 10.1016/j.culher.2012.04.011
40 Cole I S, King G A, Trinidad G S, et al. An Australia-wide map of corrosivity: a GIS approach [R]. Ottawa: National Research Council Canada, 1999
41 Cole I S, Ganther W D, Helal A M, et al. A corrosion map of Abu Dhabi [J]. Mater. Corros., 2013, 64: 247
42 Cole I, Corrigan P, Nguyen V H. Steel corrosion map of Vietnam [J]. Corros. Sci. Technol., 2012, 11: 103
doi: 10.14773/cst.2012.11.4.103
43 Fathoni U, Zakaria C M, Rohayu C O. Development of corrosion risk map for Peninsular Malaysia using climatic and air pollution data [J]. IOP Conf. Ser.: Earth Environ. Sci., 2013, 16: 012088
44 Sun C, Wu W T, Huang C X, et al. Atmospheric corrosion of zinc in Liaoning rural area [J]. Mater. Sci. Prog., 1992, 6: 312
44 孙成, 吴维, 黄春晓 等. Zn的乡村大气腐蚀 [J]. 材料科学进展, 1992, 6: 312
45 Sun C, Wu W T, Huang C X, et al. Atmospheric corrosion of Zn in Liaoning [J]. Corros. Sci. Prot. Technol., 1993, 5: 38
45 孙成, 吴维, 黄春晓 等. 辽宁大气腐蚀性研究—锌、铜、铝暴露两年试验结果 [J]. 腐蚀科学与防护技术, 1993, 5: 38
46 Chen H C, Yu G C, Li H X, et al. Development of atmospheric corrosion map in Shenyang [J]. Corros. Sci. Prot. Technol., 1992, 4: 195
46 陈鸿川, 于国才, 李洪锡 等. 沈阳市大气腐蚀图研制 [J]. 腐蚀科学与防护技术, 1992, 4: 195
47 Wang Z Y, Chen H C, Yu G C, et al. An investigation on atmospheric corrosiveness in Hainan province [J]. J. Chin. Soc. Corros. Prot., 1996, 16: 225
47 王振尧, 陈鸿川, 于国才 等. 海南省的大气腐蚀性调查 [J]. 中国腐蚀与防护学报, 1996, 16: 225
48 Ye D. Study on effects of air pollution on corrosion of materials in Chongqing [D]. Chongqing: Chongqing University, 2005
48 叶堤. 重庆市大气污染对材料腐蚀的影响研究 [D]. 重庆: 重庆大学, 2005
49 Cui M C, Mu Z C, Fu D M, et al. Speculation of carbon steel corrosion rate in atmospheric environment [J]. Corros. Prot., 2016, 37: 503
49 崔梦晨, 穆志纯, 付冬梅 等. 大气环境中碳钢腐蚀速率推测方法 [J]. 腐蚀与防护, 2016, 37: 503
50 Cui M C, Fu D M, Zhang M M, et al. Establishment of carbon steel corrosion rate map in atmospheric environment [A]. Proceedings of the 2014 Marine Materials Corrosion and Protection Conference [C]. Beijing, 2014: 33
50 崔梦晨, 付冬梅, 张苗苗 等. 大气环境下碳钢腐蚀速率地图的建立 [A]. 2014海洋材料腐蚀与防护大会 [C]. 北京, 2014: 33
51 Wang Z G, Hai C, Jiang J, et al. Corrosion behavior of Q235 steels in atmosphere at Deyang district for one year [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 871
51 王志高, 海潮, 姜杰 等. Q235钢在德阳大气环境中腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 871
doi: 10.11902/1005.4537.2020.180
52 Wang J, Chen J J, Xie Y, et al. Evaluation of environmental factors related with atmosphere corrosivity in Hunan Provice by atmospheric corrosion monitoring technique [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 487
52 王军, 陈军君, 谢亿 等. 湖南地区大气腐蚀严酷性的环境因素与大气腐蚀监测仪评定 [J]. 中国腐蚀与防护学报, 2021, 41: 487
doi: 10.11902/1005.4537.2020.103
53 Xia X J, Cai J B, Lin D Y, et al. Corrosion status, corrosion mechanisms and anti-corrosion measures in coastal substations [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 697
53 夏晓健, 蔡建宾, 林德源 等. 沿海变电站设备腐蚀状况及其腐蚀机理与防护 [J]. 中国腐蚀与防护学报, 2021, 41: 697
doi: 10.11902/1005.4537.2020.155
54 Ni Q Z. Corrosion research and life prediction of electricity metal materials [D]. Shanghai: Shanghai University of Electric Power, 2017
54 倪清钊. 电力金属材料的腐蚀研究与寿命预测 [D]. 上海: 上海电力学院, 2017
55 Huang J C, Meng X B, Zheng Z J, et al. Optimization of the atmospheric corrosivity mapping of Guangdong Province [J]. Mater. Corros., 2019, 70: 91
56 Feliu S, Morcillo M, Feliu Jr S. The prediction of atmospheric corrosion from meteorological and pollution parameters—I. Annual corrosion [J]. Corros. Sci., 1993, 34: 403
doi: 10.1016/0010-938X(93)90112-T
57 Lee D S, Holland M R, Falla N. The potential impact of ozone on materials in the U.K. [J]. Atmos. Environ., 1996, 30: 1053
doi: 10.1016/1352-2310(95)00407-6
58 Svensson J E, Johansson L G. A laboratory study of the effect of ozone, nitrogen dioxide, and sulfur dioxide on the atmospheric corrosion of zinc [J]. J. Electrochem. Soc., 1993, 140: 2210
doi: 10.1149/1.2220797
59 Liu C, Tang Q H, Wang W, et al. Applicability of atmospheric corrosion rate prediction equation for carbon steel of standard ISO 9223—2012 in typical areas of China [J]. Equip. Environ. Eng., 2017, 14(10): 74
59 刘聪, 唐其环, 王莞 等. ISO 9223—2012标准碳钢大气腐蚀速率预测方程在我国典型地区的适用性研究 [J]. 装备环境工程, 2017, 14(10): 74
60 Li J, Heap A D. A Review of Spatial Interpolation Methods for Environmental Scientists [M]. Geoscience Australia, 2008
61 Chen F W, Liu C W. Estimation of the spatial rainfall distribution using inverse distance weighting (IDW) in the middle of Taiwan [J]. Paddy Water Environ., 2012, 10: 209
doi: 10.1007/s10333-012-0319-1
62 Ahmed S O, Mazloum R, Abou-Ali H. Spatiotemporal interpolation of air pollutants in the Greater Cairo and the Delta, Egypt [J]. Environ. Res., 2018, 160: 27
doi: S0013-9351(17)31625-0 pmid: 28941801
63 Wong D W, Yuan L, Perlin S A. Comparison of spatial interpolation methods for the estimation of air quality data [J]. J. Expo. Sci. Environ. Epidemiol., 2004, 14: 404
doi: 10.1038/sj.jea.7500338
[1] 汪洋, 刘元海, 慕仙莲, 刘淼然, 王俊, 李秋平, 陈川. 海洋气候大气腐蚀过程环境因素对薄液膜内物质传递的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1015-1021.
[2] 郝文魁, 陈新, 徐玲铃, 韩钰, 陈云, 黄路遥, 祝志祥, 杨丙坤, 王晓芳, 张强. 电网碳钢、镀锌钢大气腐蚀等级图绘制研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 795-802.
[3] 李乐民, 张洁, 卞亚飞, 缪春辉, 陈国宏, 汤文明. 安徽省内电网设备常用Q235和40Cr钢大气腐蚀特性及其规律[J]. 中国腐蚀与防护学报, 2023, 43(3): 535-543.
[4] 周梦鑫, 吴军, 樊志彬, 周学杰, 陈昊. 大气腐蚀在线监测技术研究现状与展望[J]. 中国腐蚀与防护学报, 2023, 43(1): 38-46.
[5] 夏晓健, 万芯瑗, 高燕, 王启伟, 严康骅, 陈云翔, 洪毅成, 张俊喜. 1050铝合金在通电工况下大气腐蚀的腐蚀特征[J]. 中国腐蚀与防护学报, 2022, 42(6): 1065-1069.
[6] 范益, 杨文秀, 王军, 蔡佳兴, 马宏驰. Q690qE桥梁钢在模拟滨海工业环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 669-674.
[7] 马小泽, 孟令东, 曹祥康, 肖松, 董泽华. 大气污染物硫酸铵和氯化钠混合盐粒沉降对电路板铜大气腐蚀的加速机制[J]. 中国腐蚀与防护学报, 2022, 42(4): 540-550.
[8] 崔中雨, 葛峰, 王昕. 几种苛刻海洋大气环境下的海工材料腐蚀机制[J]. 中国腐蚀与防护学报, 2022, 42(3): 403-409.
[9] 王志高, 海潮, 姜杰, 兰新生, 杜翠薇, 李晓刚. Q235钢在德阳大气环境中腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 871-876.
[10] 夏晓健, 蔡建宾, 林德源, 万芯瑗, 李扬森, 张标华, 陈云翔, 韩纪层, 邹智敏, 姜春海. 沿海变电站设备腐蚀状况及其腐蚀机理与防护[J]. 中国腐蚀与防护学报, 2021, 41(5): 697-704.
[11] 王军, 陈军君, 谢亿, 徐松, 刘兰兰, 吴堂清, 尹付成. 湖南地区大气腐蚀严酷性的环境因素与大气腐蚀监测仪评定[J]. 中国腐蚀与防护学报, 2021, 41(4): 487-492.
[12] 陈文娟, 方莲, 潘刚. O3/SO2复合大气环境中Q235B钢的腐蚀演化特性[J]. 中国腐蚀与防护学报, 2021, 41(4): 450-460.
[13] 范益,陈林恒,蔡佳兴,代芹芹,马宏驰,程学群. 热轧AH36船板钢在室内仓储条件下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 10-16.
[14] 潘成成,马超,夏大海. EBSD技术研究金属材料晶体取向对大气腐蚀萌生的影响机理[J]. 中国腐蚀与防护学报, 2019, 39(6): 495-503.
[15] 赵晋斌,赵起越,陈林恒,黄运华,程学群,李晓刚. 不同表面处理方式对300M钢在青岛海洋大气环境下腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.