|
|
CO2-H2S-Cl-共存的地层水环境中Cr含量对钢的腐蚀产物膜特性的影响 |
王小红( ), 李子硕, 唐御峰, 谭浩, 蒋焰罡 |
西南石油大学新能源与材料学院 成都 610500 |
|
Influence of Cr Content on Characteristics of Corrosion Product Film Formed on Several Steels in Artifitial Stratum Waters Containing CO2-H2S-Cl- |
WANG Xiaohong( ), LI Zishuo, TANG Yufeng, TAN Hao, JIANG Yangang |
School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China |
引用本文:
王小红, 李子硕, 唐御峰, 谭浩, 蒋焰罡. CO2-H2S-Cl-共存的地层水环境中Cr含量对钢的腐蚀产物膜特性的影响[J]. 中国腐蚀与防护学报, 2022, 42(6): 1043-1050.
Xiaohong WANG,
Zishuo LI,
Yufeng TANG,
Hao TAN,
Yangang JIANG.
Influence of Cr Content on Characteristics of Corrosion Product Film Formed on Several Steels in Artifitial Stratum Waters Containing CO2-H2S-Cl-[J]. Journal of Chinese Society for Corrosion and protection, 2022, 42(6): 1043-1050.
[1] |
Ai Z J, Fan Y W, Zhao Q K. Review on H2S corrosion of oil gas tubing and its protection [J]. Surf. Technol., 2015, 44(9): 108
|
[1] |
(艾志久, 范钰伟, 赵乾坤. H2S对油气管材的腐蚀及防护研究综述 [J]. 表面技术, 2015, 44(9): 108)
|
[2] |
Zhu S D, Liu H, Bai Z Q, et al. Dynamic corrosion behavior of P110 steel in stimulated oil field CO2/H2S environment [J]. Chem. Eng. Oil Gas, 2009, 38: 65
|
[2] |
(朱世东, 刘会, 白真权 等. 模拟油田CO2/H2S环境中P110钢的动态腐蚀行为 [J]. 石油与天然气化工, 2009, 38: 65)
|
[3] |
Zhao G X, Huang J, Xue Y. Corrosion behavior of materials used for surface gathering and transportation pipeline in an oilfield [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 557
|
[3] |
(赵国仙, 黄静, 薛艳. 某油田地面集输管道用材腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2019, 39: 557)
|
[4] |
Kermani M B, Morshed A. Carbon dioxide corrosion in oil and gas production-A compendium [J]. Corrosion, 2003, 59: 659
doi: 10.5006/1.3277596
|
[5] |
Xie T, Zhang X C, Lin H, et al. Corrosion behavior of casing steel with different materials in CO2 and H2S environment [J]. Equip. Environ. Eng., 2021, 18(1): 57
|
[5] |
(谢涛, 张晓诚, 林海 等. CO2和微量H2S共存环境中套管防腐优选研究 [J]. 装备环境工程, 2021, 18(1): 57)
|
[6] |
Dunlop A K, Hassell H L, Rhodes P R. Fundamental consideration in sweet gas well corrosion [A]. NACE International Corrosion 1983 Conference [C]. Anaheim: 1983
|
[7] |
Asami K, Hashimoto K, Shimodaira S. An XPS study of the passivity of a series of iron—chromium alloys in sulphuric acid [J]. Corros. Sci., 1978, 18: 151
doi: 10.1016/S0010-938X(78)80085-7
|
[8] |
Tian Y Q, Fu A Q, Hu J G, et al. Corrosion behavior of low Cr steel in CO2/H2S environment [J]. Surf. Technol., 2019, 48(5): 49
|
[8] |
(田永强, 付安庆, 胡建国 等. 低Cr钢在CO2/H2S环境中的腐蚀行为研究 [J]. 表面技术, 2019, 48(5): 49)
|
[9] |
Zhao Z M. Oil and Gas Well Corrosion Protection and Material Selection Guide [M]. Beijing: Petroleum Industry Press, 2011
|
[9] |
(赵章明. 油气井腐蚀防护与材质选择指南 [M]. 北京: 石油工业出版社, 2011)
|
[10] |
Wang F, Wei C Y, Huang T J, et al. Effect of H2S partial pressure on stress corrosion cracking behavior of 13Cr stainless steel in annulus environment around CO2 injection well [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 46
|
[10] |
(王峰, 韦春艳, 黄天杰 等. H2S分压对13Cr不锈钢在CO2注气井环空环境中应力腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2014, 34: 46)
|
[11] |
Lu Y, Zhao J M, Zhang Y, et al. Factors controlling H2S/CO2 corrosion of X65 carbon steel [J]. J. Beijing Univ. Chem. Technol. (Nat. Sci. Ed.), 2021, 48(3): 17
|
[11] |
(陆原, 赵景茂, 张勇 等. X65碳钢的H2S/CO2腐蚀控制因素研究 [J]. 北京化工大学学报 (自然科学版), 2021, 48(3): 17)
|
[12] |
Li Q, Zhang D P, Wang W, et al. Evaluation of actual corrosion status of L80 tubing steel and subsequent electrochemical and SCC investigation in lab [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 317
|
[12] |
(李清, 张德平, 王薇 等. L80油管钢实际腐蚀状况评估及室内电化学和应力腐蚀研究 [J]. 中国腐蚀与防护学报, 2020, 40: 317)
|
[13] |
Srinivasan S, Tebbal S. Critical factors in predicting CO2/H2S corrosion in multiphase systems [A]. Corrosion 98 [C]. San Diego, California, 1998
|
[14] |
Guo S Q, Xu L N, Zhang L, et al. Corrosion of alloy steels containing 2% chromium in CO2 environments [J]. Corros. Sci., 2012, 63: 246
doi: 10.1016/j.corsci.2012.06.006
|
[15] |
Olsson C O A, Landolt D. Passive films on stainless steels—chemistry, structure and growth [J]. Electrochim. Acta, 2003, 48: 1093
doi: 10.1016/S0013-4686(02)00841-1
|
[16] |
Zhang H, Zhao Y L, Jiang Z D. Effects of temperature on the corrosion behavior of 13Cr martensitic stainless steel during exposure to CO2 and Cl- environment [J]. Mater. Lett., 2005, 59: 3370
doi: 10.1016/j.matlet.2005.06.002
|
[17] |
Wei L, Pang X L, Gao K W. Corrosion of low alloy steel and stainless steel in supercritical CO2/H2O/H2S systems [J]. Corros. Sci., 2016, 111: 637
doi: 10.1016/j.corsci.2016.06.003
|
[18] |
Zhao Y, Li X P, Zhang C, et al. Investigation of the rotation speed on corrosion behavior of HP-13Cr stainless steel in the extremely aggressive oilfield environment by using the rotating cage test [J]. Corros. Sci., 2018, 145: 307
doi: 10.1016/j.corsci.2018.10.011
|
[19] |
Lee J B, Kim S W. Semiconducting properties of passive films formed on Fe-Cr alloys using capacitiance measurements and cyclic voltammetry techniques [J]. Mater. Chem. Phys., 2007, 104: 98
doi: 10.1016/j.matchemphys.2007.02.089
|
[20] |
Moreira R M, Franco C V, Joia C J B M, et al. The effects of temperature and hydrodynamics on the CO2 corrosion of 13Cr and 13Cr5Ni2Mo stainless steels in the presence of free acetic acid [J]. Corros. Sci., 2004, 46: 2987
doi: 10.1016/j.corsci.2004.05.020
|
[21] |
Zhao Y, Xie J F, Zeng G X, et al. Pourbaix diagram for HP-13Cr stainless steel in the aggressive oilfield environment characterized by high temperature, high CO2 partial pressure and high salinity [J]. Electrochim. Acta, 2019, 293: 116
doi: 10.1016/j.electacta.2018.08.156
|
[22] |
Han P, Chen C F, Yu H B, et al. Study of pitting corrosion of L245 steel in H2S environments induced by imidazoline quaternary ammonium salts [J]. Corros. Sci., 2016, 112: 128
doi: 10.1016/j.corsci.2016.07.006
|
[23] |
Liu W, Dou J J, Lu S L, et al. Effect of silty sand in formation water on CO2 corrosion behavior of carbon steel [J]. Appl. Surf. Sci., 2016, 367: 438
doi: 10.1016/j.apsusc.2016.01.228
|
[24] |
Zhang W H. Stainless Steel and its Heat Treatment [M]. Shenyang: Liaoning Science and Technology Press, 2010
|
[24] |
(张文华. 不锈钢及其热处理 [M]. 沈阳: 辽宁科学技术出版社, 2010)
|
[25] |
Lu Q K, Wang L W, Xin J C, et al. Corrosion evolution and stress corrosion cracking of E690 steel for marine construction in artificial seawater under potentiostatic anodic polarization [J]. Construct. Build. Mater., 2020, 238: 117763
doi: 10.1016/j.conbuildmat.2019.117763
|
[26] |
Bhatt R B, Kamat H S, Ghosal S K, et al. Influence of nitrogen in the shielding gas on corrosion resistance of duplex stainless steel welds [J]. J. Mater. Eng. Perform., 1999, 8: 591
doi: 10.1007/s11665-999-0014-6
|
[27] |
Marcelin S, Pébère N, Régnier S. Electrochemical characterisation of a martensitic stainless steel in a neutral chloride solution [J]. Electrochim. Acta, 2013, 87: 32
doi: 10.1016/j.electacta.2012.09.011
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|