Please wait a minute...
中国腐蚀与防护学报  2018, Vol. 38 Issue (5): 415-423    DOI: 10.11902/1005.4537.2017.183
  研究报告 本期目录 | 过刊浏览 |
X70管线钢在热带海水-海泥跃变区的腐蚀行为研究
邓培昌1, 刘泉兵1, 李子运2, 王贵2, 胡杰珍2(), 王勰2
1 广东海洋大学化学与环境学院 湛江 524088
2 广东海洋大学机械与动力学院 湛江 524088
Corrosion Behavior of X70 Pipeline Steel in the Tropical Juncture Area of Seawater-Sea Mud
Peichang DENG1, Quanbing LIU1, Ziyun LI2, Gui WANG2, Jiezhen HU2(), Xie WANG2
1 College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
2 College of Mechanical and Power Engineering, Guangdong Ocean University, Zhanjiang 524088, China
全文: PDF(6074 KB)   HTML
摘要: 

利用阵列电极技术、线性极化和电化学阻抗等电化学分析技术及腐蚀形貌观察和腐蚀产物物相分析,研究了X70管线钢在海水-海泥跃变区中的腐蚀行为与规律。结果表明,X70管线钢在海水-海泥跃变区形成宏观氧浓差电池,海泥区域及近海水-海泥界面的海水区域为电偶腐蚀阳极区域,海水区域为电偶腐蚀阴极区域;腐蚀后期阶段,海泥下部的电极变为阴极,成为主要的阴极反应区域。海水中的电极腐蚀速率大于海泥中的,而在近海水-海泥界面的区域形成了腐蚀电流峰。海水中高含量的溶解氧促进了电极表面腐蚀产物层的致密化,电荷转移电阻增大;在腐蚀后期,海泥底部硫酸盐还原菌参与了腐蚀反应,生成了硫化物,导致阴极电流密度增大,加快了整个电极的腐蚀速率。

关键词 阵列电极海水-海泥跃变区电偶腐蚀X70管线钢电化学阻抗谱    
Abstract

The corrosion behavior of X70 pipeline steel in the tropical juncture area of seawater-sea mud has been studied by means of wire beam electrode technique, linear polarization, electrochemical impedance spectroscopy and other electrochemical analysis technique, coupled with the methods of corrosion morphology observation and corrosion products analysis. The results show that X70 pipeline steel has formed an oxygen concentration cell in the juncture area of seawater-sea mud, the electrodes in the sea mud and in the vicinity of interface of seawater-sea mud act as anode, and the electrodes in the seawater act as cathode. In the last stage of corrosion, the electrodes in the bottom of sea mud become cathode region where the main cathode reaction is occurred. The corrosion rate of the electrodes in the seawater is greater than the electrodes in the sea mud, and there is a peak of corrosion current in the vicinity of interface of seawater-sea mud. Dissolved oxygen promotes corrosion products gradually firmly and densely, the charge transfer resistance increased with the time, sulfate reducting bacteria in the bottom of the sea mud participate in the reaction, produced iron sulfide, the corrosion rate of the whole electrodes speed up with the cathode current density increased.

Key wordswire beam electrode    juncture area of seawater-sea mud    galvanic corrosion    X70 pipeline steel    electrochemical impedance spectroscopy
收稿日期: 2017-11-09     
ZTFLH:  TG174  
基金资助:广东省自然科学基金 (2015A030313619),广东省省级科技计划项目 (2016A020225004) 和湛江市科技计划项目(2015A02024和2014C01003)
作者简介:

作者简介 邓培昌,男,1975年生,博士,副教授

引用本文:

邓培昌, 刘泉兵, 李子运, 王贵, 胡杰珍, 王勰. X70管线钢在热带海水-海泥跃变区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
Peichang DENG, Quanbing LIU, Ziyun LI, Gui WANG, Jiezhen HU, Xie WANG. Corrosion Behavior of X70 Pipeline Steel in the Tropical Juncture Area of Seawater-Sea Mud. Journal of Chinese Society for Corrosion and protection, 2018, 38(5): 415-423.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2017.183      或      https://www.jcscp.org/CN/Y2018/V38/I5/415

Content EhmV Conductivity μScm-1 T pH
Seawater 479 45600 32.2 8.32
Sea mud-topside 476 3700 31.4 8.12
Sea mud-middle 416 7.12 29.5 7.64
Sea mud-bottom 327 5.38 29.7 7.26
表1  海泥和海水物理化学性质
图1  C列,D列和E列电极在海水-海泥跃变区中分别暴露15,30和45 d后的微观腐蚀形貌
图2  X70管线钢在海水-海泥跃变区中分别暴露15,30和45 d后腐蚀产物的EDS结果
图3  X70管线钢在海水-海泥跃变区中暴露45 d后腐蚀产物的XRD谱
图4  X70管线钢在海水-海泥跃变区暴露不同周期的腐蚀速率
图5  阵列电极在海水-海泥跃变区暴露不同时间的电偶电流记录图
图6  阵列电极在海水-海泥跃变区暴露不同时间的电偶电流密度分析图
图7  X70管线钢在海水-海泥跃变区暴露不同时间的腐蚀电流与腐蚀电位变化曲线
图8  海水-海泥跃变区中不同位置的电极随周期变化的Nyquist谱
图9  海水-海泥跃变区中不同位置的电极随周期变化的Bode图
[1] Hou B R, Nishikata A, Tsuru T.The corrosion behaviour of steel in juncture area between seawater and atmospheric zone[J]. Oceanol. Limnol. Sin., 1995, 26: 514侯保荣, 西方篤, 水流徹. 钢材在海水-海气变换界面区的腐蚀行为[J]. 海洋与湖沼, 1995, 26: 514)
[2] Zhang J L, Hou B R, Guo G Y, et al.Studies on electrochemical corrosion behavior of steel in juncture area between sea clay and seawater[J]. Oceanol. Limnol. Sin., 1995, 26: 98张经磊, 侯保荣, 郭公玉等. 海水海泥跃变区钢铁电化学腐蚀行为研究[J]. 海洋与湖沼, 1995, 26: 98)
[3] Hou B R, Guo G Y, Ma S D, et al.Study on the corrosion and protective of the juncture area between seawater and atmospheric and seawater and sea clay at marine environment[J]. Mar. Sci., 1993, (2) : 31侯保荣, 郭公玉, 马士德等. 海洋环境中海-气与海-泥交换界面区腐蚀与防护研究[J]. 海洋科学, 1993, (2): 31)
[4] Chen Y L, Zhang W, Ding K Y, et al.Debonding mechanism of organic coating with man-made defect in the area nearby water-line by WBE technique[J]. J. Chin. Soc. Corros. Prot., 2016, 36: 67陈亚林, 张伟, 丁葵英等. WBE技术研究水线区破损涂层的剥离机制[J]. 中国腐蚀与防护学报, 2016, 36: 67)
[5] Chen Y L, Zhang W, Wang Q, et al.Debonding mechanism of organic coating with artificial defect in areas nearby water-line in 3.5%NaCl solution by WBE technique-II[J]. J. Chin. Soc. Corros. Prot., 2017, 37: 322陈亚林, 张伟, 王琦等. WBE技术研究水线区破损涂层的剥离机制-II[J]. 中国腐蚀与防护学报, 2017, 37: 322)
[6] Liu Z J, Wang W, Wang J, et al.Study of corrosion behavior of carbon steel under seawater film using the wire beam electrode method[J]. Corros. Sci., 2014, 80: 523
[7] Jeffrey R, Melchers R E.Corrosion of vertical mild steel strips in seawater[J]. Corros. Sci., 2009, 51: 2291
[8] Hu J Z, Cheng X Q, Li X G, et al.Evaluation of sea-air interface area corrosion for carbon steel by WBE technique and LP technique[J]. Corros. Prot., 2015, 36: 1014胡杰珍, 程学群, 李晓刚等. 阵列电极(WBE) 联合线性极化技术 (LP) 研究海水-大气界面区碳钢的腐蚀行为[J]. 腐蚀与防护, 2015, 36: 1014)
[9] Chen Y L, Zhang W, Wang W, et al.Evaluation of water-line area corrosion for Q235 steel by WBE technique[J]. J. Chin. Soc. Corros. Prot., 2014, 34: 452陈亚林, 张伟, 王伟等. WBE技术研究水线区Q235碳钢腐蚀[J]. 中国腐蚀与防护学报, 2014, 34: 451)
[10] Tan Y, Bailey S, Kinsella B.Mapping non-uniform corrosion using the wire beam electrode method. III. Water-line corrosion[J]. Corros. Sci., 2001, 43: 1931
[11] Guo G Y, Zhang J L, Hou B R, et al.Corrosion of steel in sea-bottom mud of nothern China Sea area[J]. Electrochemistry, 2001, 7: 459郭公玉, 张经磊, 侯保荣等. 钢在中国北部海区海泥中的腐蚀[J]. 电化学, 2001, 7: 459)
[12] Hu J Z, Li X G, Deng P C, et al.Evaluation of carbon steel corrosion in vicinity of interface sea-water/sea-mud by techniques WBE and LP[J]. Corros. Sci. Prot. Technol., 2015, 27: 551胡杰珍, 李晓刚, 邓培昌等. WBE联合LP技术研究海水/海泥界面碳钢的腐蚀行为[J]. 腐蚀科学与防护技术, 2015, 27: 551)
[13] Hu J Z.Research of the corrosion behavior and mechanism of carbon steel in the juncture area of marine environment [D]. Beijing: University of Science and Technology Beijing, 2016胡杰珍. 海洋环境跃变区碳钢腐蚀行为与机理研究 [D]. 北京: 北京科技大学, 2016)
[14] Huang Y L, Zhu Y Y, Huang S D, et al.Hydrogen permeation investigation of a marine steel in the sea mud with sulfate-reducing bacteria[J]. J. Chin. Soc. Corros. Prot., 2008, 28: 355黄彦良, 朱永艳, 黄偲迪等. 海洋结构用钢在海泥中的氢渗透行为[J]. 中国腐蚀与防护学报, 2008, 28: 355)
[15] Zhang J, Liu F L, Li W H, et al.Effects of SRB on corrosion of Zn-Al-Cd anode in marine sediment[J]. Acta Metall. Sin., 2010, 46:1250张杰, 刘奉令, 李伟华等. 海泥中硫酸盐还原菌对Zn-Al-Cd牺牲阳极腐蚀的影响[J].金属学报, 2010, 46: 1250)
[1] 丁清苗, 秦永祥, 崔艳雨. 大气环境中飞机构件的电偶腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 455-462.
[2] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[3] 伊红伟, 胡慧慧, 陈长风, 贾小兰, 胡丽华. CO2环境下油酸咪唑啉对X65钢异种金属焊缝电偶腐蚀的抑制作用研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 96-104.
[4] 白苗苗, 白子恒, 蒋立, 张东玖, 姚琼, 魏丹, 董超芳, 肖葵. H62黄铜/TC4钛合金焊接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 159-166.
[5] 陈旭, 李帅兵, 郑忠硕, 肖继博, 明男希, 何川. X70管线钢在大庆土壤环境中微生物腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 175-181.
[6] 黄宸,黄峰,张宇,刘海霞,刘静. 高强耐候钢焊接接头电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 527-535.
[7] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[8] 达波,余红发,麻海燕,吴彰钰. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[9] 达波,余红发,麻海燕,吴彰钰. 阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[10] 王振华, 白杨, 马晓, 邢少华. 钛合金和铜合金管路电偶腐蚀数值仿真[J]. 中国腐蚀与防护学报, 2018, 38(4): 403-408.
[11] 邓三喜, 闫小宇, 柴柯, 吴进怡, 史洪微. 假单胞菌对聚硅氧烷树脂清漆涂层分解及防腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 326-332.
[12] 曹海娇, 魏英华, 赵洪涛, 吕晨曦, 毛耀宗, 李京. Q345钢预热时间对熔结环氧粉末涂层防护性能的影响II:涂层体系失效行为分析[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.
[13] 廖梓含, 宋博, 任泽, 何川, 陈旭. X70钢及其焊缝在Na2CO3+NaHCO3溶液中电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(2): 158-166.
[14] 张杰, 胡秀华, 郑传波, 段继周, 侯保荣. 海洋微藻环境中钙质层对Q235碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
[15] 梅朦, 郑红艾, 陈惠达, 张鸣, 张大全. 硫酸盐还原菌对Cu在循环冷却水中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 533-539.