Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (2): 248-254    DOI: 10.11902/1005.4537.2020.105
  研究报告 本期目录 | 过刊浏览 |
铁细菌对L245钢腐蚀行为的影响研究
王坤泰, 陈馥(), 李环, 罗米娜, 贺杰, 廖子涵
西南石油大学化学化工学院 成都 610500
Corrosion Behavior of L245 Pipeline Steel in Shale Gas Fracturing Produced Water Containing Iron Bacteria
WANG Kuntai, CHEN Fu(), LI Huan, LUO Mina, HE Jie, LIAO Zihan
School of Chemical Engineering, Southwest University of Petroleum, Chengdu 610500, China
全文: PDF(4401 KB)   HTML
摘要: 

采用挂片、电化学实验和SEM等手段研究了L245钢在含有铁细菌 (FB) 的页岩气压裂产出水中的腐蚀行为。结果表明:有、无FB压裂产出水都会对L245钢造成腐蚀,但失重分析和极化曲线分析都证明FB的存在促进了L245钢的腐蚀;电化学阻抗拟合结果表明,在不含FB的页岩气压裂产出水中,L245钢的腐蚀速率在前5 d逐渐增大,后快速减小。在含有FB的页岩气压裂产出水中,L245钢的腐蚀速率先减小,至8 d后逐渐增大。SEM分析结果表明,两种体系生成了不同的腐蚀产物膜。

关键词 L245钢铁细菌电化学微生物腐蚀页岩气压裂产出水    
Abstract

To provide theoretical reference for the corrosion protection engineering of metallic facilities in the water treatment process of shale gas fracturing produced water, the corrosion behavior of L245 steel induced by iron bacteria (FB) in shale gas fracturing produced water was studied by means of immersion test with mass loss measurement, electrochemical test and SEM characterization. Results showed that both of the shale gas fracturing produced waters with and without iron bacteria could all cause corrosion of L245 steel, but mass loss analysis and polarization curve analysis proved that the presence of FB promotes the corrosion of L245 steel. Further, the electrochemical impedance fitting results showed that in the shale gas fracturing produced water without FB, the corrosion rate of L245 steel increased slowly in the first 5 d, and then rapidly decreased. Whereas, in the shale gas fracturing produced water containing FB, the corrosion rate of L245 steel first decreased untill 8 d and then increased rapidly. SEM analysis results showed that the formed corrosion product films are quite different in the shale gas fracturing produced waters with and without iron bacteria.

Key wordsL245 steel    iron bacteria    electrochemistry    microbiologically influenced corrosion    shale gas fracturing produced water
收稿日期: 2020-06-20     
ZTFLH:  TG127.5  
基金资助:四川省科技计划项目(2019YJ0353)
通讯作者: 陈馥     E-mail: chenfu@swpu.edu.cn
Corresponding author: CHEN Fu     E-mail: chenfu@swpu.edu.cn
作者简介: 王坤泰,男,1996年生,硕士生

引用本文:

王坤泰, 陈馥, 李环, 罗米娜, 贺杰, 廖子涵. 铁细菌对L245钢腐蚀行为的影响研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 248-254.
Kuntai WANG, Fu CHEN, Huan LI, Mina LUO, Jie HE, Zihan LIAO. Corrosion Behavior of L245 Pipeline Steel in Shale Gas Fracturing Produced Water Containing Iron Bacteria. Journal of Chinese Society for Corrosion and protection, 2021, 41(2): 248-254.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.105      或      https://www.jcscp.org/CN/Y2021/V41/I2/248

图1  L245钢在空白和含FB体系中浸泡21 d的极化曲线
图2  L245钢在空白和含有FB体系中浸泡不同时间的Nyquist和Bode图
图3  L245钢在空白和含有FB体系中的电化学阻抗等效拟合电路
Time dRsΩ·cm2Qdl

Rct

Ω·cm2

Ydl / 10-6 Ω-1·cm-2·s-nndl
415.23470.60.754555.8
514.9816290.592434.7
815.967960.789784.9
1015.918460.798895.6
1615.5513970.7641700
2115.5915460.7432911
表1  L245钢在无菌页岩气压裂产出水中的电化学阻抗谱拟合参数
Time dRsΩ·cm2Qf

Rf

Ω·cm2

Qdl

Rct

Ω·cm2

Yf / 10-6 Ω-1·cm-2·s-nndlYdl / 10-6 Ω-1·cm-2·s-nndl
422.422860.854196737620.972299.5
521.513420.842169034880.933320.5
819.22660.5302.9814840.8421488
1015.317240.6900.021---0.8941016
1614.6524711.73115180.753845.7
2115.6418930.83938.04202.40.980816.9
表2  L245钢在含FB页岩气压裂产出水中的电化学阻抗谱拟合参数
图4  L245钢在空白和含FB的产出水中浸泡21 d后的腐蚀形貌
1 Hatzenbuhler H, Centner T J. Regulation of water pollution from hydraulic fracturing in horizontally-drilled wells in the marcellus shale region, USA [J]. Water, 2012, 4: 983
2 Theodori G L, Luloff A E, Willits F K, et al. Hydraulic fracturing and the management, disposal, and reuse of frac flowback waters: Views from the public in the Marcellus Shale [J]. Energy Res. Soc. Sci., 2014, 2: 66
3 Wang D. Technical progress of shale gas produced water treatment [J]. Environ. Eng., 2016, 34(): 424
3 王丹. 页岩气采出水处理工艺技术研究进展 [J]. 环境工程, 2016, 34(): 424
4 Wang J, Yan Y L, Yang Z G. Corrosion protection technology in the treatment of fracturing flow-back fluid of shale gas [J]. Surf. Technol., 2016, 45(8): 63
4 王娟, 燕永利, 杨志刚. 页岩气压裂返排液处理过程中的腐蚀防护技术 [J]. 表面技术, 2016, 45(8): 63
5 Gordalla B C, Ewers U, Frimmel F H. Hydraulic fracturing: A toxicological threat for groundwater and drinking-water? [J]. Environ. Earth Sci., 2013, 70: 3875
6 Wang M C, Wang M, Zhang Y Z, et al. Study on feasible treatment technologies for shale gas produced wastewater [J]. Mod. Chem. Ind., 2019, 39(3): 198
6 王美城, 王敏, 张宇州等. 页岩气产出水的可行性处理工艺研究 [J]. 现代化工, 2019, 39(3): 198
7 Shu F C, Lai Y L, Zhang Y. Study on corrosion and protection of oil-field produced water [J]. Total Corros. Control, 2007, 21(5): 8
7 舒福昌, 赖燕玲, 张煜. 油田产出水的腐蚀及防护研究 [J]. 全面腐蚀控制, 2007, 21(5): 8
8 Li J D, Wang C D, Liu J, et al. Corrosion analysis, and use of an inhibitor in oil wells [J]. Res. Chem. Intermed., 2014, 40: 649
9 Shi X B, Yang C G, Yan W, et al. Microbiologically influenced corrosion of pipeline steels [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 9
9 史显波, 杨春光, 严伟等. 管线钢的微生物腐蚀 [J]. 中国腐蚀与防护学报, 2019, 39: 9
10 Yao Y, Zhang Q L, Qin F L, et al. Effect of iron bacteria on corrosion behavior of J55 steel [J]. Corros. Prot., 2016, 37: 206
10 姚蓉, 张秋利, 秦芳玲等. 铁细菌对J55钢腐蚀行为的影响 [J]. 腐蚀与防护, 2016, 37: 206
11 Zhang W Y. Advances in the study of microbiologically influenced corrosion in marine environment [J]. Total Corros. Control, 2017, 31(1): 8
11 张文毓. 海洋微生物腐蚀研究进展 [J]. 全面腐蚀控制, 2017, 31(1): 8
12 Zheng C B, Hu X H, Zhang J, et al. Effect of chlorella vulgaris on corrosion behavior of Q235 carbon steel in seawater [J]. Corros. Prot., 2018, 39: 247
12 郑传波, 胡秀华, 张杰等. 海水中小球藻对Q235碳钢腐蚀行为的影响 [J]. 腐蚀与防护, 2018, 39: 247
13 Li F X, Wang Z K, Liu H L, et al. Corrosion and sterilization of pipelines by bacteria [J]. Oil-Gasfield Surf. Eng., 2014, 33(9): 22
13 李凤霞, 王郑库, 刘虹利等. 细菌对管道的腐蚀及杀菌实验 [J]. 油气田地面工程, 2014, 33(9): 22
14 Xu W J, Sun C, Han E-H. Effects of SRB on corrosion of 1Cr13 stainless steel in sea mud [J]. J. Mater. Prot., 2002, 35(11): 3
14 徐文杰, 孙成, 韩恩厚. 海泥中硫酸盐还原菌对1Cr13不锈钢腐蚀的影响 [J]. 材料保护, 2002, 35(11): 3
15 Liu H W, Liu H F, Qin S, et al. Investigation of biomineralization induced by sulfate reducing bacteria in sewage gathering pipelines in oilfield [J]. Corros. Sci. Prot. Technol., 2015, 27: 7
15 刘宏伟, 刘宏芳, 秦双等. 集输管线硫酸盐还原菌诱导生物矿化作用调查 [J]. 腐蚀科学与防护技术, 2015, 27: 7
16 Liu L, Jing J Q, Xie J F, et al. Study on physiological and biochemical characteristics and corrosion behavior of sulfate reducing bacteria isolated from oil pipeline [J]. Cont. Chem. Ind., 2016, 45: 263
16 刘黎, 敬加强, 谢俊峰等. 一株分离自输油管线中的硫酸盐还原菌生理生化特性及腐蚀行为研究 [J]. 当代化工, 2016, 45: 263
17 Lv Y L, Liu H W, Xiong F P, et al. Corrosion behavior of X80 pipeline steel in oil-field produced water containing iron oxidizing bacteria [J]. Corros. Sci. Prot. Technol., 2017, 29: 343
17 吕亚林, 刘宏伟, 熊福平等. 铁氧化菌对X80管线钢腐蚀行为的影响 [J]. 腐蚀科学与防护技术, 2017, 29: 343
18 Starosvetsky D, Armon R, Yahalom J, et al. Pitting corrosion of carbon steel caused by iron bacteria [J]. Int. Biodeterior. Biodegrad., 2001, 47: 79
19 Duan Y, Li S M, Du J, et al. Corrosion behavior of Q235 steel in the presence of pseudomonas and iron bacteria [J]. Acta Phys.- Chim. Sin., 2010, 26: 3203
19 段冶, 李松梅, 杜娟等. Q235钢在假单胞菌和铁细菌混合作用下的腐蚀行为 [J]. 物理化学学报, 2010, 26: 3203
20 Yin B J, Zhao W Z, Shi J Q. Study on microbial corrosion of metals [J]. Sichuan Chem. Ind., 2004, 7(1): 30
20 尹宝俊, 赵文轸, 史交齐. 金属微生物腐蚀的研究 [J]. 四川化工, 2004, 7(1): 30
21 Tian F, Bai X Q, He X Y, et al. Research progress on microbiological induced corrosion of metallic materials under ocean environment [J]. Surf. Technol., 2018, 47(8): 182
21 田丰, 白秀琴, 贺小燕等. 海洋环境下金属材料微生物腐蚀研究进展 [J]. 表面技术, 2018, 47(8): 182
22 Tian L, Wang Z M, Krupnick A, et al. Stimulating shale gas development in China: A comparison with the US experience [J]. Energy Policy, 2014, 75: 109
23 Zhai F T, Li H H, Xu C M. Corrosion behavior of 2507 duplex stainless steel in cooling water with different IOB contents [J]. J. Xi'an Technol. Univ., 2015, 35: 655
23 翟芳婷, 李辉辉, 胥聪敏. 2507双相不锈钢在含铁氧化菌冷却水中的腐蚀行为 [J]. 西安工业大学学报, 2015, 35: 655
24 Zhu M, Du C W, Li X G, et al. Effect of strength and microstructure on stress corrosion cracking behavior and mechanism of X80 pipeline steel in high pH carbonate/bicarbonate solution [J]. J. Mater. Eng. Perform., 2014, 23: 1358
25 Zhang Q L, Wang D, Xue M H, et al. Corrosion behavior of X100 steel in flowing chloride [J]. Mater. Prot., 2019, 52(10): 8
25 张秋利, 王丹, 薛梦含等. X100钢在流动氯化物中的腐蚀行为 [J]. 材料保护, 2019, 52(10): 8
26 Zhang J, Song X X, Luan X, et al. Effects of shewanella algae on corrosion of Zn-Al-Cd anode [J]. Acta Metall. Sin., 2012, 48: 1495
26 张杰, 宋秀霞, 栾鑫等. 海藻希瓦氏菌对Zn-Al-Cd牺牲阳极的腐蚀性能影响 [J]. 金属学报, 2012, 48: 1495
27 Liu H W, Xu D K, Dao A Q, et al. Study of corrosion behavior and mechanism of carbon steel in the presence of Chlorella vulgaris [J]. Corros. Sci., 2015, 101: 84
28 Cloete T E, Brözel V S, Von Holy A. Practical aspects of biofouling control in industrial water systems [J]. Int. Biodeterior. Biodegrad., 1992, 29: 299
[1] 苍雨, 黄毓晖, 翁硕, 轩福贞. 环境变量对核电汽轮机转子钢焊接接头电偶腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(3): 318-326.
[2] 冉斗, 孟惠民, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. 温度对14Cr12Ni3WMoV不锈钢在0.02 mol/L NaCl溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(3): 362-368.
[3] 马刚, 顾艳红, 赵杰. 硫酸盐还原菌对钢材腐蚀行为的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(3): 289-297.
[4] 林朝晖, 明南希, 何川, 郑平, 陈旭. 静水压力对X70钢在海洋环境中腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 307-317.
[5] 何静, 杨纯田, 李中. 建筑行业微生物腐蚀与防护研究进展[J]. 中国腐蚀与防护学报, 2021, 41(2): 151-160.
[6] 张艺凡, 袁晓光, 黄宏军, 左晓姣, 程禹霖. 铜铝层状复合板中性盐雾腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 241-247.
[7] 乔及森, 夏宗辉, 刘立博, 许佳敏, 刘旭东. 铝镁双金属反向等温包覆挤压棒材耐腐蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(2): 255-262.
[8] 张慧云, 郑留伟, 孟宪明, 梁伟. 电化学充氢对Cr15铁素体不锈钢和304奥氏体不锈钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 202-208.
[9] 张腾, 刘静, 黄峰, 胡骞, 戈方宇. 交变应力频率对E690钢在3.5%NaCl溶液中腐蚀电化学行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 226-232.
[10] 曹京宜, 杨延格, 方志刚, 寿海明, 李亮, 冯亚菲, 王兴奇, 褚广哲, 赵伊. 淡水舱涂层在不同水环境中的失效行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 209-218.
[11] 曹京宜, 方志刚, 李亮, 冯亚菲, 王兴奇, 寿海明, 杨延格, 褚广哲, 殷文昌. 国产镀锌钢在不同水环境中的腐蚀行为:I淡水和盐水[J]. 中国腐蚀与防护学报, 2021, 41(2): 169-177.
[12] 曹京宜, 方志刚, 冯亚菲, 李亮, 杨延格, 寿海明, 王兴奇, 臧勃林. 国产镀锌钢在不同水环境中的腐蚀行为:II反渗透水和调质水[J]. 中国腐蚀与防护学报, 2021, 41(2): 178-186.
[13] 戴婷, 顾艳红, 高辉, 刘凯龙, 谢小辉, 焦向东. 水下摩擦螺柱焊接头在饱和CO2中的电化学性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 87-95.
[14] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[15] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.