Please wait a minute...
中国腐蚀与防护学报  2011, Vol. 31 Issue (4): 282-288    
  研究报告 本期目录 | 过刊浏览 |
2024铝合金搅拌摩擦焊焊缝表面腐蚀机理探索
康举1,董春林1,栾国红1,何淼1,付瑞东2
1. 北京航空制造工程研究所 中国搅拌摩擦焊中心 北京 100024
2. 燕山大学 亚稳材料制备技术与科学国家重点实验室 秦皇岛 066004
CORROSION MECHANISM ON TOP SURFACE OF FRICTION STIR WELDED JOINT OF 2024 ALUMINUM ALLOY
KANG Ju1, DONG Chunlin1, LUAN Guohong1,HE Miao1, FU Ruidong2
1. Beijing Aeronautical Manufacturing Technology Research Institute, China FSW Center, Beijing 100024
2. State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004
全文: PDF(4832 KB)  
摘要: 在分析2024铝合金FSW焊缝表面组织及析出相种类的基础上,采用腐蚀类原位观察揭示了焊缝表面的腐蚀演变行为,结合透射电镜、示差扫描量热分析及电化学分析对焊缝接头的腐蚀机理进行了探索。结果表明:FSW后,焊缝区的耐蚀性能下降,SAZ腐蚀最严重,点蚀的起源为S相。焊缝区晶体缺陷增加,导致晶粒和晶界在电化学性能上的不均匀性增大。在FSW过程中SAZ的S相粒子被打碎,并发生部分回溶。当腐蚀发生时,被打碎的S相加大了 SAZ的点蚀密度;溶入基体的Mg元素,提高了轴肩作用区的活性。
关键词 搅拌摩擦焊2024铝合金组织浸泡试验第二相粒子    
Abstract:In this paper, based on the analysis to surface microstructure of FSW AA2024 joint, the corrosion evolution behavior was revealed by a quasi-in-situ observation method. Besides, the corrosion mechanism of the FSW joint was investigated by combining TEM, DSC and electrochemical analysis. The results show that FSW makes the corrosion resistance decrease, which is characterized by the facts that the most corrosion in the SAZ (shoulder active zone) and the pitting corrosion initially originates in dissolving of the $S$ phase (Al2CuMg). TEM observations indicate that crystal defects density increases in the welded joints causing the more different electrochemical properties between grains and grain boundaries. The S phase particles are broken and partially redissolved during the FSW process in the SAZ. When the corrosion happens, the broken S phase particles increase the pitting corrosion density of the SAZ. In addition, the activity of the SAZ is enhanced due to the doped Mg.
Key wordsfriction stir welding    2024 aluminum alloy    microstructure    immersion test    second-phase precipitates
收稿日期: 2010-06-11     
ZTFLH: 

TG172

 
基金资助:

航空科学重点基金项目(2009ZE25007)资助

通讯作者: 康举     E-mail: kangjusin@163.com
Corresponding author: KANG Ju     E-mail: kangjusin@163.com
作者简介: 康举,男,1983年生,硕士,研究方向为高强铝合金FSW工艺及腐蚀行为

引用本文:

康举,董春林,栾国红,何淼,付瑞东. 2024铝合金搅拌摩擦焊焊缝表面腐蚀机理探索[J]. 中国腐蚀与防护学报, 2011, 31(4): 282-288.
KANG Ju, DONG Chun-Lin, LUAN Guo-Hong, HE Miao, FU Rui-Dong. CORROSION MECHANISM ON TOP SURFACE OF FRICTION STIR WELDED JOINT OF 2024 ALUMINUM ALLOY. J Chin Soc Corr Pro, 2011, 31(4): 282-288.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2011/V31/I4/282

[1] Matrukanitz R P. Selection and weldability of heat-treatable aluminum alloys, ASM Handbook-Welding, Brazing and Soldering [M]. ASM Int., 1990: 528-536

[2] Thomas W M, Nicholas E D, Needham J C, et al. Friction stir butt welding [P].Int. Pat., PCT/GB92/02203, 1991, 9

[3] Ericsson M, Sandstrom R. Influence of welding speed on the fatigue of friction stir welds and comparison with MIG and TIG [J]. Int. J. Fatigue, 2003, 25: 1379-1387

[4] Su J Q, Nelson T W, Mishra R, et al.Microstructural investigation of friction stir welded 7050-T651 aluminum [J]. Acta Mater., 2003, 51(3): 713-729

[5] Omar H. Effects of peening on mechanical properties in friction stir welded 2195 aluminum alloy joints [J]. Mater. Sci.Eng., 2008, A492(1-2): 168-176

[6] Linton V M, Ripley M I. Influence of time on residual stresses in friction stir welds in age hardenable 7xxx aluminum alloys [J]. Acta Mater., 2008, 56(16): 4319-4327

[7] Li Y, Murr L E, McLure J C. Solid-state flow visualization in the friction-stir welding of 2024 Al to 6061 Al [J]. Scr.Mater., 1999, 40(9): 1041-1046

[8] Yan D Y, Shi Q Y, Wu A P, et al. Numerical analysis on the functions of stir tool's mechanical load during friction stir welding [J]. Acta Metall.Sin., 2009, 45(8): 994-999

    (鄢东洋, 史清宇, 吴爱萍等. 搅拌头机械载荷在搅拌摩擦焊接过程中的作用的数值分析 [J]. 金属学报, 2009, 45(8): 994-999)

[9] Jariyaboon M, Davenport A J, Ambat R, et al. The effect of welding parameters on the corrosion behaviour of friction stir welded AA2024-T351 [J]. Corros. Sci.,2007, 49(2): 877-909

[10] Biallas G, Braun R, Donne C D, et al. Mechanical properties and corrosion behavior of friction stir welded 2024-T3 [C].1st International Symposium on Friction Stir Welding, Thousand Oaks, CA, 1999

[11] Leonard A J. Corrosion resistance of friction stir welds in aluminum alloy 2014A-T651 and 7075-T651 [A], 3rd International Symposium on Friction Stir Welding [C]. Kobe, Japan.2001

[12] Li J F, Zheng Z J, Zhang Z, et al. Electrochemical impedance spectroscopy of Al alloys during exfoliation corrosion [J].J. Chin. Soc. Corros. Prot., 2005,25(1): 48-52

     (李劲风, 郑子樵, 张昭等. 铝合金剥落过程的电化学阻抗谱分析 [J]. 中国腐蚀与防护学报, 2005, 25(1): 48-52)

[13] Zhang D F, Tan X M, Ma L, et al. Aluminum pitting corrosion damage rule under service environment [J]. J. Chin.Soc. Corros. Prot., 2010, 30(1): 93-96

     (张丹峰, 谭晓明, 马力等. 服役环境条件下飞机结构铝合金材料孔蚀规律研究 [J]. 中国腐蚀与防护学报, 2010, 30(1): 93-96)

[14] Mishra R S, Ma Z Y. Friction stir welding and processing [J]. Mater.Sci. Eng., 2005, R50: 1-78

[15] Pan C, Huang Y, Fu Q. A novel in-situ tracking approach for evaluating microstructural variations using SEM, EDS and EBSD and its applications in materials science [J]. Mod. Res. Educ.Topics Microsc., 2007, 697-703

[16] ASTM G34-01. Standard test method for exfoliation corrosion susceptibility in 2××× and 7××× series aluminum alloys (EXCO Test) [S]. 2007

[17] Habashi M, Bonte E, Galland J, et al. Quantitative measurements of the degree of exfoliation on aluminum alloys [J]. Corros. Sci., 1993, 35(1-4): 169-183

[18] Fu R D, Luan G H, Dong C L, et al. Corrosion behavior of friction stir welded joint of 7075 aluminum alloy by acid salt spray [J]. Corros. Sci. Prot.Technol., 2009, 21: 580-585

     (付瑞东, 栾国红, 董春林等. 酸性盐雾中7075铝合金FSW接头的腐蚀行为 [J]. 腐蚀科学与防护技术, 2009; 21: 580-585)

[19] Buchheit R G, Grant R P, Hlava P F, et al. Local dissolution phenomena associated with S phase (Al2CuMg) particles in aluminum alloy 2024-T3 [J].J. Electrochem. Soc, 1997, 144(8): 2621-2628

[20] Cheng Y L, Zhang Z, Cao F H, et al. Corrosion of LY12 aluminum alloy in sodium chloride solution [J]. Trans. Nonferrous Met. Soc. China, 2003, 13(3): 617-621

[21] Liu Z Y, Li Y T, Liu Y B, et al.Development of Al-Cu-Mg-Ag alloys [J]. Chin.J. Nonferrous Met., 2007, 17(12): 1905-1915

     (刘志义, 李云涛, 刘延斌等. Al-Cu-Mg-Ag合金析出相的研究进展 [J]. 中国有色金属学报, 2007, 17(12): 1905-1915)
[1] 杨明馨, 高阳, 王辉. 添加Zn2+对ZIRLO合金在模拟压水堆一回路含LiOH和H3BO3水溶液工况下耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 199-204.
[2] 袁玮,黄峰,甘丽君,戈方宇,刘静. 显微组织对X100管线钢氢致开裂及氢捕获行为影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 536-542.
[3] 付安庆,赵密锋,李成政,白艳,朱文军,马磊,熊茂县,谢俊峰,雷晓维,吕乃欣. 激光表面熔凝对超级13Cr不锈钢组织与性能的影响研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 446-452.
[4] 丰涵,宋志刚,吴晓涵,李惠,郑文杰,朱玉亮. 022Cr25Ni7Mo4N双相不锈钢选择性腐蚀行为与两相组织的关系研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 138-144.
[5] 王凯, 易耀勇, 卢清华, 易江龙, 江泽新, 马金军, 张宇. 基于窄间隙焊接的热模拟峰值温度对Q690高强钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(5): 447-454.
[6] 蒋光锐, 刘广会. Zn-Al-Mg合金的凝固组织及其耐腐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(2): 191-196.
[7] 牛振国, 郭浦山, 叶宏, 杨丽景, 许赪, 宋振纶. Zn-7Mg合金热处理显微组织演变及耐蚀性能研究[J]. 中国腐蚀与防护学报, 2017, 37(4): 347-353.
[8] 刘德强,柯黎明,徐卫平,邢丽,毛育青. 7075厚板铝合金搅拌摩擦焊接头晶间腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(3): 293-299.
[9] 张子阳,王善林,章恒瑜,柯黎明. AZ31镁合金搅拌摩擦焊接头腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(2): 117-125.
[10] 滕彧,陈旭,何川,王义闯,王冰. 显微组织对X70钢在含有硫酸盐还原菌的3.5%NaCl溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(2): 168-174.
[11] 陶永奇,刘刚,黎业生,曾志翔. 海水环境下2024铝合金腐蚀磨损性能研究[J]. 中国腐蚀与防护学报, 2016, 36(6): 587-594.
[12] 胡骞,刘静,王玉昆,黄峰,戴明杰,侯阳来. 不同组织A710钢在NaCl溶液中耐蚀性对比研究[J]. 中国腐蚀与防护学报, 2016, 36(6): 611-616.
[13] 张建春,左龙飞,蒋金洋,麻晗,宋丹. 耐海水腐蚀钢筋00Cr10MoV的组织结构及性能研究[J]. 中国腐蚀与防护学报, 2016, 36(4): 363-369.
[14] 苏艳,张伦武,钟勇. 5A90铝锂合金显微组织及海洋大气环境腐蚀行为[J]. 中国腐蚀与防护学报, 2016, 36(3): 260-266.
[15] 冯晓伟,戚文军,黎小辉,李志成. 生物医用挤压态Mg-Zn-Gd镁合金的组织与耐电化学腐蚀性能[J]. 中国腐蚀与防护学报, 2016, 36(3): 267-272.