Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (2): 255-262    DOI: 10.11902/1005.4537.2020.018
  研究报告 本期目录 | 过刊浏览 |
铝镁双金属反向等温包覆挤压棒材耐腐蚀性能
乔及森1,2(), 夏宗辉1, 刘立博1, 许佳敏1, 刘旭东1
1.兰州理工大学材料科学与工程学院 兰州 730050
2.兰州理工大学 省部共建有色金属先进加工与再利用国家重点实验室 兰州 730050
Corrosion Resistance of Aluminum-magnesium Bimetal Composite Material Prepared by Isothermal Indirect Extrusion
QIAO Jisen1,2(), XIA Zonghui1, LIU Libo1, XU Jiamin1, LIU Xudong1
1.Academy of Material Science and Technology, Lanzhou University of Technology, Lanzhou 730050, China
2.State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
全文: PDF(14110 KB)   HTML
摘要: 

利用反向等温包覆挤压技术制备了直径38 mm的铝包覆镁合金复合挤压棒材,采用浸泡实验和电化学工作站进行腐蚀分析,对比研究铝镁双金属反向等温挤压棒材表层、芯部及铝镁包覆结合界面层在3.5%NaCl溶液中腐蚀前后的微观组织形貌、腐蚀失重率、极化曲线、阻抗谱等。结果表明:铝镁合金在挤压过程中发生再结晶,包覆结合界面层析出β (Al3Mg2) 相和γ (Mg17Al12) 相,而未包覆挤压镁合金,在晶界处析出γ (Mg17Al12) 相。相比于未包覆状态而言,反向等温包覆挤压棒材在腐蚀过程中,包覆铝表面层更容易富集腐蚀产物形成钝化膜抑制腐蚀进行。因此这一双金属包覆反向等温复合挤压技术有利于提高AZ31镁合金型材的耐腐蚀性能。

关键词 2A12铝合金AZ31镁合金失重分析电化学分析腐蚀性能    
Abstract

Extruded bi-metal rods composed of AZ31 Mg-alloy core of 30 mm in diameter and 2A12 Al-alloy cladding of 4 mm in thickness were made by isothermal indirect extrusion process. The microstructure and corrosion behavior in 3.5%NaCl solution of the cladding surface, the core AZ31 Mg-alloy and the intermediate layer of AZ31/2A12 were comparatively examined by means of optical microscopy and scanning electron microscopy, as well as mass loss method in accordance with GB10124-88, polarization curve measurement and electrochemical impedance spectroscopy. The results showed that recrystallization was happened during the indirect extrusion process for the profiles with precipitated phases of β (Al3Mg2) and γ (Mg17Al12) at the interface area of cladding 2A12/core AZ31, while only γ (Mg17Al12) phases were precipitated along the grain boundaries for the core AZ31 Mg-alloy without cladding. It follows that a passivation film was formed on the surface of the extruded profile with the 2A12 Al-alloy cladding during corrosion process, so that the extruded profiles could be prevented from further corrosion by the passivation film. Therefore, the research shows that the indirect co-extrusion technology is beneficial to improve the corrosion resistance of the AZ31 Mg-alloy clad with 2A12 Al-alloy.

Key words2A12 Al-alloy    AZ31 Mg-alloy    masslessness analysis    electrochemical analysis    corrosion performance
收稿日期: 2020-01-22     
ZTFLH:  TG172  
基金资助:有色金属加工与再利用国家重点实验室联合基金(18LHPY007)
通讯作者: 乔及森     E-mail: qiaojisen@lut.cn
Corresponding author: QIAO Jisen     E-mail: qiaojisen@lut.cn
作者简介: 乔及森,男,1973年生,教授

引用本文:

乔及森, 夏宗辉, 刘立博, 许佳敏, 刘旭东. 铝镁双金属反向等温包覆挤压棒材耐腐蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(2): 255-262.
Jisen QIAO, Zonghui XIA, Libo LIU, Jiamin XU, Xudong LIU. Corrosion Resistance of Aluminum-magnesium Bimetal Composite Material Prepared by Isothermal Indirect Extrusion. Journal of Chinese Society for Corrosion and protection, 2021, 41(2): 255-262.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.018      或      https://www.jcscp.org/CN/Y2021/V41/I2/255

AlloySiFeZnCuMnNiAlMg
2A120.250.250.284.290.50.04Bal.1.67
AZ310.05≤0.010.63≤0.020.70.053.247Bal.
表1  2A12铝合金和AZ31镁合金成分
图1  挤压模型示意图及其挤压棒料宏观图
  图2实验材料微观形貌观察
图3  在3.5%NaCl溶液中材料腐蚀后的微观形貌观察
图4  材料在3.5%NaCl溶液中的质量损失与时间的关系
MaterialKinetic law: y=b×ty / mg·cm-2t / h
2A12y=2×10-5x+0.00030≤t≤168r2=0.9479
AZ31(BS)y=8×10-5x+0.00330≤t≤168r2=0.4562
AZ31(ES)y=5×10-5x+0.00740≤t≤168r2=0.7104
2A12/AZ31y=2×10-5x+0.00010≤t≤168r2=0.8751
Interface layery=3×10-5x+0.00230≤t≤168r2=0.97
表2  3.5%NaCl溶液中材料的动力学规律
MaterialBefore corrosionAfter corrosion
2A12-0.9731-0.1742
2A12/AZ31-1.039-0.2789
Intreface layer-1.570-0.5639
AZ31(ES)-1.591-0.7169
AZ31(BS)-1.600-1.498
表3  材料在3.5%NaCl溶液中腐蚀前后的开路电位 (V)
图5  材料在3.5%NaCl溶液中腐蚀前的极化曲线
图6  材料在3.5%NaCl溶液中腐蚀7 d后的极化曲线
  图7材料在3.5%NaCl溶液腐蚀前的Nyquist图
图8  材料在3.5%NaCl溶液腐蚀7 d后中的Nyquist图
图9  材料在3.5%NaCl溶液中腐蚀前的Bode图
图10  材料在3.5%NaCl溶液腐蚀7 d后的Bode图
1 Natesan M, Selvaraj S, Manickam T, et al. Corrosion behavior of metals and alloys in marine-industrial environment [J]. Sci. Technol. Adv. Mater., 2008, 9: 045002
2 Chen J, Li Q A, Zhang Q, et al. Effect of corrosion on wear resistance of several metals in seawater [J]. Trans. Mater. Heat Treat., 2014, 35: 1661
2 陈君, 李全安, 张清等. 海水腐蚀对几种金属材料耐磨性能的影响 [J]. 材料热处理学报, 2014, 35: 166
3 Chen W K, Bai C Y, Liu C M, et al. The effect of chromic sulfate concentration and immersion time on the structures and anticorrosive performance of the Cr(III) conversion coatings on aluminum alloys [J]. Appl. Surf. Sci., 2010, 256: 4924
4 Su J X, Zhang Z, Cao F H, et al. Review on the intergranular corrosion and exfoliation corrosion of aluminum alloys [J]. J. Chin. Soc. Corros. Prot., 2005, 25: 187
4 苏景新, 张昭, 曹发和等. 铝合金的晶间腐蚀与剥蚀 [J]. 中国腐蚀与防护学报, 2005, 25: 187
5 Zhang Y J, Yan C W, Wang F H, et al. Study on the environmentally friendly anodizing of AZ91D magnesium alloy [J]. Surf. Coat. Technol., 2002, 161: 36
6 Lin R, Liu Z H, Wang F, et al. Development of corrosion surface modification technology for magnesium alloys [J]. Surf. Technol., 2016, 45(4): 124
6 林锐, 刘朝辉, 王飞等. 镁合金表面改性技术现状研究 [J]. 表面技术, 2016, 45(4): 124
7 Wang J F. Preface to the topic "Corrosion and Protection of Magnesium Alloys" [J]. Surf. Technol., 2019, 48(3): 14
7 王敬丰. "镁合金腐蚀与防护"专题前言 [J]. 表面技术, 2019, 48(3): 13
8 Liu L J, Li P P, Zou Y H, et al. In vitro corrosion and antibacterial performance of polysiloxane and poly (acrylic acid) /gentamicin sulfate composite coatings on AZ31 alloy [J]. Surf. Coat. Technol., 2016, 291: 7
9 Aramendı́A M A, Borau V, Jiménez C, et al. Catalytic transfer hydrogenation of citral on calcined layered double hydroxides [J]. Appl. Catal., 2001, 206A: 95
10 Song Y W, Shan D Y, Chen R S, et al. Study on electroless Ni-P-ZrO2 composite coatings on AZ91D magnesium alloys [J]. Surf. Eng., 2007, 23(5): 334
11 Zhang Y Y, Qiao J S. Study on isothermal extrusion process and material flow characteristics of Al/Mg bimetal [J]. Hot Work. Technol., 2018, 47(21): 154
11 张阳羊, 乔及森. Al/Mg双金属等温挤压过程与材料流动特性研究[J]. 热加工工艺, 2018, 47(21): 154
12 Qiao J S, Nie S C, Zhang H, et al. Microstructure and mechanical properties of interfaces of extruded cladding Mg-Al rods [J]. Chin. J. Rare Met., 2015, 39: 481
12 乔及森, 聂书才, 张涵等. 铝镁包覆挤压材料界面微观组织与力学性能研究[J]. 稀有金属, 2015, 39: 481
13 Frasch-Melnik S, Spyropoulos F, Norton I T. W1/O/W2 double emulsions stabilised by fat crystals-Formulation, stability and salt release [J]. J. Colloid Interface Sci., 2010, 350: 178
14 Qiao J S, Su Y Q, Zhang Y Y, et al. Microstructures evolution of Mg-Al composite bar made by indirect isothermal co-extrusion process [J]. J. Plast. Eng., 2019, 26(1): 188
14 乔及森, 苏泳全, 张羊阳等. 铝镁双金属复合棒材反向等温挤压微观组织演化机理 [J]. 塑性工程学报, 2019, 26(1): 188
15 Qiao J S, Xiang Y Z, Nie S C, et al. Compound extrusion forming and interface microstructure of Al/Mg dissimilar metal [J]. J. Mater. Eng., 2017, 45(11): 78
15 乔及森, 向阳芷, 聂书才等. 铝镁异种金属复合挤压成形及界面微观组织 [J]. 材料工程, 2017, 45(11): 78
16 Xu Y, Fu S P, Ding F Z. A study on corrosion inhibitor for magnesium alloy [J]. Mater. Sci. Forum, 2009, 610-613: 920
17 Mathieu S, Rapin C, Steinmetz J, et al. A corrosion study of the main constituent phases of AZ91 magnesium alloys [J]. Corros. Sci., 2003, 45: 2741
18 Scharifker B, Hills G. Theoretical and experimental studies of multiple nucleation [J]. Electrochim. Acta, 1983, 28: 879
19 Wu L, Pan F S, Liu Y H, et al. Influence of pH on the growth behaviour of Mg-Al LDH films [J]. Surf. Eng., 2018, 34: 674
20 Breslin C B, Rudd A L. Activation of pure Al in an indium-containing electrolyte-an electrochemical noise and impedance study [J]. Corros. Sci., 2000, 42: 1023
21 Hu J M, Zhang J Q, Xie D M, et al. Water transport in organic coatings I: fickian diffusion [J]. J. Chin. Soc. Corros. Prot., 2002, 22: 311
21 胡吉明, 张鉴清, 谢德明等. 水在有机涂层中的传输: I Fick扩散过程 [J]. 中国腐蚀与防护学报, 2002, 22: 311
22 Zhang J Q, Cao C N. Study and evaluation on organic coatings by electrochemical impedance spectroscopy [J]. Corros. Prot., 1998, 19(3): 99
22 张鉴清, 曹楚南. 电化学阻抗谱方法研究评价有机涂层 [J]. 腐蚀与防护, 1998, 19(3): 99
[1] 王晓鸽, 高克玮, 颜鲁春, 杨会生, 庞晓露. Ce对镁合金表面ZnAlCe-LDHs薄膜耐腐蚀性能的影响机理研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 335-340.
[2] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[3] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[4] 沈树阳, 王东胜, 孙士斌, 杨剔, 赵前进, 王鑫, 张亚飞, 常雪婷. 深冷处理对EH40极寒环境船用钢板的海水腐蚀性能影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 151-158.
[5] 欧阳跃军,胡婷,王佳音,谢治辉. 镁合金表面层状双氢氧化物的电化学沉积和表征[J]. 中国腐蚀与防护学报, 2019, 39(5): 453-457.
[6] 史昆玉,张进中,张毅,万毅. Nb2N涂层制备及其耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 313-318.
[7] 常亮, 师超, 邵亚薇, 王艳秋, 刘斌, 孟国哲. 植酸转化膜对环氧清漆防腐性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 265-273.
[8] 蒋光锐, 刘广会. Zn-Al-Mg合金的凝固组织及其耐腐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(2): 191-196.
[9] 王越, 刘子利, 刘希琴, 章守东, 田青超. 热轧态Cr、Ni微合金化高强度耐候钢组织与耐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(1): 39-46.
[10] 张子阳,王善林,章恒瑜,柯黎明. AZ31镁合金搅拌摩擦焊接头腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(2): 117-125.
[11] 耿振伟,肖代红. Zn对挤压态Mg-13Gd-2Cu合金的显微组织及腐蚀性能影响[J]. 中国腐蚀与防护学报, 2016, 36(6): 595-603.
[12] 周兵, 唐囡, 张颖君, 毛亮, 王艳秋, 邵亚薇, 孟国哲. 镀锌钢表面高附着环氧清漆的研究[J]. 中国腐蚀与防护学报, 2015, 35(5): 455-460.
[13] 刘子利, 刘希琴, 王怀涛, 胡金东, 侯志国. Ti对Zn-5Al合金组织及耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2014, 34(6): 515-522.
[14] 张金龙, 屠礼明, 谢兴飞, 姚美意, 周邦新. Zr-1Nb-xGe合金在400 ℃过热蒸汽中耐腐蚀性能的研究[J]. 中国腐蚀与防护学报, 2014, 34(2): 171-177.
[15] 周国华. WMCNTs/AZ31复合材料电化学腐蚀研究[J]. 中国腐蚀与防护学报, 2013, 33(5): 430-434.