Please wait a minute...
中国腐蚀与防护学报  2020, Vol. 40 Issue (6): 517-522    DOI: 10.11902/1005.4537.2019.145
  研究报告 本期目录 | 过刊浏览 |
模拟海水溶液中Fe3+对不锈钢点蚀的影响
张浩, 杜楠(), 周文杰, 王帅星, 赵晴
南昌航空大学 轻合金加工科学与技术国防重点学科实验室 南昌 330063
Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater
ZHANG Hao, DU Nan(), ZHOU Wenjie, WANG Shuaixing, ZHAO Qing
National Defense Key Discipline Laboratory of Alloy Processing Science and Technology, Nanchang Hangkong University, Nanchang 330063, China
全文: PDF(4237 KB)   HTML
摘要: 

采用线性扫描伏安法和循环伏安法研究了304不锈钢在FeCl3酸性溶液中的腐蚀行为。结果表明:相同pH及Cl-浓度下,随着Fe3+浓度增加,304不锈钢自腐蚀电位正移,自腐蚀电流密度增加。304不锈钢在酸性Fe3+溶液中发生腐蚀时,由于Fe3+还原反应的存在导致不锈钢自腐蚀电位正移,从而使电极表面H+还原反应难以进行;当Fe3+含量充足时,不锈钢腐蚀过程中阴极反应主要为Fe3+还原反应,而不是H+去极化反应。因此在研究不锈钢点蚀行为时,要充分考虑到蚀孔周围Fe3+的作用。

关键词 304不锈钢点蚀循环伏安曲线动电位极化Fe3+还原    
Abstract

The corrosion behavior of 304 stainless steel in acidic FeCl3 solution was studied by linear sweep voltammetry and cyclic voltammetry. The results show that the free-corrosion potential of 304 stainless steel shifts positively and the free-corrosion current density increases with the increase of Fe3+ concentration at the same pH and Cl- concentration. When 304 stainless steel is corroded in acidic Fe3+ solution, the free-corrosion potential of stainless steel is positively shifted due to the presence of Fe3+ reduction reaction, which makes it difficult for H+ reduction reaction to carry out on the electrode surface. When Fe3+ content is sufficient, the cathodic reaction in stainless steel corrosion process is mainly Fe3+ reduction reaction, not H+ depolarization reaction. Therefore, it should be fully considered the effect of Fe3+ on pits growth in the study of pitting corrosion behavior of stainless steel.

Key words304 stainless steel    pitting corrosion    cyclic voltammetry    linear sweep voltammetry    Fe3+ reduction reaction
收稿日期: 2019-09-10     
ZTFLH:  TG174  
基金资助:国家自然科学基金(51561024)
通讯作者: 杜楠     E-mail: d_nan@sina.com
Corresponding author: DU Nan     E-mail: d_nan@sina.com
作者简介: 张浩,男,1995年生,硕士生

引用本文:

张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
Hao ZHANG, Nan DU, Wenjie ZHOU, Shuaixing WANG, Qing ZHAO. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater. Journal of Chinese Society for Corrosion and protection, 2020, 40(6): 517-522.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.145      或      https://www.jcscp.org/CN/Y2020/V40/I6/517

No.CompositionpH
10.100 mol/L FeCl23.37, untreated
20.001 mol/L FeCl3+0.297 mol/L NaCl3.34→1.64, varied
30.010 mol/L FeCl3+0.270 mol/L NaCl2.33→1.64, varied
40.025 mol/L FeCl3+0.225 mol/L NaCl2.13→1.64, varied
50.100 mol/L FeCl31.64, untreated
表1  腐蚀溶液的成分与pH
图1  304不锈钢在不同浓度Fe3+溶液中的动电位极化曲线 (pH=1.64,CCl-=0.3 mol/L)
CFe3+ / mol/LEcorr / mVIcorr / μA·cm-2
0.001-329.10.42
0.010-119.10.73
0.025-65.41.79
0.10065.514.91
表2  304不锈钢在不同浓度Fe3+溶液中的动电位极化曲线拟合结果
图2  304不锈钢在不同浓度Fe3+溶液中极化后的腐蚀形貌
图3  玻碳电极在0.100 mol/L FeCl3溶液中的循环伏安曲线
图4  304不锈钢在0.100 mol/L FeCl3溶液和0.100 mol/L FeCl2溶液中的动电位极化曲线
图5  蚀孔生长示意图
[1] Tian W M, Li S M, Du N, et al. Effects of applied potential on stable pitting of 304 stainless steel [J]. Corros. Sci., 2015, 93: 242
doi: 10.1016/j.corsci.2015.01.034
[2] Tian W M, Ai Y J, Li S M, et al. Pitting kinetics of 304 stainless steel using ESPI detection technique [J]. Acta Metall. Sin., 2015, 28: 430
doi: 10.1007/s40195-015-0213-0
[3] Du N, Ye C, Tian W M, et al. 304 stainless steel pitting behavior by means of electrochemical impedance spectroscopy [J]. J. Mater. Eng., 2014, (6): 68
[3] (杜楠, 叶超, 田文明等. 304不锈钢点蚀行为的电化学阻抗谱研究 [J]. 材料工程, 2014, (6): 68)
[4] Pistorius P C, Burstein G T. Growth of corrosion pits on stainless steel in chloride solution containing dilute sulphate [J]. Corros. Sci., 1992, 33: 1885
[5] Liu D X. Corrosion and Protection of Materical [M]. Xi'an: Northwestern Polytechnical University Press, 2006: 78
[5] (刘道新. 材料的腐蚀与防护 [M]. 西安: 西北工业大学出版社, 2006: 78)
[6] Hu Y B, Dong C F, Sun M, et al. Effects of solution pH and Cl- on electrochemical behaviour of an Aermet100 ultra-high strength steel in acidic environments [J]. Corros. Sci., 2011, 53: 4159
[7] Liu S Y, Wang S X, Du N, et al. Electrochemical behavior of X80 pipeline steel in simulated red soil solutions with different pH [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 21
[7] (刘淑云, 王帅星, 杜楠等. X80管线钢在不同pH值红壤模拟溶液中的腐蚀电化学行为 [J]. 中国腐蚀与防护学报, 2015, 35: 21)
doi: 10.11902/1005.4537.2013.241
[8] Wang S X, Liu D X, Du N, et al. Cathodic reactions involved in the corrosion of X80 steel in acidic soil simulated solution [J]. Int. J. Electrochem. Sci., 2016, 11: 8797
[9] Liu X J, Spikes H, Wong J S S. In situ pH responsive fluorescent probing of localized iron corrosion [J]. Corros. Sci., 2014, 87: 118
doi: 10.1016/j.corsci.2014.06.016
[10] Wang M F, Li X G, Du N, et al. Direct evidence of initial pitting corrosion [J]. Electrochem. Commun., 2008, 10: 1000
doi: 10.1016/j.elecom.2008.04.032
[11] Huang S X, Du N, Zhao Q, et al. Fe3+ Hydrolysis and its impact on the pitting behavior of 304 stainless steel [J]. Corros. Prot., 2016, 37: 453
[11] (黄世新, 杜楠, 赵晴等. Fe3+水解及其对304不锈钢点蚀行为的影响 [J]. 腐蚀与防护, 2016, 37: 453)
[12] Nazarnezhad-Bajestani M, Neshati J, Siadati M H. Determination of SS321 pitting stage in FeCl3 solution based on electrochemical noise measurement data using artificial neural network [J]. J. Electroanal. Chem., 2019, 845: 31
doi: 10.1016/j.jelechem.2019.05.036
[13] Orlikowski J, Jazdzewska A, Mazur R, et al. Determination of pitting corrosion stage of stainless steel by galvanodynamic impedance spectroscopy [J]. Electrochim. Acta, 2017, 253: 403
doi: 10.1016/j.electacta.2017.09.047
[14] State Bureau of Quality and Technical Supervision. GB/T 17897-1999 Test of pitting corrosion resistance of stainless steels in the ferric chloride solution [S]. Beijing: China Standard Press, 2000
[14] (国家质量技术监督局. GB/T 17897-1999 不锈钢三氯化铁点腐蚀试验方法 [S]. 北京: 中国标准出版社, 2000)
[15] Li X Y, Fan C H, Wu Q L, et al. Effect of solution pH, Cl- concentration and temperature on electrochemical behavior of PH13-8Mo steel in acidic environments [J]. J. Iron Steel Res. Int., 2017, 24: 1238
doi: 10.1016/S1006-706X(18)30023-2
[16] Jiang X, Nešić S, Kinsella B, et al. Electrochemical investigation of the role of Cl- on localized carbon dioxide corrosion behavior of mild steel [J]. Corrosion, 2013, 69: 15
doi: 10.5006/0620
[17] Zheng S Q, Chen S, Qi Y M, et al. Effect of Cl- concentration on mechanical properties of 316L stainless steel in H2S/CO2 environments [J]. Metallofiz. Noveĭshie Tekhnol., 2012, 34: 1431
[18] Liu S A, Sun H Y, Sun L J, et al. Effects of pH and Cl- concentration on corrosion behavior of the galvanized steel in simulated rust layer solution [J]. Corros. Sci., 2012, 65: 520
doi: 10.1016/j.corsci.2012.08.056
[19] Cao C N. Principle of Corrosion Electrochemistry [M]. 2nd Ed. Beijing: Chemical Industey, 2004: 75
[19] (曹楚南. 腐蚀电化学原理 [M]. 第2版. 北京: 化学工业出版社, 2004: 75)
[20] Ai Y J. Study on the pitting process of 304 stainless steel in 35% NaCl solution by electrochemical methods [D]. Nanchang: Nanchang Hangkong University, 2016
[20] (艾莹珺. 304不锈钢在35%NaCl溶液中点蚀过程的电化学研究3 [D]. 南昌: 南昌航空大学, 2016)
[21] Ryan M P, Williams D E, Chater R J, et al. Why stainless steel corrodes [J]. Nature, 2002, 415: 770
pmid: 11845203
[22] Stratmann M, Müller J. The mechanism of the oxygen reduction on rust-covered metal substrates [J]. Corros. Sci., 1994, 36: 327
doi: 10.1016/0010-938X(94)90161-9
[23] Popov Y A, Koval'chukov N A, Rybakov Y P. Role of the interaction of corrosion pittings in the dynamics of their evolution [J]. Russ. J. Phys. Chem., 2006, 80: 1504
doi: 10.1134/S0036024406090251
[24] Zhang P Q, Wu J X, Zhang W Q, et al. A pitting mechanism for passive 304 stainless steel in sulphuric acid media containing chloride ions [J]. Corros. Sci., 1993, 34: 1343
doi: 10.1016/0010-938X(93)90091-T
[25] Gao J, Jiang Y M, Deng B, et al. Determination of pitting initiation of duplex stainless steel using potentiostatic pulse technique [J]. Electrochim. Acta, 2010, 55: 4837
doi: 10.1016/j.electacta.2010.02.035
[1] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] 于浩冉, 张文丽, 崔中雨. 4种镁合金在Cl--NH4+-NO3-溶液体系中的腐蚀行为差异研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[3] 戴明杰, 刘静, 黄峰, 胡骞, 李爽. 基于正交方法研究阴极保护电位波动下X100管线钢的点蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[4] 张欣, 杨光恒, 王泽华, 曹静, 邵佳, 周泽华. 冷拉拔变形过程中含稀土铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[5] 贺三, 孙银娟, 张志浩, 成杰, 邱云鹏, 高超洋. 20#钢在含饱和CO2的离子液体醇胺溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 309-316.
[6] 李清, 张德平, 王薇, 吴伟, 卢琳, 艾池. L80油管钢实际腐蚀状况评估及室内电化学和应力腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[7] 郏义征, 王保杰, 赵明君, 许道奎. 固溶处理制度对挤压态Mg-Zn-Y-Nd镁合金在模拟体液中腐蚀和析氢行为的影响规律研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
[8] 何壮,王兴平,刘子涵,盛耀权,米梦芯,陈琳,张岩,李宇春. 316L和HR-2不锈钢在盐酸液膜环境中的钝化与点蚀[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
[9] 苏小红,胡会娥,孔小东. W颗粒/Zr41.2Ti13.8Cu12.5Ni10Be22.5基非晶复合材料在3%NaCl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 70-74.
[10] 骆鸿,高书君,肖葵,董超芳,李晓刚. 磁控溅射工艺对CrN薄膜及其腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(5): 423-430.
[11] 王标,杜楠,张浩,王帅星,赵晴. 304不锈钢点蚀产物对亚稳态点蚀萌生和稳态蚀孔生长的加速作用[J]. 中国腐蚀与防护学报, 2019, 39(4): 338-344.
[12] 李雨,关蕾,王冠,张波,柯伟. 机械应力对不锈钢点蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(3): 215-226.
[13] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[14] 彭文山,侯健,丁康康,郭为民,邱日,许立坤. 深海环境中304不锈钢腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 145-151.
[15] 廖彤,马峥,李蕾蕾,马秀敏,王秀通,侯保荣. Fe2O3/TiO2纳米复合材料对304不锈钢的光生阴极保护性能[J]. 中国腐蚀与防护学报, 2019, 39(1): 36-42.