Please wait a minute...
中国腐蚀与防护学报  2016, Vol. 36 Issue (2): 165-171    DOI: 10.11902/1005.4537.2015.227
  本期目录 | 过刊浏览 |
蒸汽环境对消声器用439不锈钢腐蚀行为的影响
汪长鹏,申宇凤,陈聪聪,李谋成()
上海大学材料研究所 上海 200072
Effect of Exposure to Steam on Corrosion of Type 439 Stainless Steel for Automotive Mufflers
Changpeng WANG,Yufeng SHEN,Congcong CHEN,Moucheng LI()
Institute of Materials, Shanghai University, Shanghai 200072, China
全文: PDF(983 KB)   HTML
摘要: 

运用氧化-浸泡循环实验和氧化-浸泡-蒸发循环实验,结合电化学测试以及SEM和XRD分析,研究了蒸汽环境对消声器用439不锈钢腐蚀行为的影响。结果表明:有/无蒸汽作用条件下,试样表面形成的腐蚀产物相似,循环实验后试样表面均生成了较浅的点蚀坑。与冷凝液环境相比,试样在蒸汽环境中的腐蚀阻力较小、局部腐蚀坑更深。蒸汽环境更有利于试样表面产物膜和蚀坑的生长。

关键词 汽车排气系统冷凝液腐蚀蒸汽环境点蚀    
Abstract

The influence of steam on the corrosion behavior of 439 stainless steel for automotive mufflers was studied by means of cyclic hot air oxidation-immersion in condensate test and cyclic hot air oxidation-immersion in condensate-exposure to steam test as well as electrochemical measurements, SEM, XRD and pitting depth analyses. The results show that all the specimens, after cyclic hot air oxidation-immersion in condensate test and then with and without subsequent exposure to steam test, suffered from pitting corrosion with similar corrosion products. However, the specimens show lower corrosion resistance and deeper corrosion pits when they had experienced the exposure to steam test rather than those only experienced the cyclic hot air oxidation-immersion in condensate test. The exposure to steam may facilitate the growth of corrosion products and pits.

Key wordsautomobile exhaust system    condensate corrosion    steam    pitting
    
基金资助:国家自然科学基金项目 (51134010) 资助

引用本文:

汪长鹏,申宇凤,陈聪聪,李谋成. 蒸汽环境对消声器用439不锈钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(2): 165-171.
Changpeng WANG, Yufeng SHEN, Congcong CHEN, Moucheng LI. Effect of Exposure to Steam on Corrosion of Type 439 Stainless Steel for Automotive Mufflers. Journal of Chinese Society for Corrosion and protection, 2016, 36(2): 165-171.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2015.227      或      https://www.jcscp.org/CN/Y2016/V36/I2/165

图1  浸泡实验和蒸汽实验的实验装置示意图
Step GA GB
1 Oxidized in air at 400 ℃ for 1 h, then cooled to room temperature Oxidized in air at 400 ℃ for 1 h, then cooled to room temperature
2 Immersed in condensate at 80 ℃ for 10 h Immersed in condensate at 80 ℃ for 2 h
3 --- Exposed in steam environment at 80 ℃ for 8 h
表1  GA和GB两组试样单个循环实验流程
图2  GA和GB组试样除锈前后表面形貌的SEM像
图3  循环实验后试样腐蚀产物的XRD谱
图4  两组试样的腐蚀电位随循环周期的变化曲线
图5  GA和GB两组试样不同循环周期后的电化学阻抗谱
图6  试样腐蚀的等效电路模型
图7  Rf和Rt的拟合结果
图8  两组试样的点蚀坑深度
[1] Sato E, Tanoue T.Present and future trends of materials for automotive exhaust system[J]. Nippon Steel Tech. Rep., 1995, 64: 13
[2] Inoue Y, Kikuchi M.Present and future trends of stainless steel for automotive exhaust system[J]. Nippon Steel Tech. Rep., 2003, 88:62
[3] Miyazaki A, Hirasawa J, Satoh S.Advanced stainless steels for stricter regulations of automotwe exhaust gas[J]. Kawasaki Steel Tech. Rep., 2000, 43: 21
[4] Douthett J.Automotive Exhaust System Corrosion, ASM Handbook Volume 13C[M]. Ohio: ASM International, 2006
[5] Chang S, Jun J H.Corrosion resistance of automotive exhaust materials[J]. J. Mater. Sci. Lett., 1999, 18(5): 419
[6] Li M C, Wang S D, Ma R Y, et al.Effect of cyclic oxidation on electrochemical corrosion of type 409 stainless steel in the simulated muffler condensates[J]. J. Solid State Electrochem., 2012, 16(9): 3059
[7] Han P H, Xu Z H, Wang C P, et al.Condensate corrosion behavior of type 409 stainless steel in simulated automotive muffler environments[J]. Int. J. Electrochem. Sci., 2014, 9: 3784
[8] Othman N K, Zhang J Q, Young D J.Water vapour effects on Fe-Cr alloy oxidation[J]. Oxid. Met., 2010, 73(1): 337
[9] Dillmann P, Mazaudier F, Hoerle S.Advances in understanding atmospheric corrosion of iron. I: Rust characterisation of ancient ferrous artefacts exposed to indoor atmospheric corrosion[J]. Corros. Sci., 2004, 46(6): 1401
[10] Hoerle S, Mazaudier F, Dillmann P, et al.Advances in understanding atmospheric corrosion of iron. II: Mechanistic modelling of wet-dry cycles[J]. Corros. Sci., 2004, 46(6): 1431
[11] Li M C, Zhang H, Huang R F, et al.Effect of SO2 on oxidation of type 409 stainless steel and its implication on condensate corrosion in automotive mufflers[J]. Corros. Sci., 2014, 80: 96
[12] Hashimoto R, Mori G, Yasir M, et al.Impact of condensates containing chloride and sulphate on the corrosion in automotive exhaust systems[J]. Berg-und Hüttenmännische Monatshefte, 2013, 158(9): 377
[13] Kim D W, Kim H S.Effects of thermal oxidation on corrosion resistance of stainless steels for muffler materials[J]. J. Korean. Inst. Met. Mater., 2008, 46(10): 652
[14] Jarrah A, Bigerelle M, Guillemot G, et al.A generic statistical methodology to predict the maximum pit depth of a localized corrosion process[J]. Corros. Sci., 2011, 53(8): 2453
[15] Stratmann M, Muller J.The mechanism of the oxygen reduction on rust-covered metal substrates[J]. Corros. Sci., 1994, 36(2): 327
[16] Saunders S R J, Monteiro M, Rizzo F. The oxidation behavior of metals and alloys at high temperatures in atmospheres containing water vapour: A review[J]. Prog. Mater. Sci., 2008, 53(5): 775
[17] Hamadou L, Kadri A, Benbrahim N.Impedance investigation of thermally formed oxide films on AISI 304L stainless steel[J]. Corros. Sci., 2010, 52(3): 859
[18] Kocijan A, Merl D K, Jenko M.The corrosion behaviour of austenitic and duplex stainless steels in artificial saliva with the addition of fluoride[J]. Corros. Sci., 2011, 53(2): 776
[19] Wang J, Cao C N, Lin H C.Features of AC impedance of pitting corroded electrodes during pits propagation[J]. J. Chin. Soc. Corros. Prot., 1989, 9(4): 271
[19] (王佳, 曹楚南, 林海潮. 孔蚀发展期的电极阻抗频谱特征[J]. 中国腐蚀与防护学报, 1989, 9(4): 271)
[20] Melchers R E.Extreme value statistics and long-term marine pitting corrosion of steel[J]. Probab. Eng. Mech., 2008, 23(4): 482
[21] Tsuru T, Tamiya K I, Nishikata A.Formation and growth of micro-droplets during the initial stage of atmospheric corrosion[J]. Electrochim. Acta, 2004, 49(17): 2709
[22] Tsuru T, Nishikata A, Wang J.Electrochemical studies on corrosion under a water film[J]. Mater. Sci. Eng., 1995, A198(1): 161
[23] Chen J, Wang J Q, Han E-H, et al.In situ observation of formation and spreading of micro-droplets on magnesium and its alloy under cyclic wet-dry conditions[J]. Corros. Sci., 2007, 49(3): 1625
[1] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[3] 于浩冉, 张文丽, 崔中雨. 4种镁合金在Cl--NH4+-NO3-溶液体系中的腐蚀行为差异研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[4] 戴明杰, 刘静, 黄峰, 胡骞, 李爽. 基于正交方法研究阴极保护电位波动下X100管线钢的点蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[5] 张欣, 杨光恒, 王泽华, 曹静, 邵佳, 周泽华. 冷拉拔变形过程中含稀土铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[6] 贺三, 孙银娟, 张志浩, 成杰, 邱云鹏, 高超洋. 20#钢在含饱和CO2的离子液体醇胺溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 309-316.
[7] 李清, 张德平, 王薇, 吴伟, 卢琳, 艾池. L80油管钢实际腐蚀状况评估及室内电化学和应力腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[8] 郏义征, 王保杰, 赵明君, 许道奎. 固溶处理制度对挤压态Mg-Zn-Y-Nd镁合金在模拟体液中腐蚀和析氢行为的影响规律研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
[9] 何壮,王兴平,刘子涵,盛耀权,米梦芯,陈琳,张岩,李宇春. 316L和HR-2不锈钢在盐酸液膜环境中的钝化与点蚀[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
[10] 苏小红,胡会娥,孔小东. W颗粒/Zr41.2Ti13.8Cu12.5Ni10Be22.5基非晶复合材料在3%NaCl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 70-74.
[11] 王标,杜楠,张浩,王帅星,赵晴. 304不锈钢点蚀产物对亚稳态点蚀萌生和稳态蚀孔生长的加速作用[J]. 中国腐蚀与防护学报, 2019, 39(4): 338-344.
[12] 李雨,关蕾,王冠,张波,柯伟. 机械应力对不锈钢点蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(3): 215-226.
[13] 张思齐,杜楠,王梅丰,王帅星,赵晴. 阴极面积对3.5%NaCl溶液中304不锈钢稳态点蚀生长速率的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 551-557.
[14] 黄博博,刘平,刘新宽,梅品修,陈小红. 新型HSn70-1铜网衣两年期海水腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 594-600.
[15] 樊志民, 于锦, 宋影伟, 单大勇, 韩恩厚. 镁合金点蚀的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(4): 317-325.