Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (4): 629-637    DOI: 10.11902/1005.4537.2021.214
  研究报告 本期目录 | 过刊浏览 |
酸性介质中桂圆壳碳点对碳钢的缓蚀性能研究
陈佳起, 侯道林, 肖晗, 高雨薇, 董社英()
西安建筑科技大学化学与化工学院 西安 710311
Corrosion Inhibition on Carbon Steel in Acidic Solution by Carbon Dots Prepared from Waste Longan Shells
CHEN Jiaqi, HOU Daolin, XIAO Han, GAO Yuwei, DONG Sheying()
School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710311, China
全文: PDF(4337 KB)   HTML
摘要: 

为开发环境友好、高缓蚀效率的新型缓蚀剂,以桂圆壳生物质为碳源,通过煅烧法和水热法分别合成桂圆壳碳点 (longan shell-CDs,ls-CDs) 和氮掺杂桂圆壳碳点 (N-lsCDs)。在此基础上,本文通过FT-IR、XPS、TEM、电化学方法、荧光光谱分析 (FL) 和静态失重法等手段对其光学性质、结构组成和缓蚀性能进行了测定分析。结果表明:在1 mol·L-1 HCl体系中,当ls-CDs和N-lsCDs的浓度为100和20 mg·L-1时,对Q235钢的缓蚀效率分别达到89.49%和92.41%。尤其是N-lsCDs,具有投加量低、原料废物利用、缓蚀性能优异的特点。极化曲线测试表明N-lsCDs为混合型抑制剂,并且N-lsCDs在碳钢表面的吸附符合Langmuir吸附等温式,同时存在物理吸附与化学吸附。利用生物质为原料制备环保新型缓蚀剂能够变废为宝,具有诱人的潜在应用前景。

关键词 碳钢缓蚀剂生物质碳点吸附    
Abstract

In order to develop new environment-friendly corrosion inhibitors of high corrosion inhibition efficiency, longan shell carbon dots (ls-CDs) and nitrogen doped longan shell carbon dots (N-lsCDs) were synthesized by calcination and one-pot hydrothermal methods, respectively. Meantime, the structural, composition, optical property, and corrosion inhibition performance of ls-CDs and N-lsCDs were assessed by means of FT-IR, FL, XPS, TEM, electrochemical method, and static mass loss method. Results showed that when the concentration of ls-CDs and N-lsCDs was 100 and 20 mg·L-1 in 1 mol·L-1 HCl solution, the corresponding corrosion inhibition efficiency for Q235 steel reaches 89.49% and 92.41% respectively. Besides, the N-lsCDs present advantages, such as excellent corrosion inhibition performance in low dosage etc., and it is especially noticeable that the N-lsCDs could be produced from the longan shell as waste. The polarization curve test results showed that N-lsCDs is a mixed inhibitor, and the adsorption of N-lsCDs on the surface of carbon steel conforms to the Langmuir adsorption isotherm. Using biomass as raw material to prepare new environment-friendly corrosion inhibitor can turn waste into resources, which has attractive potential application prospects.

Key wordscarbon steel corrosion inhibitor    biomass    carbon dot    adsorption
收稿日期: 2021-08-26     
ZTFLH:  TG174.42  
基金资助:国家级大学生创新创业训练计划(202010703056);陕西省重点研发计划(2020GY-306)
通讯作者: 董社英     E-mail: dongsyy@126.com
Corresponding author: DONG Sheying     E-mail: dongsyy@126.com
作者简介: 陈佳起,男,1999年生,本科生

引用本文:

陈佳起, 侯道林, 肖晗, 高雨薇, 董社英. 酸性介质中桂圆壳碳点对碳钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 629-637.
Jiaqi CHEN, Daolin HOU, Han XIAO, Yuwei GAO, Sheying DONG. Corrosion Inhibition on Carbon Steel in Acidic Solution by Carbon Dots Prepared from Waste Longan Shells. Journal of Chinese Society for Corrosion and protection, 2022, 42(4): 629-637.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.214      或      https://www.jcscp.org/CN/Y2022/V42/I4/629

图1  ls-CDs和N-lsCDs的红外光谱及不同浓度的荧光光谱
图2  Q235钢在含不同浓度ls-CDs和N-lsCDs的1 mol·L-1 HCl溶液中的电化学阻抗图
Inhibitor

Conc.

mg·L-1

Rs

Ω·cm2

Rct

Ω·cm2

Cdl

μF·cm2

n

η

%

01.4334.22240.8770
251.4752.31980.87434.62
ls-CDs501.39205.51390.84884.39
751.46251.01150.83286.54
1001.55325.91140.83589.49
01.4234.3224.80.8780
51.19234.8131.50.87485.41
N-lsCDs101.55270.8112.80.85387.32
151.31289.7113.70.83788.07
201.25451.8111.90.82592.41
表1  Q235钢在ls-CDs和N-lsCDs不同浓度的阻抗拟合参数
图3  Q235钢在含不同浓度ls-CDs和N-lsCDs的1 mol·L-1 HCl溶液中的极化曲线
Inhibitor

Conc.

mg·L-1

βa

dec·V

Icorr

A·cm-2

η

%

ls-CDs0-9.766.8×10-40
25-13.682.8×10-444.89
50-15.028.1×10-588.01
75-14.668.6×10-587.33
100-15.885.7×10-591.61
N-lsCDs5-15.626.4×10-590.72
10-16.555.9×10-591.34
15-15.964.9×10-592.71
20-16.494.2×10-593.84
表2  Q235钢在含不同浓度ls-CDs和N-lsCDs的1 mol·L-1 HCl溶液中的极化曲线拟合参数
图4  N-lsCDs的TEM像及粒径分布图
图5  N-lsCDs的XPS光谱图及C1s、O1s和N1s的高分辨率图
图6  N-lsCDs浓度与腐蚀速率 (CR) 和缓蚀效率 (η) 的关系曲线
C / mg·L-1303 K313 K323 K
CR / g·m-2·h-1η / %CR / g·m-2·h-1η / %CR / g·m-2·h-1η / %
06.25010.12015.620
50.9480.912.7872.567.5152.47
100.8187.042.4875.587.1853.91
150.7588.722.2477.846.9556.72
200.5092.042.0180.326.7256.81
表3  Q235钢在不同温度下含不同浓度N-lsCDs的1 mol·L-1 HCl溶液中的腐蚀速率和缓蚀效率
T / ℃Rs / Ω·cm2Rct / Ω·cm2Cdl / μF·cm2η / %
201.303399.0118.1291.50
301.251451.8111.9192.41
401.173132.5120.6174.44
501.03666.9143.0649.28
表4  Q235钢在含20 mg·L-1 N-lsCDs的1 mol·L-1 HCl溶液中不同温度下的阻抗参数
T / ℃Ecorr / Vβa / mV·dec-1Icorr / A·cm-2η / %
20-0.46414.704.2×10-593.74
30-0.45316.494.2×10-593.83
40-0.46115.811.3×10-480.02
50-0.45914.732.8×10-458.11
表5  Q235钢在含20 mg·L-1 N-lsCDs的1 mol·L-1 HCl溶液中不同温度下的极化参数
图7  Q235钢在含不同浓度N-lsCDs的1 mol·L-1 HCl溶液中的Arrhenius图
图8  Q235钢在含不同浓度N-lsCDs的1 mol·L-1 HCl溶液中的过渡态理论图
图9  N-lsCDs在1 mol·L-1 HCl溶液中Q235钢表面的吸附等温线
图10  Q235钢在1 mol·L-1 HCl溶液中不同条件下浸泡8 h后纯水在其表面的接触角
1 Nabatipour S, Mohammadi S, Mohammadi A. Synthesis and comparison of two chromone based Schiff bases containing methoxy and acetamido substitutes as highly sustainable corrosion inhibitors for steel in hydrochloric acid [J]. J. Mol. Struct., 2020, 1217: 128367
doi: 10.1016/j.molstruc.2020.128367
2 Zadeh A R H, Danaee I, Maddahy M H. Thermodynamic and adsorption behaviour of medicinal nitramine as a corrosion inhibitor for AISI steel alloy in HCl solution [J]. J. Mater. Sci. Technol., 2013, 29: 884
doi: 10.1016/j.jmst.2013.06.006
3 Mourya P, Banerjee S, Singh M M. Corrosion inhibition of mild steel in acidic solution by Tagetes erecta (Marigold flower) extract as a green inhibitor [J]. Corros. Sci., 2014, 85: 352
doi: 10.1016/j.corsci.2014.04.036
4 Bai P K, Xu P. Synthesis and modification of green environment-friendly scale inhibitors in the field of water treatment: the state-of-art technological advances [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 87
4 白鹏凯, 许萍. 水处理领域中的绿色环保阻垢剂及其研究进展 [J]. 中国腐蚀与防护学报, 2020, 40: 87
5 Liu Q, Zhou T Y. Inhibition behavior of graphene quantum dots for carbon steel in HCl solution [J]. Corros. Prot., 2015, 36: 152
5 刘青, 周桃玉. 盐酸溶液中石墨烯量子点对碳钢的缓蚀性能 [J]. 腐蚀与防护, 2015, 36: 152
6 Yang D P, Ye Y W, Su Y, et al. Functionalization of citric acid-based carbon dots by imidazole toward novel green corrosion inhibitor for carbon steel [J]. J. Clean. Prod., 2019, 229: 180
doi: 10.1016/j.jclepro.2019.05.030
7 Cen H Y, Chen Z Y, Guo X P. Corrosion inhibition performance and mechanism of carbon dots as corrosion inhibitors [J]. Surf. Technol., 2020, 49(11): 13
7 岑宏宇, 陈振宇, 郭兴蓬. 碳量子点缓蚀剂的缓蚀行为与机理研究 [J]. 表面技术, 2020, 49(11): 13
8 Saraswat V, Yadav M. Carbon dots as green corrosion inhibitor for mild steel in HCl solution [J]. ChemistrySelect, 2020, 5: 7347
doi: 10.1002/slct.202000625
9 Li L Y, Xu J L, Mu Y, et al. Chemical characterization and anti-hyperglycaemic effects of polyphenol enriched longan (Dimocarpus longan Lour.) pericarp extracts [J]. J. Funct. Foods, 2015, 13: 314
doi: 10.1016/j.jff.2015.01.006
10 Rakariyatham K, Zhou D Y, Rakariyatham N, et al. Sapindaceae (Dimocarpus longan and Nephelium lappaceum) seed and peel by-products: potential sources for phenolic compounds and use as functional ingredients in food and health applications [J]. J. Funct. Foods, 2020, 67: 103846
doi: 10.1016/j.jff.2020.103846
11 Yan J, Fang Y Y, Wang S W, et al. Nitrogen-doped oxygen-rich activated carbon derived from Longan shell for supercapacitors [J]. Int. J. Electrochem. Sci., 2020, 15: 1982
12 Zhang Q, Wang Y Y, Wang Z, et al. Active biochar support nano zero-valent iron for efficient removal of U (VI) from sewage water [J]. J. Alloy. Compd., 2021, 852: 156993
doi: 10.1016/j.jallcom.2020.156993
13 Li Z H, Wang Q M, Pan Y M. Study on the antioxidant compounds extracted from longan (Dimocarpus longan Lour.) shell [J]. Asian J. Chem., 2014, 26: 4602
doi: 10.14233/ajchem.2014.16130
14 Liu Y H, Qu X X, Huang G X, et al. 3-dimensional porous carbon with high nitrogen content obtained from longan shell and its excellent performance for aqueous and all-solid-state supercapacitors [J]. Nanomaterials, 2020, 10: 808
doi: 10.3390/nano10040808
15 Yang X X, Guo Y Z, Liang S, et al. Preparation of sulfur-doped carbon quantum dots from lignin as a sensor to detect Sudan I in an acidic environment [J]. J. Mater. Chem. B, 2020, 8: 10788
doi: 10.1039/D0TB00125B
16 Liu L J, Zhang S T, Zheng X D, et al. Carbon dots derived from Fusobacterium nucleatum for intracellular determination of Fe3+ and bioimaging both in vitro and in vivo [J]. Anal. Methods, 2021, 13: 1121
doi: 10.1039/D1AY00020A
17 Mathew S A, Saminathan D, Hubert Y S, et al. Facile single step preparation of carbon nanodots from chitosan by carbonization [J]. J. Indian Chem. Soc., 2019, 96: 180
18 Liu S Y, Zhao N, Cheng Z, et al. Amino-functionalized green fluorescent carbon dots as surface energy transfer biosensors for hyaluronidase [J]. Nanoscale, 2015, 7: 6836
doi: 10.1039/C5NR00070J
19 Wang Y L, Yan L P, Ji G Q, et al. Synthesis of N,S-doped carbon quantum dots for use in organic solar cells as the ZnO modifier to eliminate the light-soaking effect [J]. ACS Appl. Mater. Interfaces, 2019, 11: 2243
doi: 10.1021/acsami.8b17128
20 Tang R M, Liu G M, Shi C, et al. Inhibition and adsorption behavior of sodium dodecyl-benzene sulfonate on Q235 steel in simulated concrete pore fluid [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 857
20 唐荣茂, 刘光明, 师超 等. 十二烷基苯磺酸钠在模拟混凝土孔隙液中对Q235钢缓蚀及吸附行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 857
21 Xiao H, Dong S Y, Yuan X J, et al. Corrosion inhibition performance and mechanism of N-doped carbon dots to Q235 steel [J]. J. Funct. Mater., 2021, 52: 8138
21 肖晗, 董社英, 袁小静 等. 氮掺杂碳点对Q235钢的缓蚀性能及机理研究 [J]. 功能材料, 2021, 52: 8138
22 D'Elia L F, Torres F, Báez V. Voltammetric adsorption studies of commercial corrosion inhibitors. A first correlating approach to the corrosion inhibition efficiency [J]. Port. Electrochim. Acta, 2009, 27: 671
doi: 10.4152/pea.200906671
23 Wang J, Wang S Y, Zhang C, et al. Effect of nitrogen doping on corrosion inhibition performance of carbon nanoparticles [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 85
23 王晶, 王斯琰, 张崇 等. 氮掺杂对碳纳米颗粒缓蚀性能的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 85
24 Hajideh M R, Farahani M, Pakravan M, et al. Corrosion resistance and hydrophilic properties of plasma sprayed Ni+5%Al coatings [J]. Heliyon, 2019, 5: e01920
doi: 10.1016/j.heliyon.2019.e01920
25 Fernandes B S, da Silva Souza K G, Aoki I V, et al. Evaluation of the influence of experimental parameters in the formation of a vinyltrimethoxysilane film on 1010 carbon steel through electrochemical impedance spectroscopy and contact angle techniques [J]. Electrochim. Acta, 2014, 124: 137
doi: 10.1016/j.electacta.2013.08.061
26 Cao S Y, Liu D, Ding H, et al. Task-specific ionic liquids as corrosion inhibitors on carbon steel in 0.5 M HCl solution: an experimental and theoretical study [J]. Corros. Sci., 2019, 153: 301
doi: 10.1016/j.corsci.2019.03.035
[1] 刘永强, 刘光明, 范文学, 唐荣茂, 甘鸿禹, 师超. 苯甲酸钠在酸性Zn-Ni镀液中对Zn阳极溶解行为影响的研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 605-612.
[2] 唐荣茂, 刘光明, 师超, 张帮彦, 田继红, 甘鸿禹, 刘永强. 十二烷基苯磺酸钠在模拟混凝土孔隙液中对Q235钢缓蚀及吸附行为研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 857-863.
[3] 王丽姿, 黄苗, 李向红. 核桃青皮提取物与碘化钾对钢在柠檬酸中的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2021, 41(6): 819-827.
[4] 胡慧慧, 陈长风. 温度影响席夫碱缓蚀剂吸附的机理研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 786-794.
[5] 谭伯川, 张胜涛, 李文坡, 向斌, 强玉杰. 食用香料1,4-二硫-2,5-二醇环保型缓蚀剂对X70钢在0.5 mol/L H2SO4溶液中的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(4): 469-476.
[6] 王丽姿, 李向红. 三氯乙酸溶液中咪唑啉在钢表面的吸附及缓蚀行为[J]. 中国腐蚀与防护学报, 2021, 41(3): 353-361.
[7] 陈文, 黄德兴, 韦奉. 铁蕨提取物对碳钢在盐酸中的缓蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 376-382.
[8] 李向红, 邓书端, 徐昕. 木薯淀粉三元接枝共聚物对钢在H2SO4溶液中的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 105-114.
[9] 吕祥鸿,张晔,闫亚丽,侯娟,李健,王晨. 两种新型曼尼希碱缓蚀剂的性能及吸附行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[10] 刘峥, 李海莹, 王浩, 赵永, 谢思维, 张淑芬. 分子动力学模拟水溶液中席夫碱基表面活性剂在Zn表面的吸附行为[J]. 中国腐蚀与防护学报, 2018, 38(4): 381-390.
[11] 彭晚军, 丁纪恒, 陈浩, 余海斌. 生物基缓蚀剂糠醇缩水甘油醚的缓蚀性能及机理[J]. 中国腐蚀与防护学报, 2018, 38(3): 303-308.
[12] 张天翼,吴俊升,郭海龙,李晓刚. 模拟海水中HSO3-对2205双相不锈钢钝化膜成分及耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(6): 535-542.
[13] 左翔,蒋裕丰,迟挺,胡鑫,曹冬梅,蔡烽. 新型含长链烷基苯并三唑缓蚀剂的制备与性能研究[J]. 中国腐蚀与防护学报, 2016, 36(5): 415-420.
[14] 王春霞,陈敬平,张晓红,王赪胤. 溴化N-辛烷异喹啉在盐酸溶液中对Q235碳钢的缓蚀行为[J]. 中国腐蚀与防护学报, 2016, 36(3): 245-252.
[15] 肖涛,Masoumeh Moradi,宋振纶,杨丽景,闫涛,侯利锋. 新喀里多尼亚弧菌胞外聚合物对硫酸中Q235碳钢的缓蚀作用[J]. 中国腐蚀与防护学报, 2016, 36(2): 150-156.