Please wait a minute...
中国腐蚀与防护学报  2011, Vol. 31 Issue (4): 294-298    
  研究报告 本期目录 | 过刊浏览 |
碳含量和浸泡时间对碳钢热带自然海水腐蚀产物中细菌组成的影响
杨雨辉1,2,肖伟龙1,柴柯1,吴进怡1
1. 海南大学材料与化工学院海南优势资源化工材料应用技术教育部重点实验室 海口 570228
2. 海南大学农学院 海口 570228
COMPOSITION OF BACTERIA IN CORROSION PRODUCT OF CARBON STEEL WITH DIFFERENT CARBON CONTENT IMMERSED IN SEAWATER FOR DIFFERENT TIME
YANG Yuhui1,2, XIAO Weilong1, CHAI Ke1, WU Jinyi1
1. Key Laboratory of Ministry of Education for Application Technology of Chemical Materials in Hainan Superior Resources, Material and Chemical Engineering College, Hainan University, Haikou 570228
2. Agricultural College, Hainan University, Haikou 570228
全文: PDF(452 KB)  
摘要: 为了深入探讨海洋微生物对碳钢的腐蚀机理,通过细菌的分离鉴定方法,研究了不同碳含量碳钢在自然海水中浸泡不同时间后腐蚀产物中的细菌组成。结果表明不同碳钢每克表面刮取物中需氧菌及兼性厌氧菌的数量均在浸泡时间为91 d时达最大值,而硫酸盐还原菌的数量在浸泡时间为184 d时达最大值。铁细菌和硫细菌的变化不明显。不同碳钢,除7 d实验周期外,随碳含量增加,腐蚀产物中需氧菌及兼性厌氧菌有增加趋势,而硫酸盐还原菌却存在降低趋势。需氧菌及兼性厌氧菌主要由两个菌属的细菌组成,即假单胞菌属和弧菌属,当浸泡时间达1 a时,还出现大量黄杆菌。从各个菌属所占比例可见,碳钢腐蚀产物中菌群初期主要由需氧菌组成,随着浸泡时间延长,兼性厌氧菌开始占据主要地位。铁细菌主要是由瑙曼氏菌属和鞘铁菌属组成。不同细菌在生长过程中对氧的需求与消耗及代谢产物的差异,会对碳钢的腐蚀过程产生不同的影响。
关键词 碳钢腐蚀产物细菌海水    
Abstract:Bacterial adhesion and biofilm formation on the surface of carbon steel are common in seawater. The heterogeneous biofilm and the associated bacteria form complex biological systems that impact the physical and chemical characters of the metal/biofilm interface, such as pH, dissolved oxygen, chloride and sulfate, etc., and change the corrosion mechanism of carbon steel. Accordingly, it is important to investigate the bacteria composition in the corrosion product of carbon steel. In this work, the bacteria compositions in the corrosion product of different carbon steel emerged in seawater for different periods were researched by bacteria isolating and identifying methods. The results show that the contents of aerobe and facultative anaerobe reach the maximum value when the corrosion time is 91 d. However, the content of sulfate reducing bacteria reaches the maximum value when the corrosion time is 184 d. The contents of iron bacteria and sulfur bacteria change irregularly. For different carbon steel, except 7 d corrosion time, the contents of aerobe and facultative anaerobe in biofilm increase with increasing the content of carbon, but that of sulfate reducing bacteria descends. Aerobe and facultative anaerobe mainly compose pseudomonas and vibrio. When the corrosion time is 365 d, flavobacterium also exists in the corrosion product. The aerobe is predominant in the initial stage of experiment and facultative anaerobe is predominant in later stage. The major composition of iron bacteria includes naumanniella and siderocapsa. The different bacteria produce the different metabolic products that influence corrosion process of carbon steel.
Key wordscarbon steel    corrosion product    bacteria    seawater
收稿日期: 2010-05-13     
ZTFLH: 

TG172.5

 
基金资助:

国家自然科学基金项目(50761004), 海南省自然科学基金项目(510204, 511112)和海南大学2009科研项目(hd09xm77)资助

通讯作者: 吴进怡     E-mail: wujinyi1976@yahoo.com.cn
Corresponding author: WU Jinyi     E-mail: wujinyi1976@yahoo.com.cn
作者简介: 杨雨辉,男,1971年生,副教授,研究方向为热带海洋气候下金属的生物腐蚀与防护

引用本文:

杨雨辉,肖伟龙,柴柯,吴进怡. 碳含量和浸泡时间对碳钢热带自然海水腐蚀产物中细菌组成的影响[J]. 中国腐蚀与防护学报, 2011, 31(4): 294-298.
YANG Yu-Hui, XIAO Wei-Long, CI Ke, WU Jin-Yi. COMPOSITION OF BACTERIA IN CORROSION PRODUCT OF CARBON STEEL WITH DIFFERENT CARBON CONTENT IMMERSED IN SEAWATER FOR DIFFERENT TIME. J Chin Soc Corr Pro, 2011, 31(4): 294-298.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2011/V31/I4/294

[1] Dexter S C, LaFontaine J P. Effect of natural marine biofilms on galvanic corrosion [J]. Corrosion,1998, 54(11): 851-861

[2] Jahn A, Nielsen P H. Cell bimass and exopolymer composition in sewer biofilms [J]. Wat. Sci.Technol., 1998, 37(1): 17-24

[3] Mathiyarasu J, Palaniswamy N, Muralidharan V S. Corrosion resistance of cupronickels-An overview [J].Corros. Rev., 2000, 18(1): 65-103

[4] Busalmen J P, Vazquez M, de Sanchez S R. New evidences on the catalase mechanism of microbial corrosion [J]. Electrochim. Acta, 2002, 47(12): 1857

[5] de Damborenea J J, Cristobal A B, Arenas M A, et al. Selective dissolution of austenite in AISI 304 stainless steel by bacterial activity [J]. Mater.Lett., 2007, 61(3): 821-823

[6] Mansfeld F, Little B. Electrochemical techniques applied to microbiologically induced corrosion [J].Corros. Sci., 1991, 32(3): 247-272

[7] Wu J Y, Chai K, Xiao W L, et al. The single effect of microbe on the corrosion behaviors of 25 steel in seawater [J]. Acta Metall. Sin., 2010,46(6): 755-760

    (吴进怡, 柴柯, 肖伟龙等. 25钢在海水中的微生物单因素腐蚀 [J]. 金属学报, 2010, 46(6): 755-760)

[8] Jung H G, Yoo J Y, Woo J S. The microbiologically influenced corrosion behavior of C-Mn ship structural steel with different manufacturing processes [J]. ISIJ Int., 2003, 43(10): 1603-1610

[9] Liu D Y, Wei K J, Li W J, et al. Influence of environmental factors in Yulin area of the south china sea on localized corrosion of steels [J]. J.Chin. Soc. Corros. Prot., 2003, 23(4): 211-216

    (刘大扬, 魏开金, 李文军等. 南海榆林海域环境因素对 钢局部腐蚀的影响 [J]. 中国腐蚀与防护学报, 2003, 23(4): 211-216)

[10] Cristobal A B, Arenas M A, Conde A, et al. Corrosion of stainless steels covered by exopolymers [J]. Electrochim. Acta, 2006, 52: 546-551

[11] Sand W. Microbial mechanisms of deterioration of inorganic substrates--A general mechanistic overview [J]. Int. Biodeterior. Biodegrad., 1997,40: 183-190

[12] Wang Q F, Song S Z. Progress in marine biologically influenced corrosion study [J]. J. Chin.Soc. Corros. Prot., 2002, 22(3): 184-188

     (王庆飞, 宋诗哲. 金属材料海洋环境生物污损腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2002, 22(3): 184188)

[13] Buchanan R E, Gibbons N E. Bergey's Manual of Determinative Bacteriology 8th Ed., [M]. Baltimore, Maryland: The Williams and Wilkins Company, 1974, 7

[14] Li H R, Fu Y B, Li J, et al. Composition of marine bacteria in micro-biofilm formed on four different artificial substrata [J]. J. Ocean Univ. Qingdao, 2001, 31(3): 401-406

     (李会荣, 付玉斌, 李筠等. 海洋细菌在不同基质表面微生物粘膜中的组成 [J]. 青岛海洋大学学报,2001, 31(3): 401-406)

[15] Sreekumari K R, Nandakumar K, Takao K, et al.Silver containing stainless steel as a new outlook to abate bacterial adhesion and microbiologically influenced corrosion [J]. ISIJ Int., 2003, 43(11): 1799-1806

[16] Wu J Y, Xiao W L, Chai K, et al. The single effect of microbe on the corrosion behaviors of 45 steel in seawater in tropic condition [J]. Acta Metall. Sin., 2010, 46(1): 118-122

     (吴进怡, 肖伟龙, 柴柯等. 热带海洋环境下海水中微生物对45钢腐蚀行为的单因素影响 [J]. 金属学报, 2010,46(1): 118-122)
[1] 翟思昕, 杨幸运, 杨继兰, 顾剑锋. 淬火-配分-回火钢在模拟海水环境中的腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 398-408.
[2] 王玉, 吴佳佳, 张盾. 海水环境中异化铁还原菌所致金属材料腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(5): 389-397.
[3] 白海涛, 杨敏, 董小卫, 马云, 王瑞. CO2腐蚀产物膜的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(4): 295-301.
[4] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[5] 胥聪敏,罗立辉,王文渊,赵苗苗,田永强,宋鹏迪. D-tyrosine对碳钢表面铁细菌生物膜的杀菌增强作用机理研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 63-69.
[6] 卫晓阳,杨丽景,吕战鹏,郑必长,宋振纶. 磁场对纯Cu微生物腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 484-494.
[7] 丁国清,李向阳,张波,杨朝晖,黄桂桥,杨海洋,刘凯吉. 金属材料在天然海水中的腐蚀电位及其变化规律[J]. 中国腐蚀与防护学报, 2019, 39(6): 543-549.
[8] 严少坤,郑大江,韦江,宋光铃,周廉. 钝性纯Ti在人工海水中的电化学活化行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 123-129.
[9] 达波,余红发,麻海燕,吴彰钰. 阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[10] 许萍,张硕,司帅,张雅君,汪长征. EPS的主要成分-蛋白质、多糖抑制碳钢腐蚀机理研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 176-184.
[11] 杨丹,李定林,黄彦良,华丕龙,赵霞,彭鹏,王秀通. 海水抽水蓄能电站的金属腐蚀和选材问题研究现状[J]. 中国腐蚀与防护学报, 2019, 39(1): 1-8.
[12] 程多云,赵晋斌,刘波,姜城,付小倩,程学群. 高镍钢和传统耐候钢在马尔代夫严酷海洋大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(1): 29-35.
[13] 钟显康,扈俊颖. 恒定的pH值和Fe2+浓度下X65碳钢的CO2腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(6): 573-578.
[14] 黄博博,刘平,刘新宽,梅品修,陈小红. 新型HSn70-1铜网衣两年期海水腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 594-600.
[15] 邓培昌, 刘泉兵, 李子运, 王贵, 胡杰珍, 王勰. X70管线钢在热带海水-海泥跃变区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.