Please wait a minute...
中国腐蚀与防护学报  2001, Vol. 21 Issue (6): 321-327     
  研究报告 本期目录 | 过刊浏览 |
H2S水溶液中的腐蚀与缓蚀作用机理的研究Ⅴ. 咪唑啉衍生物在H2S溶液中的缓蚀作用特征
杨怀玉;陈家坚;曹楚南
中科院金属所金属腐蚀与防护国家重点实验室
STUDY ON CORROSION AND INHIBITION MECHANISM IN H2S AQUEOUS SOLUTIONSⅤ.The Inhibition Characteristics of Imidazoline Derivatives in H2S Solutions
;;
中科院金属所金属腐蚀与防护国家重点实验室
全文: PDF(176 KB)  
摘要: 合成了14种具有不同结构和官能团的咪唑啉衍生物,利用交 流阻抗和动电位极化曲线,对其在H2S溶液中的缓蚀作用特征和性能,以及温度的变化对其 缓蚀性能的影响进行了研究.结果表明咪唑啉化合物对H2S溶液中低碳钢的腐蚀具有良好的保护性能,这主要依赖于化合物分子与金属表面存在较强的化学作用;按其作用机制的不同 ,所研究的咪唑啉化合物大体可分为阳极型和阴极型缓蚀剂,且阳极型咪唑啉缓蚀性能优于阴 极型;咪唑环上憎水或亲水支链的长短,或其它官能团的存在(如双键,羟基等),对化合物的缓 蚀性能和作用机制有直接的影响.
关键词 咪唑啉衍生物缓蚀剂H2S腐蚀    
Abstract:A series imidazoline derivatives, which have differ en t molecular structure and function group, were synthesized and investigated resp ectively for the inhibition characteristics, the effect of temperature on the in hibition efficiency by potentiodynamic polarization curve and electrochemical im pedance spectroscopy (EIS) in H2S solutions. The results show that imidazoline derivatives have a good inhibition to the mild steel in H2S solutions, that i s strongly dependent on the chemical interaction between imidazoline molecule and the surface of metals. When the number of carbon atom in hydrophobic side chain is less than 13 and there are some function groups (such as double-bond; hydroxy l) in hydrophobic side chain, the employed imidazoline compounds present anodic inhibitor's performance, whereas the compounds present cathodic type inhibitor' s performance when the number of carbon atom in hydrophobic side chain is more t han 13. The length of side chains (including hydrophobic and hydrophilic chain) and the different function groups (such as double-bond; hydroxyl) in imidazoline ring play an important role in the inhibition performance and mechanism.
Key wordsimidazoline derivatives    inhibitors    H2S corrosion
收稿日期: 2000-10-30     
ZTFLH:  TG174.42  
通讯作者: 杨怀玉   

引用本文:

杨怀玉; 陈家坚; 曹楚南 . H2S水溶液中的腐蚀与缓蚀作用机理的研究Ⅴ. 咪唑啉衍生物在H2S溶液中的缓蚀作用特征[J]. 中国腐蚀与防护学报, 2001, 21(6): 321-327 .

链接本文:

https://www.jcscp.org/CN/Y2001/V21/I6/321

[1]Suzuki K.Kouno T,Sato E.The study of inhibitors for sour gas service[J].Corrosion,1982,38(7):384-389
[2]间宫富士雄.Corrosion Inhibitors and It’s Applied Technology[M].
Translated by Gao J X,Ding R Z.Beijing:National Defense
Industry Press,1984,55
(间宫富士雄.高继轩,丁瑞芝译.缓蚀剂及其应用技术[M].北京:国防工业出版社,
1984,55)
[3]Szyprowski A J.Hydrogen sulphide corrosion steel mechanism of action of imidazoline inhibitors[A].
Proceeding of the 8th
European Symposium on Corrosion Inhibitors(8SEIC)[C],Ann.Univ.Ferrara,N.S,Sez.V,Suppl.N.10,1995
[4]Edwards A,Osborne C,Webster S.Mechanistic studies of the corrosion inhibitors oleic imidazoline[J].
Corrosion Science,1994,
36(2):315-325
[5]Yang H Y,Chen J J,Cao C N.Study on corrosion and inhibition mechanism in H2S aqueous solutions.I.
Corrosion behavior of
carbon steel and growth of sulfide film on it in acidic solutions containing H2S[J].J.of Chinese Society for
Corrosion and Pro-
tection,2000,20(1):1-7
(杨怀玉,陈家坚,曹楚南,曹殿珍“H2S水溶液中的腐蚀与缓蚀作用机理的研究 I.酸性H2S溶液中碳钢的腐蚀行为及
硫化物膜的生长”[J].中国腐蚀与防护学报,2000,20(1):1-7)
[6]Cao C N.Corrosion Electrochemistry[M].Beijing:Chemical Industry Press,1994,132
(曹楚南.腐蚀电化学[M]. 北京:化学工业出版社,1994,132)
[7]Chatterjee P,Singh D D N.H2S corrosion cotrol of steel by using pyridine compounds[J].Anti-Corrosion
Methods and Mate-
rials,1991,38(1):4-10
[1] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[2] 王亚婷, 王棵旭, 高鹏翔, 刘冉, 赵地顺, 翟建华, 屈冠伟. 淀粉接枝共聚物对Zn的缓蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[3] 邵明鲁, 刘德新, 朱彤宇, 廖碧朝. 乌洛托品季铵盐缓蚀剂的合成与复配研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 244-250.
[4] 贾巧燕, 王贝, 王赟, 张雷, 王清, 姚海元, 李清平, 路民旭. X65管线钢在油水两相界面处的CO2腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[5] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[6] 吕祥鸿,张晔,闫亚丽,侯娟,李健,王晨. 两种新型曼尼希碱缓蚀剂的性能及吸附行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[7] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[8] 刘建国,高歌,徐亚洲,李自力,季菀然. 咪唑啉类衍生物缓蚀性能研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 523-532.
[9] 李亚琼,马景灵,王广欣,朱宇杰,宋永发,张景丽. NaPO3与SDBS缓蚀剂对AZ31镁合金空气电池在NaCl电解液中放电性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 587-593.
[10] 孔佩佩, 陈娜丽, 白德忠, 王跃毅, 卢勇, 冯辉霞. 壳聚糖及其衍生物的制备与缓蚀性能的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(5): 409-414.
[11] 马景灵, 通帅, 任凤章, 王广欣, 李亚琼, 文九巴. L-半胱氨酸/ZnO缓蚀剂对3102铝合金在碱性溶液中电化学性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 351-357.
[12] 彭晚军, 丁纪恒, 陈浩, 余海斌. 生物基缓蚀剂糠醇缩水甘油醚的缓蚀性能及机理[J]. 中国腐蚀与防护学报, 2018, 38(3): 303-308.
[13] 钱备, 刘成宝, 宋祖伟, 任俊锋. 纳米容器改性环氧涂层对Q235碳钢的防腐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(2): 133-139.
[14] 周勇, 左禹, 闫福安. 缓蚀性组分对金属小孔腐蚀的缓蚀作用与机制[J]. 中国腐蚀与防护学报, 2017, 37(6): 487-494.
[15] 陈振宁,陈日辉,潘金杰,滕艳娜,雍兴跃. L921A钢在3.5%NaCl溶液中的有机/无机复配缓蚀剂研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 473-478.