Please wait a minute...
中国腐蚀与防护学报  2026, Vol. 46 Issue (1): 273-282     CSTR: 32134.14.1005.4537.2025.091      DOI: 10.11902/1005.4537.2025.091
  研究报告 本期目录 | 过刊浏览 |
海洋环境下钢筋混凝土桩基的腐蚀与阴极保护特征分析
庄宁1, 曾易1, 欧阳正平2(), 许金荣3, 李翰泽4, 宋霄锟5, 王亚洲1
1.河海大学港口海岸与近海工程学院 南京 210024
2.海南省生态环境地质调查院 海口 570206
3.中电建路桥集团有限公司 北京 100037
4.浙江省水利河口研究院(浙江省海洋规划设计研究院) 杭州 310002
5.中建八局西北公司 西安 710000
Analysis of Corrosion and Cathodic Protection Characteristics of Reinforced Concrete Pile in Simulated Marine Environments
ZHUANG Ning1, ZENG Yi1, OUYANG Zhengping2(), XU Jinrong3, LI Hanze4, SONG Xiaokun5, WANG Yazhou1
1.College of Harbour, Coastal and Offshore Engineering, Hohai University, Nanjing 210024, China
2.Hainan Institute of Eco-Environmental Geological Survey, Haikou 570206, China
3.Power China Road Bridge Group Corporation Limited, Beijing 100037, China
4.Zhejiang Institute of Hydraulics & Estuary (Zhejiang Institute of Marine Planning and Design), Hangzhou 310002, China
5.China Construction Eighth Engineering Bureau Northwest Company, Xi'an 710000, China
引用本文:

庄宁, 曾易, 欧阳正平, 许金荣, 李翰泽, 宋霄锟, 王亚洲. 海洋环境下钢筋混凝土桩基的腐蚀与阴极保护特征分析[J]. 中国腐蚀与防护学报, 2026, 46(1): 273-282.
Ning ZHUANG, Yi ZENG, Zhengping OUYANG, Jinrong XU, Hanze LI, Xiaokun SONG, Yazhou WANG. Analysis of Corrosion and Cathodic Protection Characteristics of Reinforced Concrete Pile in Simulated Marine Environments[J]. Journal of Chinese Society for Corrosion and protection, 2026, 46(1): 273-282.

全文: PDF(7650 KB)   HTML
摘要: 

将钢筋混凝土桩置于室内海洋环境模拟系统,通电加速锈蚀使其达到5%、10%和15%的理论锈蚀率,随后在桩基的干湿区包裹纤维编织网增强混凝土(TRC),并施加电流对钢筋进行为期90 d的阴极保护。实验过程中采集桩基表面的裂纹形貌并计算分形维数,测试桩基不同高度处的极化电阻与电化学阻抗谱。结果表明,分形维数、极化电阻及Nyquist图中的低频区容抗弧半径和Bode图中的低频区相位角均随锈蚀进程和保护时间而规律性变化。提出合理的等效电路,量化得到混凝土电阻和电荷转移电阻。研究结果为海洋环境中桩基锈蚀状态与阴极保护效果的评估与监测提供参考。

关键词 海工混凝土锈蚀状态阴极保护分形维数线性极化电化学阻抗谱    
Abstract

Reinforced concrete piles were prepared and placed in an indoor marine environment simulation set, which then were subjected to applied electric accelerated corrosion so that to be corroded up to 5%, 10%, and 15% of the mean corrosion degree derived theoretically respectively. Subsequently, textile reinforced concrete (TRC) was wrapped around the tidal zone of the piles, and electric current was applied to provide cathodic protection to the steel bars for 90 days in the indoor marine environment simulation set. Along with the corrosion process, by different corrosion degrees and cathodic protection times, the cracking propagation of the concrete surface was acquired to calculate the fractal dimension, and the variations of polarization resistance and electrochemical impedance spectroscopies were detected. The results indicate that the fractal dimension, the polarization resistance Rp, the low-frequency capacitance arc radius in the Nyquist plot, and the low-frequency phase angle in the Bode plot all change regularly with the corrosion process. Specifically, corresponding to 15% corrosion degree, the fractal dimensions of the atmospheric zone, tidal zone, and underwater zone were 1.206, 1.317, and 1.381 respectively. After 90 d, the values in the atmospheric zone and underwater zone were 1.235 and 1.391, respectively. At the same time, the Rp values in each zone increased by 41.51% (atmospheric zone), 44.90% (tidal zone), and 49.39% (underwater zone) compared to those without applied cathodic protection. A reasonable equivalent circuit was further proposed to quantify the variation patterns of concrete resistance (Rcon) and charge transfer resistance (Rct). After 90 d of cathodic protection, the Rct values in the atmospheric zone, tidal zone, and underwater zone showed average increases of 548%, 506%, and 300%, respectively. The findings provide reference for the evaluation and monitoring of the corrosion status and cathodic protection effect of pile foundations in marine environments.

Key wordsmarine concrete    corrosion status    cathodic protection    fractal dimension    linear polarization    electrochemical impedance spectroscopy
收稿日期: 2025-03-18      32134.14.1005.4537.2025.091
ZTFLH:  TV332  
基金资助:国家自然科学基金(51379073)
通讯作者: 欧阳正平,E-mail:13976244080@163.com,研究方向为海岸带资源与环境
作者简介: 庄宁,男,1978年生,博士,教授
图1  RC试件尺寸及钢筋加固示意图
图2  海洋环境模拟系统示意图
图3  粘贴TRC保护材料的施工流程与示意图
图4  电化学测试示意图
图5  锈蚀与阴极保护阶段的裂纹拓展
图6  锈蚀与阴极保护阶段的分形维数
图7  不同阶段不同高度处的Rp
图8  RC桩在加速锈蚀阶段的EIS谱图
图9  RC桩在阴极保护阶段的EIS谱图
图10  用于EIS数据拟合的等效电路
图11  在腐蚀和阴极保护阶段不同高度处的Rcon和Rct
Test stage

Test

time

Elevation

/ cm

Rs

/ Ω·cm2

Rcon

/ Ω·cm2

CPEc

/ S·sec n ·cm-2

n1

Rct

/ Ω·cm2

CPEdl

/ S·sec n ·cm-2

n2χ2
Corrosion stage33 d1566.3166.56.32 × 10-40.191398.23.79 × 10-30.732.22 × 10-2
(5%)2545.8198.69.86 × 10-40.241565.66.84 × 10-30.851.56 × 10-2
3559.4322.25.09 × 10-40.141213.42.65 × 10-30.715.64 × 10-2
45126.7159.41.67 × 10-40.36721.52.96 × 10-30.723.37 × 10-2
55137.2302.01.12 × 10-40.37821.23.04 × 10-30.759.63 × 10-2
6563.4368.68.79 × 10-50.21926.23.31 × 10-30.782.28 × 10-2
7575.6565.73.46 × 10-40.13924.83.12 × 10-30.723.05 × 10-2
65 d1564.4120.34.93 × 10-30.13613.23.15 × 10-30.832.66 × 10-2
(10%)2597.6130.65.52 × 10-40.25774.33.21 × 10-30.642.72 × 10-2
35122.8264.53.89 × 10-50.42633.42.57 × 10-30.772.58 × 10-2
45101.2153.16.76 × 10-50.46622.13.62 × 10-30.622.35 × 10-2
55141.3192.84.67 × 10-50.44714.23.39 × 10-30.726.46 × 10-3
6565.1341.64.23 × 10-40.15476.93.86 × 10-30.792.63 × 10-2
7577.5484.91.39 × 10-40.19602.23.65 × 10-30.736.80 × 10-3
98 d1552.362.53.46 × 10-50.52355.22.71 × 10-30.754.12 × 10-2
(15%)2565.665.49.21 × 10-50.44355.83.43 × 10-30.723.64 × 10-2
35124.4125.84.15 × 10-50.50413.33.57 × 10-30.763.57 × 10-2
45138.9147.28.30 × 10-50.42332.43.32 × 10-30.634.32 × 10-2
55158.0171.64.79 × 10-50.49357.53.71 × 10-30.643.47 × 10-2
6569.7264.02.64 × 10-40.16337.34.56 × 10-30.761.65 × 10-2
7571.5341.01.67 × 10-40.18483.93.85 × 10-30.621.77 × 10-2
Cathodic protection30 d1550.4132.77.79 × 10-60.59475.83.43 × 10-30.696.13 × 10-2
stage2561.6132.33.11 × 10-50.46469.13.47 × 10-30.604.35 × 10-2
35100.1564.55.98 × 10-50.43453.23.85 × 10-30.764.97 × 10-2
45114.5537.61.02 × 10-40.42485.73.89 × 10-30.773.70 × 10-2
55141.7509.16.43 × 10-60.66322.59.15 × 10-40.434.53 × 10-2
6554.8120.97.26 × 10-50.48304.63.90 × 10-30.775.76 × 10-2
7545.6396.71.98 × 10-40.17682.34.31 × 10-30.843.35 × 10-2
60 d1566.4185.59.56 × 10-60.58654.72.05 × 10-30.676.88 × 10-2
2572.6264.29.89 × 10-50.361383.42.10 × 10-40.756.73 × 10-2
35135.4543.53.10 × 10-50.451002.12.18 × 10-30.726.26 × 10-2
45158.5589.81.90 × 10-50.511033.32.03 × 10-30.787.64 × 10-2
55159.3580.41.58 × 10-40.441388.25.49 × 10-30.772.48 × 10-2
6591.9237.51.45 × 10-50.57785.81.33 × 10-30.793.01 × 10-2
7560.0305.12.85 × 10-40.151067.93.67 × 10-30.863.34 × 10-2
90 d1551.7227.21.01 × 10-40.39995.62.48 × 10-30.676.69 × 10-2
2586.2130.63.72 × 10-60.681134.21.02 × 10-30.521.16 × 10-2
35130.5603.21.32 × 10-50.521644.91.12 × 10-30.651.53 × 10-2
45136.6574.91.74 × 10-40.241795.42.09 × 10-30.794.36 × 10-2
55139.3551.51.09 × 10-40.322144.21.87 × 10-30.545.75 × 10-2
6571.5125.06.92 × 10-50.452411.52.13 × 10-30.772.78 × 10-2
7550.9313.66.91 × 10-50.202089.21.65 × 10-30.734.21 × 10-2
表1  RC桩阻抗谱数据的拟合结果
[1] Robles K P V, Gucunski N, Kee S H. Evaluation of steel corrosion-induced concrete damage using electrical resistivity measurements [J]. Constr. Build. Mater., 2024, 411: 134512
doi: 10.1016/j.conbuildmat.2023.134512
[2] Wu P P, Gong Y P, Zhang S H, et al. Crevice corrosion of reinforcing steel in carbonated simulated concrete pore solutions contaminated by chloride [J]. J. Iron Steel Res. Int., 2025, 32: 293
doi: 10.1007/s42243-024-01221-6
[3] Andrade C. Steel corrosion rates in concrete in contact to sea water [J]. Cem. Concr. Res., 2023, 165: 107085
doi: 10.1016/j.cemconres.2022.107085
[4] Bertolini L, Bolzoni F, Cigada A, et al. Cathodic protection of new and old reinforced concrete structures [J]. Corros. Sci., 1993, 35: 1633
doi: 10.1016/0010-938X(93)90393-U
[5] Byrne A, Holmes N, Norton B. State-of-the-art review of cathodic protection for reinforced concrete structures [J]. Mag. Concr. Res., 2016, 68: 664
doi: 10.1680/jmacr.15.00083
[6] Feng X G, Yan Q X, Lu X Y, et al. Protection performance of the submerged sacrificial anode on the steel reinforcement in the conductive carbon fiber mortar column in splash zones of marine environments [J]. Corros. Sci., 2020, 174: 108818
doi: 10.1016/j.corsci.2020.108818
[7] Huang X X, Zhou Y W, Zheng X B, et al. Bond performance between corroded steel bars and concrete in cathodic protection system with CFRP as anode [J]. Compos. Struct., 2023, 309: 116739
doi: 10.1016/j.compstruct.2023.116739
[8] Ding F L, Li Z, Zhang Y H, et al. Research progress of sacrificial anode materials in deep sea [J]. Equip. Environ. Eng. 2024, 21(11): 100
[8] 丁枫林, 李 祯, 张一晗 等. 牺牲阳极材料在深海中的研究进展 [J]. 装备环境工程, 2024, 21(11): 100
[9] Bertolini L, Gastaldi M, Pedeferri M, et al. Prevention of steel corrosion in concrete exposed to seawater with submerged sacrificial anodes [J]. Corros. Sci., 2002, 44: 1497
doi: 10.1016/S0010-938X(01)00168-8
[10] Xie X, Liu L, Chen R Z, et al. Design of new al photoanode composite for cathodic protection based on photocatalytic material and sacrificial anode [J]. J. Electrochem. Soc., 2019, 166: H3215
doi: 10.1149/2.0321905jes
[11] Angst U M. A critical review of the science and engineering of cathodic protection of steel in soil and concrete [J]. Corrosion, 2019, 75: 1420
doi: 10.5006/3355
[12] Hui H J. Influence of auxiliary anode parameter optimization on the performance of cathodic protection system [J]. Chem. Eng. Manage., 2024(27): 134
[12] 惠海军. 辅助阳极参数优化对阴保系统性能的影响 [J]. 化工管理, 2024(27): 134
[13] Ma G J, Liu X L, Ding J F, et al. Discussion on the service life of MMO noble metal oxide anode [J]. Total Corros. Control, 2018, 32(10): 58
[13] 马光皎, 刘晓龙, 丁继峰 等. MMO贵金属氧化物辅助阳极使用寿命的探讨 [J]. 全面腐蚀控制, 2018, 32(10): 58
[14] Yang J L, Lu S W, Zeng J J, et al. Durability of CFRP-confined seawater sea-sand concrete (SSC) columns under wet-dry cycles in seawater environment [J]. Eng. Struct., 2023, 282: 115774
doi: 10.1016/j.engstruct.2023.115774
[15] Zhu J H, Wei L L, Guo G P, et al. Mechanical and electrochemical performance of carbon fiber reinforced polymer in oxygen evolution environment [J]. Polymers, 2016, 8: 393
doi: 10.3390/polym8110393
[16] Lee-Orantes F, Torres-Acosta A A, Martínez-Madrid M, et al. Cathodic protection in reinforced concrete elements, using carbon fibers base composites [J]. ECS Trans., 2007, 3: 93
[17] Hu J Y. Experimental investigation of corroded RC column under CFRP/conductive adhesive strengthening and cathodic protecting [D]. Wuhan: Wuhan University, 2020: 73
[17] 胡霁月. 碳纤维布/导电胶加固与阴极保护锈蚀RC柱机理及性能研究 [D]. 武汉: 武汉大学, 2020: 73
[18] Wang Y Z, Chen H W, Li Y X, et al. Numerical and experimental investigation on the chloride ion resistance of reinforced concrete piles externally bonded with CFRP sheets under dry-wet cycles [J]. Constr. Build. Mater., 2022, 359: 129521
doi: 10.1016/j.conbuildmat.2022.129521
[19] Tang F J, Lin Z B, Chen G D, et al. Three-dimensional corrosion pit measurement and statistical mechanical degradation analysis of deformed steel bars subjected to accelerated corrosion [J]. Constr. Build. Mater., 2014, 70: 104
doi: 10.1016/j.conbuildmat.2014.08.001
[20] Zheng D, Song W D, Fu J X, et al. Research on mechanical characteristics, fractal dimension and internal structure of fiber reinforced concrete under uniaxial compression [J]. Constr. Build. Mater., 2020, 258: 120351
doi: 10.1016/j.conbuildmat.2020.120351
[21] Erdem S, Blankson M A. Fractal-fracture analysis and characterization of impact-fractured surfaces in different types of concrete using digital image analysis and 3D nanomap laser profilometery [J]. Constr. Build. Mater., 2013, 40: 70
doi: 10.1016/j.conbuildmat.2012.11.013
[22] Baer J U, Kent T F, Anderson S H. Image analysis and fractal geometry to characterize soil desiccation cracks [J]. Geoderma, 2009, 154: 153
doi: 10.1016/j.geoderma.2009.10.008
[23] Brandt A M, Prokopski G. On the fractal dimension of fracture surfaces of concrete elements [J]. J. Mater. Sci., 1993, 28: 4762
doi: 10.1007/BF00414269
[24] Luo H, Su H Z, Dong C F, et al. Passivation and electrochemical behavior of 316L stainless steel in chlorinated simulated concrete pore solution [J]. Appl. Surf. Sci., 2017, 400: 38
doi: 10.1016/j.apsusc.2016.12.180
[25] Feng X G, Gu Z R, Fan Q Q, et al. Corrosion resistance of 2205 stainless steel bar in modified coral concretes [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 789
[25] 冯兴国, 顾卓然, 范琦琦 等. 改性珊瑚混凝土中2205不锈钢钢筋的耐蚀性研究 [J]. 中国腐蚀与防护学报, 2024, 44: 789
doi: 10.11902/1005.4537.2023.181
[26] Zhao Z Y, Zou Y, Liu P, et al. EIS equivalent circuit model prediction using interpretable machine learning and parameter identification using global optimization algorithms [J]. Electrochim. Acta, 2022, 418: 140350
doi: 10.1016/j.electacta.2022.140350
[27] Lazanas A C, Prodromidis M I. Electrochemical impedance spectroscopy─A tutorial [J]. ACS Meas. Sci. Au, 2023, 3: 162
doi: 10.1021/acsmeasuresciau.2c00070
[28] Liu G Q, Zhang D F, Chen H X, et al. Electrochemical corrosion behavior of 2304 duplex stainless steel in a simulated pore solution in reinforced concrete serving in marine environment [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 204
[28] 刘国强, 张东方, 陈昊翔 等. 2304双相不锈钢钢筋在混凝土孔隙模拟液中的电化学腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2024, 44: 204
[29] Blanco G, Bautista A, Takenouti H. EIS study of passivation of austenitic and duplex stainless steels reinforcements in simulated pore solutions [J]. Cem. Concr. Compos., 2006, 28: 212
doi: 10.1016/j.cemconcomp.2006.01.012
[30] Michel A, Pease B J, Geiker M R, et al. Monitoring reinforcement corrosion and corrosion-induced cracking using non-destructive x-ray attenuation measurements [J]. Cem. Concr. Res., 2011, 41: 1085
doi: 10.1016/j.cemconres.2011.06.006
[31] Djenaoucine L, Argiz C, Picazo Á, et al. The corrosion-inhibitory influence of graphene oxide on steel reinforcement embedded in concrete exposed to a 3.5M NaCl solution [J]. Cem. Concr. Compos., 2025, 155: 105835
doi: 10.1016/j.cemconcomp.2024.105835
[32] Zhang T M, Zhao W M, Li T T, et al. Comparison of hydrogen embrittlement susceptibility of three cathodic protected subsea pipeline steels from a point of view of hydrogen permeation [J]. Corros. Sci., 2018, 131: 104
doi: 10.1016/j.corsci.2017.11.013
[1] 周小包, 王子腾, 任延杰, 董少阳, 甘浪, 李聪. 激光粉末床熔融成形CoCrNi中熵合金的高温热腐蚀行为[J]. 中国腐蚀与防护学报, 2026, 46(1): 115-125.
[2] 王得, 张璠, 王兴奇, 张贺新, 赵成志, 杨延格. 单组分氟碳改性环氧涂层对碳钢和铝合金长期防腐性能的对比研究[J]. 中国腐蚀与防护学报, 2025, 45(6): 1549-1562.
[3] 许诗源, 孟鑫, 杨亚璋, 刘辰, 张昭, 方晓祖. 腐蚀形貌对镁合金电化学阻抗谱特征的影响研究[J]. 中国腐蚀与防护学报, 2025, 45(6): 1589-1598.
[4] 郭玉杰, 李艳辉, 夏大海, 胡文彬. 腐蚀电化学阻抗谱的数据解析与物理模型研究进展[J]. 中国腐蚀与防护学报, 2025, 45(5): 1143-1160.
[5] 夏大海, 潘成成, 郭玉杰, 胡文彬, TRIBOLLET Bernard. EIS研究7050铝合金在NaCl溶液空蚀作用下的界面状态与腐蚀机制[J]. 中国腐蚀与防护学报, 2025, 45(5): 1196-1204.
[6] 何武豪, 刘阳, 杨思懿, 张韶栋, 吴伟, 张俊喜. 敏化处理对传统和增材制造316L不锈钢电化学和晶间腐蚀的影响[J]. 中国腐蚀与防护学报, 2025, 45(5): 1331-1340.
[7] 郑中逸, 冯毅翔, 宋沁峰, 甘甜思雨, 苑旺, 董亮. 转动条件下Q345B钢在人工海水中阴极保护效果试验研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 927-938.
[8] 李丽, 李善文, 史洪微, 梁国平, 李春霖, 孙禹, 秦晋, 王伟, 韩恩厚. 高速列车用铝合金环氧底漆的腐蚀行为和湿热老化机理研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 757-764.
[9] 李新城, 李兆南, 王海锋, 徐云泽, 王明昱, 甄兴伟. DH36海洋工程钢焊接结构的氢脆敏感性研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 416-422.
[10] 王天丛, 赵东杨, 向雪云, 吴航, 王文. 一种环氧耐蚀涂层在NaCl溶液中的劣化行为研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1361-1369.
[11] 刘喆, 邓成满, 魏军胜, 夏大海. 涂覆有机涂层的镀锡薄钢板耐蒸煮性能电化学快速检测技术研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 883-890.
[12] 于佳汇, 王彤彤, 高云, 高荣杰. Bi2S3/TiO2 纳米复合材料的制备及其对304不锈钢的光生阴极保护性能研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 901-908.
[13] 傅江悦, 郭建喜, 杨延格, 冷哲, 王文. 单相流冲刷条件下一种低合金高强钢的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 585-600.
[14] 李卓玄, 曹艳辉, 李崇杰, 李辉, 张小明, 雍兴跃. 耦接件涂层失效程度与其力学损伤之间的关系[J]. 中国腐蚀与防护学报, 2024, 44(3): 679-690.
[15] 叶梦颖, 于佳汇, 王彤彤, 高荣杰. Bi2S3/CdS/TiO2 纳米复合材料的制备及对304不锈钢的光生阴极保护性能研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 372-380.