Please wait a minute...
中国腐蚀与防护学报  2014, Vol. 34 Issue (5): 477-482    DOI: 10.11902/1005.4537.2013.205
  本期目录 | 过刊浏览 |
Mn(NO3)2/Na2MoO4对AZ31B镁合金表面磷化膜微观形貌及耐蚀性的影响
崔学军1,2(), 白成波2, 朱一波2, 闵虹云2, 王荣2, 林修洲1,2
1. 四川理工学院 材料腐蚀与防护四川省重点实验室 自贡 643000
2. 四川理工学院 材料与化学工程学院 自贡 643000
Effect of Additives Mn(NO3)2 and/or Na2MoO4 on Micro-morphology and Corrosion Performance of Phosphate Coating on AZ31B Magnesium Alloy
CUI Xuejun1,2(), BAI Chengbo2, ZHU Yibo2, MIN Hongyun2, WANG Rong2, LIN Xiuzhou1,2
1. Material Corrosion and Protection Key Laboratory of Sichuan Province, Zigong 643000, China
2. College of Materials and Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
全文: PDF(4154 KB)   HTML
摘要: 

以AZ31B镁合金为基体,通过化学沉积的方法分别在添加Mn(NO3)2,Na2MoO4以及复配的锰系磷化溶液中获得了磷酸盐转化膜。采用扫描电子显微镜 (SEM)、电化学工作站及CuSO4点滴等表征手段,研究添加剂对磷化膜表面微观形貌和耐蚀性的影响。结果表明:Mn(NO3)2含量在0~2 g/L之间增加时,磷化膜晶粒尺寸先减小后增大,耐蚀性先增大后降低;Na2MoO4含量在0~0.5 g/L之间增加时,磷化膜晶粒尺寸显著减小,然后增大,耐蚀性显著提高;Mn(NO3)2和Na2MoO4复配后膜层致密,耐蚀性增强,但差于单独引入Na2MoO4的改善效果。综合比较分析,Mn(NO3)2对锰系磷化膜耐蚀性的改善作用较小,而添加0.25 g/L的Na2MoO4获得的膜层更均匀细致,耐蚀性能更佳。

关键词 AZ31B镁合金化学转化膜添加剂微观形貌耐蚀性    
Abstract

A phosphate coating was prepared on AZ31B Mg alloy by chemical conversion process in a phosphorizing bath with additives Mn(NO3)2 and/or Na2MoO4, respectively. The effect of the additives on surface micromorphology and corrosion performance of the coatings were investigated by scanning electron microscope (SEM), electrochemical workstation and CuSO4 spot test. The results show that grain size of the films firstly decreases and then increases with of the increasing Mn(NO3)2 amount in a range of 0~2 g/L, correspondingly the corrosion resistance of the coatings becomes better and then worse; the grain size of the coating significantly reduces and then increases with the increasing Na2MoO4 amount in a range of 0~0.5 g/L, while the corrosion resistance of the coating rises up substantially; the surface morphology and corrosion resistance of the coatings can also be improved by simultaneously adding Mn(NO3)2 and Na2MoO4, but of which the effectiveness is inferior to that by merely adding Na2MoO4 in the phosphorizing bath. Through the above analysis, it follows that Mn(NO3)2 may play a weak role in enhancing the corrosion performance of the coatings; but it is interesting to note that by adding only 0.25 g/L Mn(NO3)2 to the phosphorizing bath the prepared coatings become much denser with better corrosion resistance.

Key wordsAZ31B Mg alloy    chemical conversion coating    additive    micromorphology    corrosion resistance
    
ZTFLH:  TG174.4  
基金资助:四川省教育厅重点项目 (12ZA261),材料腐蚀与防护四川省重点实验室开放基金项目 (2013CL01),四川理工学院人才引进基金 (2014RC18) 和四川理工学院大学生创新基金项目资助
作者简介: null

崔学军,男,1978年生,博士,副教授,研究方向为功能涂层及镁合金的腐蚀防护

引用本文:

崔学军, 白成波, 朱一波, 闵虹云, 王荣, 林修洲. Mn(NO3)2/Na2MoO4对AZ31B镁合金表面磷化膜微观形貌及耐蚀性的影响[J]. 中国腐蚀与防护学报, 2014, 34(5): 477-482.
Xuejun CUI, Chengbo BAI, Yibo ZHU, Hongyun MIN, Rong WANG, Xiuzhou LIN. Effect of Additives Mn(NO3)2 and/or Na2MoO4 on Micro-morphology and Corrosion Performance of Phosphate Coating on AZ31B Magnesium Alloy. Journal of Chinese Society for Corrosion and protection, 2014, 34(5): 477-482.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2013.205      或      https://www.jcscp.org/CN/Y2014/V34/I5/477

图1  磷化膜的制备工艺
图2  不同Mn(NO3)2浓度下磷化膜的表面形貌
图3  不同Na2MoO4浓度下磷化膜的表面形貌
图4  不同Na2MoO4/Mn(NO3)2浓度下磷化膜的表面形貌
图5  不同添加剂及不同浓度下磷化膜在3.5%NaCl溶液中的极化曲线
Condition Additive / gL-1 -Ecorr / mV icorr / μAcm-2 Rp / kΩcm2
Base solution 0 1435 5.315 8.401
Mn(NO3)2 1.0 1456 2.915 1.057
1.5 1458 1.057 38
2.0 1510 3.875 11.012
Na2MoO4 0.1 1359 2.027 11.883
0.25 1327 0.462 55.558
0.5 1445 6.870 4.252
Na2MoO4/Mn(NO3)2 0.25/0.5 1423 1.419 36.129
0.25/1.0 1434 5.235 9.086
表1  与图5极化曲线相对应的拟合电参数值
图6  磷化膜的耐点蚀时间与添加剂及含量的关系
[1] Shi C S, Li H D. A proposal on accelerating development of metallic magnesium industry in China[J]. Mater. Rev., 2001, 15(4): 5-7
[1] (师昌绪, 李恒德. 加速我国金属镁工业发展的建议[J]. 材料导报,2001, 15(4): 5-7)
[2] Kainer K U, Srinivasan P B, Blawert C, et al. Corrosion of magnesium and its alloys. In: Richardson T J A, ed. Shreir's Corrosion [M]. Oxford: Elseiver, 2010
[3] Kelvii W G. eA review of magnesium/magnesium alloys corrosion and its protection[J]. Recent Pat. Corros. Sci., 2010, 2: 13-21
[4] Shi H Y, Yang C J, Zhang M. Corrosion resistance of micro-arc oxidation and sol-gel composite coating on magnesium alloy by cyclic heat-NaCl solution spray/dry test[J]. J. Chin. Soc. Corros. Prot., 2013, 33(5): 436-440
[4] (时惠英, 杨朝静, 张勉. AZ31B镁合金表面微弧氧化-溶胶凝胶复合膜层干、湿热交替条件下耐蚀性研究[J]. 中国腐蚀与防护学报, 2013, 33(5): 436-440)
[5] Hu R G, Zhang S, Bu J F, et al. Recent progress in corrosion protection of magnesium alloys by organic coatings[J]. Prog. Org. Coat., 2012, 73: 129-141
[6] Wang S Y, Xia Y P, Liu L. Influences of C3H8O3 concentration on formation and characteristics of MAO coatings on AZ91D magnesium alloy[J]. J. Chin. Soc. Corros. Prot., 2013, 33(3): 235-240
[6] (王淑艳, 夏永平, 刘莉. C3H8O3含量对AZ91D镁合金微弧氧化过程及膜层特性的影响[J] . 中国腐蚀与防护学报,2013, 33(3): 235-240)
[7] Chen X B, Birbilis N, Abbott T B. Effect of [Ca2+] and [PO43-] levels on the formation of calcium phosphate conversion coatings on die-cast magnesium alloy AZ91D[J] . Corros. Sci., 2012, 55: 226-232
[8] Amini R, Sarabi A A. The corrosion properties of phosphate coating on AZ31 magnesium alloy: The effect of sodium dodecyl sulfate (SDS) as an eco-friendly accelerating agent[J] . Appl. Surf. Sci., 2011, 257: 7134-7139
[9] Niu L Y. Investigation on film formation mechanism, microstructure and performances of complex zinc phosphate coatings of magnesium alloy [D]. Changchun: Jilin University, 2006
[9] (牛丽媛. 镁合金锌系复合磷化膜成膜机理、微观结构及性能的研究 [D] . 长春: 吉林大学, 2006)
[10] Zhou W Q. Research and corrosion resistance of phosphate chemical conversion film of magnesium alloy [D] . Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2004
[10] (周婉秋. 镁合金磷酸盐化学转化膜及其耐蚀性研究 [D]. 沈阳:中国科学院金属研究所, 2004)
[11] Mosialek M, Mordarski G, Nowak P, et al. Phosphate-permanganate conversion coatings on the AZ81 magnesium alloy: SEM, EIS and XPS studies [J]. Surf. Coat. Technol., 2011, 206: 51-62
[12] Zeng R C, Lan Z D. Influence of bath temperature of conversion treatment process on corrosion resistance of zinc calcium phosphate conversion film on AZ31 magnesium alloy[J]. Chin. J. Nonferrous Met., 2010, 20(8): 1461-1466
[12] (曾荣昌, 兰自栋. 镀液温度对AZ31 镁合金表面锌钙系磷酸盐转化膜耐蚀性的影响[J] . 中国有色金属学报, 2010, 20(8): 1461-1466)
[13] Fouladi M, Amadeh A. Effect of phosphating time and temperature on microstructure and corrosion behavior of magnesium phosphate coating[J] . Electrochim. Acta, 2013, 106: 1-12
[14] Cui X J, Liu C H, Yang R S, et al. Duplex-layered manganese phosphate conversion coating on AZ31 Mg alloy and its initial formation mechanism [J]. Corros. Sci., 2013, 76: 474-485
[15] Zhao M. A thesis submitted in fully fulfillment of the requirements for the degree of doctor of engineering [D]. Wuhan: Huazhong University of Science and Technology, 2006
[15] (赵明. 镁合金表面无铬化学转化处理新技术研究 [D]. 武汉: 华中科技大学, 2006)
[16] Zhou W Q, Shan D Y, Han E-H, et al. Structure and formation mechanism of phosphate conversion coating on die-cast AZ91D magnesium alloy[J] . Corros. Sci., 2008, 50(2): 329-337
[17] Liu F, Shan D Y, Huan E-H, et al. Effect of Ca2+ on phosphate conversion coating on magnesium alloy[J] . Chin. J. Nonferrous Met., 2008, 18(10): 1825-1830
[17] (刘锋, 单大勇, 韩恩厚等. 钙对镁合金表面锰系转化膜的影响 [J]. 中国有色金属学报, 2008, 18(10): 1825-1830)
[18] Liu F, Shan D Y, Zeng R C, et al. Effect of Mn2+ consumption in phosphate conversion solution on performance of phosphorized films on AZ31 magnesium alloy surface[J] . Corros. Sci. Prot. Technol., 2010, 22(5): 377-379
[18] (刘锋, 单大勇, 曾荣昌等. AZ31变形镁合金锰系转化膜溶液中锰消耗对膜性能的影响[J]. 腐蚀科学与防护技术, 2010, 22(5): 377-379)
[19] Cui X J, LIiu C H, Yang R S, et al. Phosphate film free of chromate, fluoride and nitrite on AZ31 magnesium alloy and its corrosion resistance[J] . Trans. Nonferrous Met. Soc. China, 2012, 22(11): 2713-2718
[20] Cui X J, Zhou J X, Lin X Z, et al. Growing process and formation mechanism of manganese phosphate conversion film of magnesium alloy AZ31 [J]. Chin. J. Nonferrous Met., 2012, 22(1): 15-21
[20] (崔学军, 周吉学, 林修洲等. 镁合金AZ31锰系磷化膜的生长过程和形成机理研究[J] . 中国有色金属学报, 2012, 22(1): 15-21)
[21] Cui X J, Liu C H, Li M T, et al. Effects of parameters on surface morphology and corrosion resistance of phosphate film for AZ31 magnesium alloy [J]. J. Chin. Soc. Corros. Prot., 2012, 32(6): 507-512
[21] (崔学军, 刘春海, 李明田等. 工艺参数对AZ31镁合金磷化膜耐蚀性能及表面形貌的影响[J] . 中国腐蚀与防护学报, 2012, 32(6): 507-512)
[1] 魏征, 马保吉, 李龙, 刘潇枫, 李慧. 镁合金表面超声滚压预处理对微弧氧化膜耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[2] 黄鹏, 高荣杰, 刘文斌, 尹续保. 盐溶液刻蚀-氟化处理制备X65管线钢镀镍超双疏表面及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[3] 包任, 周根树, 李宏伟. 恒电位脉冲电沉积高锡青铜耐蚀镀层工艺研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[4] 刘海霞, 黄峰, 袁玮, 胡骞, 刘静. 690 MPa级高强贝氏体钢在模拟乡村大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[5] 李聪玮, 杜双明, 曾志琳, 刘二勇, 王飞虎, 马付良. 电流密度对Ni-Co-B镀层微观结构及磨蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[6] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[7] 曹京宜, 方志刚, 陈晋辉, 陈志雄, 殷文昌, 杨延格, 张伟. 5083铝合金表面单致密微弧氧化膜的制备及其性能研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[8] 王英君, 刘洪雷, 王国军, 董凯辉, 宋影伟, 倪丁瑞. 新型高强稀土Al-Zn-Mg-Cu-Sc铝合金的阳极氧化及其抗腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
[9] 王乐,易丹青,刘会群,蒋龙,冯春. Ru对Ti-6Al-4V合金腐蚀行为的影响及机理研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[10] 武栋才,韩培德. 中温时效处理对SAF2304双相不锈钢耐蚀性的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[11] 孙晓光,韩晓辉,张星爽,张志毅,李刚卿,董超芳. 超低碳奥氏体不锈钢焊接接头耐腐蚀性及环保型化学钝化工艺研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[12] 程多云,赵晋斌,刘波,姜城,付小倩,程学群. 高镍钢和传统耐候钢在马尔代夫严酷海洋大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(1): 29-35.
[13] 蓝秀玲,刘光明,周街胜,刘志雷,彭叔森,李茂东. 有机硅/SiO2杂化溶胶改性丙烯酸树脂及性能研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 601-606.
[14] 王志虎, 张菊梅, 白力静, 张国君. AZ91镁合金表面微弧氧化与化学镀铜复合处理层的微观组织与性能[J]. 中国腐蚀与防护学报, 2018, 38(4): 391-396.
[15] 杨钊, 时惠英, 蒋百灵, 葛延峰, 张静, 张曼玉, 李研. 脉冲电流对1050铝合金微弧氧化过程的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 283-288.