Please wait a minute...
中国腐蚀与防护学报  2011, Vol. 31 Issue (4): 289-293    
  研究报告 本期目录 | 过刊浏览 |
20钢与08碳钢的循环水腐蚀行为评价对比
刘佐嘉1,程学群1,吕胜杰2,李晓刚1
1. 北京科技大学腐蚀与防护中心 北京 100083
2. 中国石油化工股份有限公司石家庄炼化分公司机动处 石家庄 050032
EVALUATION AND COMPARISON OF CORROSION BEHAVIOR ON 20 & 08 CARBON STEELS IN SIMULATED CIRCULATING COOLING WATER
LIU Zuojia1, CHENG Xuequn1, LV Shengjie2, LI Xiaogang1
1. Corrosion and Protection Centre, University of Science and Technology Beijing, Beijing 100083
2. Equipment and Power Department, Shijiazhuang Refine & Chemical Company Limited, SINOPEC,Shijiazhuang 050032
全文: PDF(3658 KB)  
摘要: 应用电化学和浸泡实验对比20钢与08碳钢在模拟循环冷却水中的耐蚀性,从实验结果得出08碳钢的耐蚀性能比20钢优异;由于在冷却水循环过程中金属表面形成的水膜层逐渐增厚可能使氯离子等侵蚀性离子积聚在表层难以扩散出去,导致腐蚀现象越来越严重,08碳钢中Cr含量比20钢高可能是08钢更耐蚀的原因之一。
关键词 极化电化学阻抗浸泡20碳钢08碳钢    
Abstract:Evaluated and compared with the corrosion resistance of 20 & 08 carbon steels by electrochemical and immersion experiments. It can be seen that the corrosion resistance of 08 carbon steel is greater than 20 carbon steel from the experiment results. More and more Cl- which properly accumulated on the surface of pipeline and hard to diffuse from the steel when the water layer formed on the surface of metal become thicker, and then corrosion problem got worse. The content of Cr in 08 carbon steel is higher than 20 carbon steel which is properly reason why the corrosion resistance of 08 carbon steel is better than 20 carbon steel
Key wordspolarization    electrochemical impedance spectroscopy(EIS)    immersion    20 carbon steel    08 carbon steel
收稿日期: 2010-04-20     
ZTFLH: 

TG174.2

 
基金资助:

国家自然科学基金项目(50871020)资助

通讯作者: 刘佐嘉     E-mail: lzandj@yahoo.com.cn
Corresponding author: LIU Zuojia     E-mail: lzandj@yahoo.com.cn
作者简介: 刘佐嘉,男,1985年生,硕士,研究方向为材料的腐蚀与防护

引用本文:

刘佐嘉,程学群,吕胜杰,李晓刚. 20钢与08碳钢的循环水腐蚀行为评价对比[J]. 中国腐蚀与防护学报, 2011, 31(4): 289-293.
LIU Zuo-Jia. EVALUATION AND COMPARISON OF CORROSION BEHAVIOR ON 20 & 08 CARBON STEELS IN SIMULATED CIRCULATING COOLING WATER. J Chin Soc Corr Pro, 2011, 31(4): 289-293.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2011/V31/I4/289

[1] Kim J K, Smith R. Cooling water system design [J]. Chem.Eng. Sci., 2001; 56: 3641-3658

[2] Reyes M, Neville A. Mechanisms of erosion-corrosion on a cobalt-base alloy and stainless-steel UNS S17400 in aggressive slurries [J]. J. Mater. Eng. Perform.,2001; 10(6): 723-730

[3] Bester J A, Ball A. The performance of aluminum alloys and particulate reinforced aluminum metal matrix composites in erosive-corrosive slurry environments [J].Wear, 1993; 162-164: 57-63

[4] Postlethwaite J. Effect of chromate inhibitor on the mechanical and electrochemical components of erosion-corrosion in aqueous slurries of sand [J]. Corrosion, 1981; 37(1): 1-5

[5] Li Y, Burstein T, Hutchings I M. Influence of corrosion on slurry erosion of aluminium [J].Wear, 1995; 186-187: 515-522

[6] Metwally I A, Al-Mandhari H M, Gastli A, et al. Factors affecting cathodic-protection interference [J]. Eng. Anal. Boundary Elem., 2007; 31: 485-490

[7] MacDonald D D. The point defect model for the passive state [J]. J. Electrochem. Soc, 1992; 139: 3434-3449

[8] Cao C N, Zhang J Q. Introduction of Electrochemical Impedance Spectroscopy [M]. Beijing: Science Press. 2004

    (曹楚男, 张鉴清. 电化学阻抗谱导论 [M]. 北京:科学出版社,2004)

[9] Yand D J, Shen Z S. Ccorrosion Fundamental of Metals [M].Beijing: Metallurgical Industry Press. 2003

    (杨德钧, 沈卓身. 金属腐蚀学 [M]. 北京:冶金工业出版社,2003)

[10] Giddey S, Cherry B, Lawson F, et al. Stability of oxide films formed on mild steel in turbulent flow conditions of alkaline solutions at elevated temperatures [J]. Corros. Sci., 2001; 43: 1497-1517

[11] Cheng Y F, Luo J L. Passivity and pitting of carbon steel in chromate solutions. [J].Electrochim. Acta, 1999; 44: 4795-4802

[12] Cheng Y F, Steward E R. Corrosion of carbon steels in high-temperature water studied by electrochemical techniques [J]. Corros. Sci.,2004; 46: 2405-2420

[13] Lai D, Borg R, Babers M, et al.Corrosion, 1961; 17: 357

[14] Robertson J. The mechanism of high temperature aqueous corro sion of stainless steel [J].Corros. Sci. 1989; 29: 1275-1291

[15] MacDonald D D. T
[1] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[2] 李子运, 王贵, 罗思维, 邓培昌, 胡杰珍, 邓俊豪, 徐敬明. 热带海洋大气环境中EH36船板钢早期腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 463-468.
[3] 周宇, 张海兵, 杜敏, 马力. 模拟深海环境中阴极极化对1000 MPa级高强钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 409-415.
[4] 赵柏杰, 范益, 李镇镇, 张博威, 程学群. 不同类型接触面对316L不锈钢缝隙腐蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 332-341.
[5] 郏义征, 王保杰, 赵明君, 许道奎. 固溶处理制度对挤压态Mg-Zn-Y-Nd镁合金在模拟体液中腐蚀和析氢行为的影响规律研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
[6] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[7] 孙硕, 杨杰, 钱薪竹, 常人丽. Ni-Cr-P化学镀层的制备与电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(3): 273-280.
[8] 白苗苗, 白子恒, 蒋立, 张东玖, 姚琼, 魏丹, 董超芳, 肖葵. H62黄铜/TC4钛合金焊接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 159-166.
[9] 沈树阳, 王东胜, 孙士斌, 杨剔, 赵前进, 王鑫, 张亚飞, 常雪婷. 深冷处理对EH40极寒环境船用钢板的海水腐蚀性能影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 151-158.
[10] 张天翼,柳伟,范玥铭,李世民,董宝军,BANTHUKUL Wongpat,CHOWWANONTHAPUNYA Thee. 海洋大气环境Cu/Ni协同作用对低合金钢耐蚀性影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 511-518.
[11] 郏义征, 赵明君, 程世婧, 王保杰, 王硕, 盛立远, 许道奎. 模拟人体体液中镁合金的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 463-468.
[12] 王标,杜楠,张浩,王帅星,赵晴. 304不锈钢点蚀产物对亚稳态点蚀萌生和稳态蚀孔生长的加速作用[J]. 中国腐蚀与防护学报, 2019, 39(4): 338-344.
[13] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[14] 达波,余红发,麻海燕,吴彰钰. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[15] 童海生,孙彦辉,宿彦京,庞晓露,高克玮. 海工结构用2205双相不锈钢氢致开裂行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 130-137.