Please wait a minute...
中国腐蚀与防护学报  2015, Vol. 35 Issue (1): 69-74    DOI: 10.11902/1005.4537.2013.279
  本期目录 | 过刊浏览 |
Al-Zn-In牺牲阳极在不同工作电流密度下电流效率及溶解机制的研究
赵国强, 魏英华(), 李京
中国科学院金属研究所 金属腐蚀与防护国家重点实验室 沈阳 110016
Current Efficiency and Corrosion Mechanism of Al-Zn-In Sacrificial Anode at Different Current Densities
ZHAO Guoqiang, WEI Yinghua(), LI Jing
State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(515 KB)   HTML
摘要: 

采用电化学方法测定了Al-Zn-In牺牲阳极在不同工作电流密度下的电流效率和溶解机制。结果表明,工作电流密度的变化会引起Al-Zn-In牺牲阳极溶解机制发生改变,从而引起电流效率发生变化。在较小的工作电流密度下,Al-Zn-In牺牲阳极的电流效率异常降低,其原因可能是In3+和Zn2+等离子的再沉积过程受到抑制,使Al-Zn-In牺牲阳极表面形成一层氧化膜。氧化膜的破裂和溶解过程不会产生电流,而能引起牺牲阳极的质量损耗,导致阳极电流效率小于理论值。

关键词 Al-Zn-In牺牲阳极工作电流密度电流效率溶解机制    
Abstract

The current efficiency and corrosion mechanism of Al-Zn-In sacrificial anode by different impressed current densities were investigated by using electrochemical methods. Results showed that the corrosion mechanism and the current efficiency of the Al-Zn-In sacrificial anode varied with the impressed current densities. The current efficiency decreases dramatically by a low current density, this may be caused by the fact that the re-deposition of the dissolved cations (In3+, Zn2+) was suppressed and an oxides film might formed on the alloy surface. A mass loss of the anode might be caused by the cracking and dissolving of the oxides film, and this might be responsible to the current efficiency of Al-Zn-In sacrificial anode lower than that theoretically expected by the low impressed current density.

Key wordsAl-Zn-In sacrificial anode    working current density    current efficiency    corrosion mechanism
    
ZTFLH:  TG174.1  
作者简介: null

赵国强,男,1990年生,硕士生

引用本文:

赵国强, 魏英华, 李京. Al-Zn-In牺牲阳极在不同工作电流密度下电流效率及溶解机制的研究[J]. 中国腐蚀与防护学报, 2015, 35(1): 69-74.
Guoqiang ZHAO, Yinghua WEI, Jing LI. Current Efficiency and Corrosion Mechanism of Al-Zn-In Sacrificial Anode at Different Current Densities. Journal of Chinese Society for Corrosion and protection, 2015, 35(1): 69-74.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2013.279      或      https://www.jcscp.org/CN/Y2015/V35/I1/69

图1  Al-Zn-In牺牲阳极在不同工作电流密度下的电流效率
Current density / mAcm-2 Average mass loss / mg Average electric quantity / Ah Average current efficiency / %
0.005 7.70 3.48×10-3 16.73
0.01 19.90 8.07×10-3 16.20
0.1 39.30 64.09×10-3 60.40
0.7 269.60 0.54 74.16
1 285.95 0.67 86.17
2.5 556.30 1.27 84.33
表1  不同工作电流密度下Al-Zn-In牺牲阳极的平均失重、平均发射电量和平均电流效率
图2  Al-Zn-In牺牲阳极在人造海水中的极化曲线
图3  Al-Zn-In牺牲阳极自腐蚀状态下的Nyquist图
图4  不同电流极化下Al-Zn-In牺牲阳极的Nyquist图
Current density
mAcm-2
Equivalent capacit-ance / Fcm-2 Thickness of
oxide film / m
0.005 1.50×10-5 5.90×10-10
0.01 1.94×10-5 4.56×10-10
0.05 4.68×10-5 1.89×10-10
0.1 1.30×10-4 4.50×10-11
0.5 1.02×10-4 5.80×10-11
1 1.15×10-4 5.13×10-11
表2  不同电流密度下氧化膜厚度的计算值
图5  Al-Zn-In牺牲阳极表面氧化膜的计算值随电流密度的变化曲线
[1] Talavera M A, Valdez S, Huarez-Islas J A, et al. EIS testing of new aluminium sacrificial anodes[J]. J. Appl. Electrochem., 2002, 32: 897
[2] Song Y H, Guo Z C, Fan A M, et al. Current state of research on sacrificial anode materials[J]. Corros. Sci. Prot. Technol., 2004, 16(1): 24
[2] (宋曰海, 郭忠诚, 樊爱民等. 牺牲阳极材料的研究现状[J]. 腐蚀科学与防护技术,2004, 16(1): 24)
[3] Shibli S M A, Gireesh V S. Activation of aluminium alloy sacrificial anodes by selenium[J]. Corros. Sci., 2005, 47: 2091
[4] Ma J L, Wen J B. The effects of lanthanum on microstructure and electrochemical properties of Al-Zn-In based sacrificial anode alloys[J]. Corros. Sci., 2009, 51: 2115
[5] Xu H Y, Li Y B. Activation behavior of aluminum sacrificial anodes in sea water[J]. J. Chin. Soc. Corros. Prot., 2008, 28(3): 186
[5] (徐宏妍, 李延斌. 铝基牺牲阳极在海水中的活化行为[J]. 中国腐蚀与防护学报, 2008, 28(3): 186)
[6] Barbucci A, Cerisola G, Bruzzone G, et al. Activation of aluminium anodes by the presence of intermetallic compounds[J]. Electrochim. Acta, 1997, 42(15): 2369
[7] He J G, Wen J B, Zhou X D, et al. Effect of grain size on electrochemical performance of Al-Zn-Sn-Ga alloy[J]. Corros. Sci. Prot. Technol., 2012, 24(6): 484
[7] (贺俊光, 文九巴, 周旭东等. 晶粒度对Al-Zn-Sn-Ga阳极电化学性能的影响[J]. 腐蚀科学与防护技术, 2012, 24(6): 484)
[8] Salinas D R, Garcia S G, Bessone J B. Influence of alloying elements and microstructure on aluminium sacrificial anode performance: case of Al-Zn[J]. J. Appl. Electrochem., 1999, 29: 1063
[9] Schrieber C F, Murray R W. Effect of hostile marine environments on the Al-Zn-In-Si sacrificial anode[J]. Mater. Perform., 1988, 27(7): 70
[10] Huang Y B, Song G W, Liu X B, et al. Corrosion protection of Al-Zn-In-Mg-Ga-Mn aluminous sacrificial anode[J]. J. Chin. Soc. Corros. Prot., 2012, 32(1): 44
[10] (黄燕滨, 宋高伟, 刘学斌等. Al-Zn-In-Mg-Ga-Mn牺牲阳极腐蚀防护行为研究[J]. 中国腐蚀与防护学报, 2012, 32(1): 44)
[11] Smith S N, Reding J T, Jr Riley R L. Development of a broad application saline water aluminum anode-“Galvalum” III[J]. Mater. Perform., 1978, 17(3): 32
[12] GB/T 17848-1999. Test methods for electrochemical properties of sacrificial anodes[S]
[12] (GB/T 17848-1999. 牺牲阳极电化学性能实验方法[S])
[13] Wolfson S L. Operating performance of aluminum anodes-results from laboratory and field tests[J]. Mater. Perform., 1994, 33(2): 22
[14] Reboul M C, Gimenez P H, Rameau J J. A proposed mechanism for Al anodes[J]. Corrosion, 1984, 40(7): 366
[15] Chao C Y, Lin L F, Macdonald D D. A point defect model for anodic passive films[J]. J. Electrochem. Soc., 1981, 128(6): 1187
[1] 王廷勇, 董如意, 许实, 王辉. 石墨烯改性Ti/IrTaSnSb-G金属氧化物阳极在低温和低盐NaCl溶液中的电化学性能[J]. 中国腐蚀与防护学报, 2020, 40(3): 289-294.
[2] 侯军才,梁国军,乔锦华,张秋美. 低Mn含量高电位镁合金牺牲阳极[J]. 中国腐蚀与防护学报, 2012, 32(5): 403-406.
[3] 李威力,闫永贵,陈光,马力. 合金元素对铝基牺牲阳极性能的影响[J]. 中国腐蚀与防护学报, 2012, 32(2): 127-132.
[4] 侯军才,张秋美. 高电位镁牺牲阳极研究进展[J]. 中国腐蚀与防护学报, 2011, 31(2): 81-85.
[5] 孔小东;丁振斌;朱梅五. 含Mg铝合金牺牲阳极的电流效率及其影响因素[J]. 中国腐蚀与防护学报, 2010, 30(1): 6-10.
[6] 郝小军; 宋诗哲 . 电偶电流评价牺牲阳极性能[J]. 中国腐蚀与防护学报, 2005, 25(3): 176-178 .
[7] 齐公台; 郭稚弧; 屈钧娥 . 合金元素Mg对含RE铝阳极组织与性能的影响[J]. 中国腐蚀与防护学报, 2001, 21(4): 220-224 .