中国腐蚀与防护学报, 2026, 46(1): 273-282 DOI: 10.11902/1005.4537.2025.091

研究报告

海洋环境下钢筋混凝土桩基的腐蚀与阴极保护特征分析

庄宁1, 曾易1, 欧阳正平,2, 许金荣3, 李翰泽4, 宋霄锟5, 王亚洲1

1.河海大学港口海岸与近海工程学院 南京 210024

2.海南省生态环境地质调查院 海口 570206

3.中电建路桥集团有限公司 北京 100037

4.浙江省水利河口研究院(浙江省海洋规划设计研究院) 杭州 310002

5.中建八局西北公司 西安 710000

Analysis of Corrosion and Cathodic Protection Characteristics of Reinforced Concrete Pile in Simulated Marine Environments

ZHUANG Ning1, ZENG Yi1, OUYANG Zhengping,2, XU Jinrong3, LI Hanze4, SONG Xiaokun5, WANG Yazhou1

1.College of Harbour, Coastal and Offshore Engineering, Hohai University, Nanjing 210024, China

2.Hainan Institute of Eco-Environmental Geological Survey, Haikou 570206, China

3.Power China Road Bridge Group Corporation Limited, Beijing 100037, China

4.Zhejiang Institute of Hydraulics & Estuary (Zhejiang Institute of Marine Planning and Design), Hangzhou 310002, China

5.China Construction Eighth Engineering Bureau Northwest Company, Xi'an 710000, China

通讯作者: 欧阳正平,E-mail:13976244080@163.com,研究方向为海岸带资源与环境

收稿日期: 2025-03-18   修回日期: 2025-05-30  

基金资助: 国家自然科学基金.  51379073

Corresponding authors: OUYANG Zhengping, E-mail:13976244080@163.com

Received: 2025-03-18   Revised: 2025-05-30  

Fund supported: National Natural Science Foundation of China.  51379073

作者简介 About authors

庄宁,男,1978年生,博士,教授

摘要

将钢筋混凝土桩置于室内海洋环境模拟系统,通电加速锈蚀使其达到5%、10%和15%的理论锈蚀率,随后在桩基的干湿区包裹纤维编织网增强混凝土(TRC),并施加电流对钢筋进行为期90 d的阴极保护。实验过程中采集桩基表面的裂纹形貌并计算分形维数,测试桩基不同高度处的极化电阻与电化学阻抗谱。结果表明,分形维数、极化电阻及Nyquist图中的低频区容抗弧半径和Bode图中的低频区相位角均随锈蚀进程和保护时间而规律性变化。提出合理的等效电路,量化得到混凝土电阻和电荷转移电阻。研究结果为海洋环境中桩基锈蚀状态与阴极保护效果的评估与监测提供参考。

关键词: 海工混凝土 ; 锈蚀状态 ; 阴极保护 ; 分形维数 ; 线性极化 ; 电化学阻抗谱

Abstract

Reinforced concrete piles were prepared and placed in an indoor marine environment simulation set, which then were subjected to applied electric accelerated corrosion so that to be corroded up to 5%, 10%, and 15% of the mean corrosion degree derived theoretically respectively. Subsequently, textile reinforced concrete (TRC) was wrapped around the tidal zone of the piles, and electric current was applied to provide cathodic protection to the steel bars for 90 days in the indoor marine environment simulation set. Along with the corrosion process, by different corrosion degrees and cathodic protection times, the cracking propagation of the concrete surface was acquired to calculate the fractal dimension, and the variations of polarization resistance and electrochemical impedance spectroscopies were detected. The results indicate that the fractal dimension, the polarization resistance Rp, the low-frequency capacitance arc radius in the Nyquist plot, and the low-frequency phase angle in the Bode plot all change regularly with the corrosion process. Specifically, corresponding to 15% corrosion degree, the fractal dimensions of the atmospheric zone, tidal zone, and underwater zone were 1.206, 1.317, and 1.381 respectively. After 90 d, the values in the atmospheric zone and underwater zone were 1.235 and 1.391, respectively. At the same time, the Rp values in each zone increased by 41.51% (atmospheric zone), 44.90% (tidal zone), and 49.39% (underwater zone) compared to those without applied cathodic protection. A reasonable equivalent circuit was further proposed to quantify the variation patterns of concrete resistance (Rcon) and charge transfer resistance (Rct). After 90 d of cathodic protection, the Rct values in the atmospheric zone, tidal zone, and underwater zone showed average increases of 548%, 506%, and 300%, respectively. The findings provide reference for the evaluation and monitoring of the corrosion status and cathodic protection effect of pile foundations in marine environments.

Keywords: marine concrete ; corrosion status ; cathodic protection ; fractal dimension ; linear polarization ; electrochemical impedance spectroscopy

PDF (1757KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

庄宁, 曾易, 欧阳正平, 许金荣, 李翰泽, 宋霄锟, 王亚洲. 海洋环境下钢筋混凝土桩基的腐蚀与阴极保护特征分析. 中国腐蚀与防护学报[J], 2026, 46(1): 273-282 DOI:10.11902/1005.4537.2025.091

ZHUANG Ning, ZENG Yi, OUYANG Zhengping, XU Jinrong, LI Hanze, SONG Xiaokun, WANG Yazhou. Analysis of Corrosion and Cathodic Protection Characteristics of Reinforced Concrete Pile in Simulated Marine Environments. Journal of Chinese Society for Corrosion and Protection[J], 2026, 46(1): 273-282 DOI:10.11902/1005.4537.2025.091

钢筋混凝土(RC)在海洋环境中长期服役易引发钢筋锈蚀,导致结构性能劣化,进而影响建筑物的安全性与耐久性[1]。海水中的大量Cl-具有强渗透能力,可穿透混凝土孔隙,与钢筋钝化膜和金属基体发生作用,诱发电化学腐蚀[2]。尤其在海洋干湿区,Cl-侵蚀耦合水分渗透和富氧环境,显著加速锈蚀进程[3]。研究表明,阴极保护技术可以有效抑制钢筋锈蚀发展,已成为提升海洋工程结构耐久性的重要防护手段[4]

阴极保护法通过牺牲阳极或外加电流两种方式实现[5],前者利用电位更负的金属与钢筋电连接形成原电池,阳极金属优先溶解并持续释放保护电流[6],后者则将辅助阳极与外部直流电源的正极连接,钢筋与电源负极连接,通电后钢筋表面发生阴极极化,达到防腐目的[7]

国内外研究表明,阴极保护技术在海洋工程防护领域已形成较为系统的应用体系。Al-Zn-In系牺牲阳极是目前研究最广且应用最多的Al基牺牲阳极材料[8]。Bertolini等[9]研究表明,对于浸入3.5% (质量分数) NaCl溶液的砂浆柱,Al-Zn-In牺牲阳极可以有效抑制内部钢筋的锈蚀,但对于已锈蚀钢筋的防腐效果有限。Xie等[10]在传统铝基牺牲阳极中添加改性锐钛矿TiO2纳米管,得到了保护电流效率更高的新型Al光阳极复合材料,但目前该材料仍处于实验室阶段。此外,牺牲阳极法存在易受杂散电流影响、工作寿命较短且维护复杂等问题,因此外加电流法在实际海洋工程中的应用更加广泛[11]。外加电流法的成功应用在一定程度上依赖于阳极材料的发展,目前广泛应用的阳极材料包括高硅铸铁[12]和混合金属氧化物(MMO)[13]等。碳纤维增强聚合物(CFRP)材料因其轻质、强度高等优点,已被广泛应用于混凝土结构的加固[14]。同时其优良的导电性和耐蚀性使其成为具有发展前景的阳极材料[7]。Zhu等[15]证实CFRP材料在NaOH溶液、NaCl溶液和模拟孔隙溶液中的电化学与力学性能良好,论证了CFRP作为阳极材料的可行性。Lee-Orantes等[16]采用CFRP作为钢筋混凝土结构的阴极保护系统阳极材料,在150 d的保护实验中取得了良好的防护效果。胡霁月[17]对不同初始锈蚀率的钢筋混凝土桩基外覆CFRP并施加保护电流,研究表明不同锈蚀率下的最佳保护电流密度不同,对腐蚀程度为6%和12%的桩基,20 mA/m2的电流密度可以提供最佳阻锈效果。

本文将RC桩基置于课题组搭建的室内海洋环境模拟系统中,采用通电加速锈蚀技术使内部钢筋达到预设的理论锈蚀率,随后在干湿区包裹复合CFRP辅助阳极的纤维编织网增强混凝土(TRC)材料,构建阴极保护体系。利用无损监测方法,研究不同锈蚀率和保护时间下RC桩的表面裂纹拓展与电化学参数演变规律,为海工RC桩的腐蚀与防护提供参考。

1 实验方法

试件制备尺寸如图1所示的RC桩,高度为90 cm,横截面为20 cm × 20 cm的矩形。从上到下分为大气区(30 cm)、干湿区(30 cm)和水下区(30 cm)。纵向钢筋选用直径10 mm的HRB335钢筋,箍筋选用直径6 mm的HPB235钢筋,钢筋保护层厚度为2 cm。混凝土的混合比(质量比)为0.38∶0.8∶0.2∶1.11∶2.72(水∶水泥∶粉煤灰∶砂∶石)。水泥标号为P.O32.5,细骨料选用细度模数为2.82的河砂,骨料选用粒径为5~20 mm的石子。制备出的混凝土28 d立方体抗压强度为34.8 MPa。

图1

图1   RC试件尺寸及钢筋加固示意图

Fig.1   Schematic diagrams of dimension (a) and reinforcement (b, c) of reinforced concrete specimen


图2为海洋环境模拟系统的示意图。通过加热管控制环境温度为22~32 ℃。装置内灌入为3.5% NaCl溶液以模拟人工海水。通过电磁阀和水泵控制水位每12 h在低水位(300 mm)和高水位(600 mm)间循环交替,以模拟半日潮[18]。每7 d检查一次溶液浓度,并进行适度调整以避免可能的浓度下降。

图2

图2   海洋环境模拟系统示意图

Fig.2   Schematic diagram of marine environment simulation system (a) on-site setup (b), DC power supplies (c) and water-level variation curve (d)


预设5%、10%和15% 3个理论锈蚀水平,使用通电加速锈蚀法缩短实验周期,如图2所示。RC桩的纵向钢筋连接电源正极,其四周的不锈钢网连接电源负极。研究中仅考虑纵向钢筋的锈蚀,因此在箍筋表面缠上绝缘胶带,避免其因电流而加速锈蚀。每根纵向钢筋的锈蚀长度为88 cm,暴露面积约为276.3 cm2。加速锈蚀阶段,输出电流设置为41.45 mA,对应的电流密度为150 µA/cm2。在该电流强度作用下,钢筋的锈蚀状态与其在自然条件下的锈蚀状态接近[19]。根据Faraday定律应用 式(1)计算达到5%、10%和15%的理论锈蚀率分别需要32.6、65.2和97.9 d。

t=zFmMIS

式中,t为通电时间,z为电荷数(Fe2+为+2),F为Faraday常数(96485 C/mol),Δm为理论质量损失,M为相对原子质量,I为电流密度(150 μA/cm2),S为钢筋的暴露面积。

加速锈蚀阶段结束后,在RC桩侧面的干湿区进行凿毛和外包TRC,具体步骤如图3所示。TRC层养护28 d后,将RC桩重新放入试验水箱中,将混凝土内部纵向钢筋作为阴极连接电源的负极,CFRP作为阳极连接电源的正极,以此对RC桩施加阴极保护措施。保护电流大小设为563.3 µA,对应的保护电流密度为20 mA/m2,阴极保护的施加周期为90 d。

图3

图3   粘贴TRC保护材料的施工流程与示意图

Fig.3   Construction process (a) and physical schematic diagram (b) of pasting TRC protective material


在RC桩的15~75 cm的高度范围内,每隔10 cm设置为一个测试点位。采用DH7000D电化学工作站进行线性极化和交流阻抗测试。具体来说,工作电极(WE)连接RC桩内部的纵向钢筋,每个测点处的工作电极面积为3.14 cm2,参比电极(RE)和对电极(CE)则连接至一个可沿桩体自由移动的不锈钢箍,如图4所示。以此采集不同理论锈蚀率(5%、10%和15%)和不同阴极保护时间时(30、60和90 d)的RC桩不同高度处的极化电阻(Rp)和电化学阻抗谱(EIS)。线性极化测试的扫描速率为0.1667 mV/s,电位范围是相对于开路电位(OCP)的-10~10 mV;EIS测试则使用15 mV的振幅,激励信号为频率105~10-2 Hz的正弦波。

图4

图4   电化学测试示意图

Fig.4   Schematic diagram of electrochemical testing


2 结果与讨论

2.1 表面形貌与分形维数

基于图5的裂纹形貌图分析表明,微裂纹初始萌生于干湿区和水下区。当锈蚀率达到5%时,纵向裂纹相互连接,在桩的每侧分别形成一或两条主裂缝,并随锈蚀发展而纵向扩展。当锈蚀率超过10%时,干湿区与水下区的微裂纹数量显著增加。至严重腐蚀阶段(15%),主裂缝在水下区呈现横向桥接趋势。在阴极保护的前30 d,裂纹拓展趋缓,而30 d之后的新裂纹萌生数量略有回升。由于干湿区外附了TRC保护层,因此裂纹的生长主要集中在大气区和水下区。

图5

图5   锈蚀与阴极保护阶段的裂纹拓展

Fig.5   Propagation of cracks during corrosion (a) and cathodic protection (b) stages


分形维数可定量表征混凝土表面裂纹的复杂程度,二者呈现正相关关系[20]。一般来说,锈蚀阶段的分形维数大小随锈蚀时间的延长而上升,而阴极保护阶段的数值则相对稳定,甚至出现一定程度的下降[21]。基于图5中的裂纹形貌复绘图像,使用Image J软件(盒计数法)计算表面裂纹的分形维数[21],结果如图6所示。随着锈蚀的发展,整体呈上升趋势。锈蚀率为15%时,大气区、干湿区和水下区的分形维数分别是1.206、1.317和1.381。阴极保护阶段的分形维数波动幅度更小,表明裂缝的复杂程度在该阶段没有明显变化[22]。施加90 d的保护电流后,大气区和水下区的分形维数大小为1.235和1.391。值得注意的是,水下区分形维数始终高于其他区域,这与裂纹桥接形成的复杂网状结构相关。同时裂纹局部细节拓展的随机性会在一定程度上影响整体的自相似结构,进而影响分形维数的值[23]。因此,分形维数与锈蚀率之间的定量关系需进一步研究。

图6

图6   锈蚀与阴极保护阶段的分形维数

Fig.6   Fractal dimensions during corrosion (a) and cathodic protection (b) stages


2.2 线性极化电阻

图7为不同理论锈蚀率和保护时间下的Rp。总的来说,Rp随着锈蚀进程而显著减小,且锈蚀率5%~10%阶段的降幅高于10%~15%的阶段。当锈蚀率为15%时,水下区、干湿区和大气区的Rp较5%的情况分别平均下降了46.8%、42.9%和47.8%。同时在整个加速锈蚀阶段干湿区的Rp 明显小于其他区域。揭示干湿区腐蚀最为严重,水下区次之,大气区的腐蚀情况较轻。

图7

图7   不同阶段不同高度处的Rp

Fig.7   Rp values at different heights during corrosion (a) and cathodic protection (b) stages


阴极保护阶段各区域Rp随保护时间增加而呈现波动上升趋势,前30 d升幅最大。经90 d保护后,水下区、干湿区和大气区的Rp较保护前的数值分别平均上升了49.39%、44.90%和41.51%,总体恢复到锈蚀率为5%~10%的水平。结果表明,该电流密度可有效抑制严重锈蚀RC桩的进一步劣化,其中大气区防护效果最优,这与其无水流扰动的环境更利于钢筋钝化膜再生密切相关[24]

2.3 EIS

EIS测试结果如图89所示。Nyquist图呈现高频与低频两个容抗弧,分别对应Bode图中的峰值区域。其中低频区容抗弧表征钢筋-混凝土界面的双电层特性,高频区容抗弧反映混凝土覆盖层阻抗[25]。在本文涉及的高腐蚀程度下,钢筋钝化层被严重破坏,腐蚀速率由电荷传递过程主导[26]

图8

图8   RC桩在加速锈蚀阶段的EIS谱图

Fig.8   EIS spectra of RC pile during accelerated corrosion stage: (a) 5%, (b) 10%, (c) 15%


图9

图9   RC桩在阴极保护阶段的EIS谱图

Fig.9   EIS spectra of RC pile during cathodic protection stage: (a) 30 d, (b) 60 d, (c) 90 d


Nyquist图的低频区容抗弧半径(rlow)表征电荷转移电阻(Rct),其值与钢筋耐蚀性正相关[27]。加速锈蚀阶段,随锈蚀率的提升,各高程rlow呈持续收缩趋势。腐蚀程度为5%时,RC桩的不同区域存在锈蚀差异,干湿区的rlow小于大气区,进一步小于水下区。随锈蚀加剧,区域差异性减弱。至锈蚀率达到15%时,各高程rlow趋近。进入阴极保护阶段,各高程rlow均有所增加,表明钢筋耐蚀性逐步恢复。在阴极保护施加的前60 d,各区域数值增幅相近,之后水下区rlow趋于稳定,而干湿区和大气区在第60~90 d仍持续增长。

Bode图的低频区相位角θlow可衡量钢筋表面的粗糙度,光滑表面的θlow绝对值为90°,偏离程度越大表明粗糙度越高[28]。与rlow的变化趋势类似,当锈蚀率为5%时,干湿区与水下区的θlow差值达20°,区域差异性显著。随锈蚀率增加,各组θlow持续降低,至锈蚀率为15%时区域差异最小。阴极保护施加的前30 d内θlow变化微弱;30~60 d期间干湿区θlow首先显著回升;到第90 d时大气区θlow反超其他区域,这与阴极电流对钢筋钝化膜的修复作用有关,尤其对环境稳定的大气区更为有效。同时,锈蚀产物对表面缺陷的填补作用提升了整体光滑度[29]

基于对阻抗谱特征的讨论,确定了图10所示的等效电路,并利用Zview软件对结果进行拟合。该电路中的RsRconRct和分别表示溶液电阻、混凝土覆盖层电阻和电荷转移电阻,CPEc和CPEdl分别表示混凝土覆盖层电容和双电层电容。

图10

图10   用于EIS数据拟合的等效电路

Fig.10   Equivalent circuit for fitting EIS data


89显示原始数据与拟合曲线吻合良好,结果详见图11表1。较高的Rcon值表明混凝土覆盖层致密,而较低的Rcon值则反映其松散或脱落[30]。加速锈蚀阶段,随锈蚀率增加,各高程Rcon均呈下降趋势。尤其是锈蚀率10%~15%的阶段Rcon的降速显著加快,这与锈蚀产物积累引发混凝土覆盖层集中脱落有关。各锈蚀阶段中,大气区Rcon始终高于干湿区和水下区,源于后两者更易受Cl-渗透与水侵蚀共同作用[3]。阴极保护阶段,干湿区因TRC保护材料包裹致Rcon大幅提升,而水下区与大气区仅出现小幅波动性上升,表明外加电流阴极保护对混凝土覆盖层修复效果有限,或该测试条件下混凝土电化学状态易受较大干扰[31]

图11

图11   在腐蚀和阴极保护阶段不同高度处的RconRct

Fig.11   Rcon(a, c) and Rct (b, d) at corrosion stage (a, b) and cathodic protection stage (c, d)


表1   RC桩阻抗谱数据的拟合结果

Table 1  Fitting results of EIS spctra of RC pile

Test stage

Test

time

Elevation

/ cm

Rs

/ Ω·cm2

Rcon

/ Ω·cm2

CPEc

/ S·sec n ·cm-2

n1

Rct

/ Ω·cm2

CPEdl

/ S·sec n ·cm-2

n2χ2
Corrosion stage33 d1566.3166.56.32 × 10-40.191398.23.79 × 10-30.732.22 × 10-2
(5%)2545.8198.69.86 × 10-40.241565.66.84 × 10-30.851.56 × 10-2
3559.4322.25.09 × 10-40.141213.42.65 × 10-30.715.64 × 10-2
45126.7159.41.67 × 10-40.36721.52.96 × 10-30.723.37 × 10-2
55137.2302.01.12 × 10-40.37821.23.04 × 10-30.759.63 × 10-2
6563.4368.68.79 × 10-50.21926.23.31 × 10-30.782.28 × 10-2
7575.6565.73.46 × 10-40.13924.83.12 × 10-30.723.05 × 10-2
65 d1564.4120.34.93 × 10-30.13613.23.15 × 10-30.832.66 × 10-2
(10%)2597.6130.65.52 × 10-40.25774.33.21 × 10-30.642.72 × 10-2
35122.8264.53.89 × 10-50.42633.42.57 × 10-30.772.58 × 10-2
45101.2153.16.76 × 10-50.46622.13.62 × 10-30.622.35 × 10-2
55141.3192.84.67 × 10-50.44714.23.39 × 10-30.726.46 × 10-3
6565.1341.64.23 × 10-40.15476.93.86 × 10-30.792.63 × 10-2
7577.5484.91.39 × 10-40.19602.23.65 × 10-30.736.80 × 10-3
98 d1552.362.53.46 × 10-50.52355.22.71 × 10-30.754.12 × 10-2
(15%)2565.665.49.21 × 10-50.44355.83.43 × 10-30.723.64 × 10-2
35124.4125.84.15 × 10-50.50413.33.57 × 10-30.763.57 × 10-2
45138.9147.28.30 × 10-50.42332.43.32 × 10-30.634.32 × 10-2
55158.0171.64.79 × 10-50.49357.53.71 × 10-30.643.47 × 10-2
6569.7264.02.64 × 10-40.16337.34.56 × 10-30.761.65 × 10-2
7571.5341.01.67 × 10-40.18483.93.85 × 10-30.621.77 × 10-2
Cathodic protection30 d1550.4132.77.79 × 10-60.59475.83.43 × 10-30.696.13 × 10-2
stage2561.6132.33.11 × 10-50.46469.13.47 × 10-30.604.35 × 10-2
35100.1564.55.98 × 10-50.43453.23.85 × 10-30.764.97 × 10-2
45114.5537.61.02 × 10-40.42485.73.89 × 10-30.773.70 × 10-2
55141.7509.16.43 × 10-60.66322.59.15 × 10-40.434.53 × 10-2
6554.8120.97.26 × 10-50.48304.63.90 × 10-30.775.76 × 10-2
7545.6396.71.98 × 10-40.17682.34.31 × 10-30.843.35 × 10-2
60 d1566.4185.59.56 × 10-60.58654.72.05 × 10-30.676.88 × 10-2
2572.6264.29.89 × 10-50.361383.42.10 × 10-40.756.73 × 10-2
35135.4543.53.10 × 10-50.451002.12.18 × 10-30.726.26 × 10-2
45158.5589.81.90 × 10-50.511033.32.03 × 10-30.787.64 × 10-2
55159.3580.41.58 × 10-40.441388.25.49 × 10-30.772.48 × 10-2
6591.9237.51.45 × 10-50.57785.81.33 × 10-30.793.01 × 10-2
7560.0305.12.85 × 10-40.151067.93.67 × 10-30.863.34 × 10-2
90 d1551.7227.21.01 × 10-40.39995.62.48 × 10-30.676.69 × 10-2
2586.2130.63.72 × 10-60.681134.21.02 × 10-30.521.16 × 10-2
35130.5603.21.32 × 10-50.521644.91.12 × 10-30.651.53 × 10-2
45136.6574.91.74 × 10-40.241795.42.09 × 10-30.794.36 × 10-2
55139.3551.51.09 × 10-40.322144.21.87 × 10-30.545.75 × 10-2
6571.5125.06.92 × 10-50.452411.52.13 × 10-30.772.78 × 10-2
7550.9313.66.91 × 10-50.202089.21.65 × 10-30.734.21 × 10-2

新窗口打开| 下载CSV


电荷转移电阻Rct的变化同样呈现显著规律性。随锈蚀率增加,各高程的Rct均显著下降并趋近,表明电荷传递阻力降低。施加阴极保护后,Rct值开始回升,其中大气区的增幅略高于干湿区,进一步高于水下区。经90 d的保护后,大气区、干湿区和水下区的Rct较保护前分别回升了448%、406%和200%。该趋势与低频区rlow变化规律一致,印证阴极保护对钢筋耐蚀性提升的差异化效果。

2.4 不均匀锈蚀与阴极保护差异性讨论

根据以上的研究结果,RC桩在干湿区、水下区与大气区表现出显著的锈蚀及阴极保护效果差异。加速锈蚀阶段,干湿区因持续干湿循环增强混凝土毛细孔吸收作用,加速了氧气和Cl-的渗透,导致较高腐蚀速率并破坏钢筋表面完整性[3]。水下区得益于混凝土水化作用强化的基体强度,叠加低Cl-的渗透率和缺氧环境,钢筋腐蚀进程最慢。大气区虽与氧气接触充分,但Cl-的含量最低,腐蚀速率处于中间水平。

这种不均匀锈蚀直接影响阴极保护效果:腐蚀较轻的水下区对保护电流需求较低,过量电流易引发氢脆风险[32]。而腐蚀严重的干湿区因电流分布不均难以获得充分保护。钢筋钝化膜破坏与锈蚀产物堆积加剧表面不规则性,进一步干扰保护电流的均匀分布。因此,需针对不同区域特性优化保护系统,例如对不同区域的RC桩施加不同大小的保护电流,或采用不同的保护方法,其具体策略有待进一步研究。

Note: 33 d (5%), 65 d (10%) and 98 d (15%) refer to the points in time corresponding to theoretical corrosion degrees of 5%, 10%, 15%, respectively

3 结论

(1) 混凝土表面裂纹在锈蚀阶段主要萌发于水下区和干湿区,阴极保护阶段则集中在水下区和大气区。各区域分形维数随锈蚀进程波动性上升,15%锈蚀率下大气区、干湿区和水下区的分形维数分别为1.206、1.317和1.381。阴极保护阶段分形维数相对稳定,90 d后大气区和水下区数值分别为1.235和1.391。

(2) Rp随锈蚀率增加显著下降,15%锈蚀率时水下区、干湿区和大气区数值较5%锈蚀率分别降低46.8%、42.9%和47.8%。干湿区Rp始终低于其他区域,表明其腐蚀速率最高。经90 d阴极保护后,各区域Rp较保护前分别回升49.39% (水下区)、44.90%(干湿区)和41.51% (大气区)。

(3) 低频区相位角分析显示,加速锈蚀阶段干湿区相位角最小,锈蚀程度最严重;阴极保护90 d后大气区恢复幅度最大,区域差异显著。

(4) Rcon随锈蚀率升高持续下降,干湿区和水下区降幅尤为显著。阴极保护阶段干湿区因TRC材料包裹使Rcon大幅提升,而大气区和水下区仅呈现小幅波动性增长。

(5) Rct随锈蚀率升高显著降低,随保护时长延长显著回升。90 d阴极保护后,大气区、干湿区和水下区的值较保护前分别平均回升了448%、406%和200%

参考文献

Robles K P V, Gucunski N, Kee S H.

Evaluation of steel corrosion-induced concrete damage using electrical resistivity measurements

[J]. Constr. Build. Mater., 2024, 411: 134512

DOI      URL     [本文引用: 1]

Wu P P, Gong Y P, Zhang S H, et al.

Crevice corrosion of reinforcing steel in carbonated simulated concrete pore solutions contaminated by chloride

[J]. J. Iron Steel Res. Int., 2025, 32: 293

DOI      [本文引用: 1]

Andrade C.

Steel corrosion rates in concrete in contact to sea water

[J]. Cem. Concr. Res., 2023, 165: 107085

DOI      URL     [本文引用: 3]

Bertolini L, Bolzoni F, Cigada A, et al.

Cathodic protection of new and old reinforced concrete structures

[J]. Corros. Sci., 1993, 35: 1633

DOI      URL     [本文引用: 1]

Byrne A, Holmes N, Norton B.

State-of-the-art review of cathodic protection for reinforced concrete structures

[J]. Mag. Concr. Res., 2016, 68: 664

DOI      URL     [本文引用: 1]

Cathodic protection (CP) limits the corrosion of a metal surface by making it the cathode of an electrochemical cell. This can be achieved either by using a more active sacrificial anode to create a driving current, or by using inert anodes and impressing a current onto the cathode surface using an external direct current (DC) source. Impressed current cathodic protection (ICCP) is preferred where widespread protection is required, particularly in reinforced concrete structures. ICCP needs a constant DC power supply that is usually provided through a grid connection or independent generators. This paper presents the currently available CP systems for reinforced concrete, particularly ICCP, and the possibility of using self-sufficient and renewable energy systems. The potential for overcoming the mismatch (due to intermittent current) in energy provision from renewable sources with energy needs for CP (constant current) is discussed by exploring methods of storing energy and examining the level of protection provided by intermittent current. Areas that require further research to optimise the design of such systems are highlighted.

Feng X G, Yan Q X, Lu X Y, et al.

Protection performance of the submerged sacrificial anode on the steel reinforcement in the conductive carbon fiber mortar column in splash zones of marine environments

[J]. Corros. Sci., 2020, 174: 108818

DOI      URL     [本文引用: 1]

Huang X X, Zhou Y W, Zheng X B, et al.

Bond performance between corroded steel bars and concrete in cathodic protection system with CFRP as anode

[J]. Compos. Struct., 2023, 309: 116739

DOI      URL     [本文引用: 2]

Ding F L, Li Z, Zhang Y H, et al.

Research progress of sacrificial anode materials in deep sea

[J]. Equip. Environ. Eng. 2024, 21(11): 100

[本文引用: 1]

丁枫林, 李 祯, 张一晗 .

牺牲阳极材料在深海中的研究进展

[J]. 装备环境工程, 2024, 21(11): 100

[本文引用: 1]

Bertolini L, Gastaldi M, Pedeferri M, et al.

Prevention of steel corrosion in concrete exposed to seawater with submerged sacrificial anodes

[J]. Corros. Sci., 2002, 44: 1497

DOI      URL     [本文引用: 1]

Xie X, Liu L, Chen R Z, et al.

Design of new al photoanode composite for cathodic protection based on photocatalytic material and sacrificial anode

[J]. J. Electrochem. Soc., 2019, 166: H3215

DOI      URL     [本文引用: 1]

Angst U M.

A critical review of the science and engineering of cathodic protection of steel in soil and concrete

[J]. Corrosion, 2019, 75: 1420

DOI      [本文引用: 1]

After a century of history of cathodic protection (CP) of iron and steel, this paper critically reviews the state of the art in the science and engineering and assesses the fitness of CP as an effective technology to tackle the challenges related to infrastructure corrosion. This paper focuses on CP of iron-based alloys embedded in porous media, such as soil or concrete, as these two major applications of CP technology share many similarities. First, the scientific understanding of CP is reviewed and different competing theories are discussed. There is wide agreement that corrosion protection of steel is achieved thanks to a combination of immediate activation polarization and the beneficial changes in electrolyte chemistry that are gradually occurring at the steel surface when a protection current is flowing toward a steel electrode. A major and well-documented technological advantage of these "chemical effects" is that the protective effect of CP is maintained during temporal loss of protection current, e.g., due to survey work related shut-offs or anodic interference. However, the relationships between these chemical concentration changes in the porous medium and the protection current are complex, and, as this review shows, cannot reliably be described with state-of-the-art approaches. Moreover, in this paper, different hypotheses for the mechanism of corrosion protection in heterogeneous situations (galvanic elements), as they are generally occurring in practice, are discussed. It is revealed that understanding the working mechanism of CP in heterogeneous conditions remains a critical scientific challenge. The longstanding debate concerns the question whether CP results mainly in a reduction of number and size of actively corroding areas, or in a reduction of the corrosion rate at the actively corroding sites. Additionally, the literature addressing the interrelation between microbiologically influenced corrosion and CP is here reviewed, and recent progress as well as limitations of the existing literature are highlighted. In a second part, engineering practice and CP protection criteria are reviewed. It is found that the approaches stipulated in international standard are unreliable. This can be traced back to the assessment criteria being empirical and incapable of adequately taking into account the complexity of the underlying processes. Finally, recommendations for future developments are made. Particular opportunities are seen in embracing the progress made in numerical modeling, such as reactive transport modeling in porous media, and considering the interdependence between the involved processes, namely the interdependence between transport processes, chemical reactions, and electrode kinetics.

Hui H J.

Influence of auxiliary anode parameter optimization on the performance of cathodic protection system

[J]. Chem. Eng. Manage., 2024(27): 134

[本文引用: 1]

惠海军.

辅助阳极参数优化对阴保系统性能的影响

[J]. 化工管理, 2024(27): 134

[本文引用: 1]

Ma G J, Liu X L, Ding J F, et al.

Discussion on the service life of MMO noble metal oxide anode

[J]. Total Corros. Control, 2018, 32(10): 58

[本文引用: 1]

马光皎, 刘晓龙, 丁继峰 .

MMO贵金属氧化物辅助阳极使用寿命的探讨

[J]. 全面腐蚀控制, 2018, 32(10): 58

[本文引用: 1]

Yang J L, Lu S W, Zeng J J, et al.

Durability of CFRP-confined seawater sea-sand concrete (SSC) columns under wet-dry cycles in seawater environment

[J]. Eng. Struct., 2023, 282: 115774

DOI      URL     [本文引用: 1]

Zhu J H, Wei L L, Guo G P, et al.

Mechanical and electrochemical performance of carbon fiber reinforced polymer in oxygen evolution environment

[J]. Polymers, 2016, 8: 393

DOI      URL     [本文引用: 1]

Carbon fiber-reinforced polymer (CFRP) is recognized as a promising anode material to prevent steel corrosion in reinforced concrete. However, the electrochemical performance of CFRP itself is unclear. This paper focuses on the understanding of electrochemical and mechanical properties of CFRP in an oxygen evolution environment by conducting accelerated polarization tests. Different amounts of current density were applied in polarization tests with various test durations, and feeding voltage and potential were measured. Afterwards, tensile tests were carried out to investigate the failure modes for the post-polarization CFRP specimens. Results show that CFRP specimens had two typical tensile-failure modes and had a stable anodic performance in an oxygen evolution environment. As such, CFRP can be potentially used as an anode material for impressed current cathodic protection (ICCP) of reinforced concrete structures, besides the fact that CFRP can strengthen the structural properties of reinforced concrete.

Lee-Orantes F, Torres-Acosta A A, Martínez-Madrid M, et al.

Cathodic protection in reinforced concrete elements, using carbon fibers base composites

[J]. ECS Trans., 2007, 3: 93

[本文引用: 1]

Hu J Y.

Experimental investigation of corroded RC column under CFRP/conductive adhesive strengthening and cathodic protecting

[D]. Wuhan: Wuhan University, 2020: 73

[本文引用: 1]

胡霁月.

碳纤维布/导电胶加固与阴极保护锈蚀RC柱机理及性能研究

[D]. 武汉: 武汉大学, 2020: 73

[本文引用: 1]

Wang Y Z, Chen H W, Li Y X, et al.

Numerical and experimental investigation on the chloride ion resistance of reinforced concrete piles externally bonded with CFRP sheets under dry-wet cycles

[J]. Constr. Build. Mater., 2022, 359: 129521

DOI      URL     [本文引用: 1]

Tang F J, Lin Z B, Chen G D, et al.

Three-dimensional corrosion pit measurement and statistical mechanical degradation analysis of deformed steel bars subjected to accelerated corrosion

[J]. Constr. Build. Mater., 2014, 70: 104

DOI      URL     [本文引用: 1]

Zheng D, Song W D, Fu J X, et al.

Research on mechanical characteristics, fractal dimension and internal structure of fiber reinforced concrete under uniaxial compression

[J]. Constr. Build. Mater., 2020, 258: 120351

DOI      URL     [本文引用: 1]

Erdem S, Blankson M A.

Fractal-fracture analysis and characterization of impact-fractured surfaces in different types of concrete using digital image analysis and 3D nanomap laser profilometery

[J]. Constr. Build. Mater., 2013, 40: 70

DOI      URL     [本文引用: 2]

Baer J U, Kent T F, Anderson S H.

Image analysis and fractal geometry to characterize soil desiccation cracks

[J]. Geoderma, 2009, 154: 153

DOI      URL     [本文引用: 1]

Brandt A M, Prokopski G.

On the fractal dimension of fracture surfaces of concrete elements

[J]. J. Mater. Sci., 1993, 28: 4762

DOI      URL     [本文引用: 1]

Luo H, Su H Z, Dong C F, et al.

Passivation and electrochemical behavior of 316L stainless steel in chlorinated simulated concrete pore solution

[J]. Appl. Surf. Sci., 2017, 400: 38

DOI      URL     [本文引用: 1]

Feng X G, Gu Z R, Fan Q Q, et al.

Corrosion resistance of 2205 stainless steel bar in modified coral concretes

[J]. J. Chin. Soc. Corros. Prot., 2024, 44: 789

[本文引用: 1]

冯兴国, 顾卓然, 范琦琦 .

改性珊瑚混凝土中2205不锈钢钢筋的耐蚀性研究

[J]. 中国腐蚀与防护学报, 2024, 44: 789

DOI      [本文引用: 1]

对比了直接掺入粉煤灰、水泥浆或水泥-偏高岭土复合浆增强处理珊瑚粗骨料等改性方案对珊瑚混凝土中2205不锈钢钢筋腐蚀速率的影响。结果表明,珊瑚混凝土中2205不锈钢钢筋长期处于钝化状态;掺入粉煤灰可降低2205不锈钢钢筋腐蚀速率,但直接掺入的粉煤灰会引起珊瑚混凝土强度明显下降。采用P.O 52.5水泥浆或P.O 52.5水泥 + 偏高岭土复合浆增强珊瑚粗骨料,再用增强粗骨料制备的珊瑚混凝土强度与对照组试样强度差异较小,但骨料增强的珊瑚混凝土中2205不锈钢钢筋腐蚀速率明显降低,采用P.O 52.5水泥 + 偏高岭土复合浆增强粗骨料的试样中2205不锈钢钢筋腐蚀速率最低。综合考虑,P.O 52.5水泥 + 偏高岭土复合浆增强珊瑚粗骨料,其制备的珊瑚混凝土具有较高强度,2205不锈钢钢筋的腐蚀速率最低,这种复合浆增强珊瑚粗骨料方案是提高不锈钢钢筋珊瑚混凝土结构耐久性的有效途径。

Zhao Z Y, Zou Y, Liu P, et al.

EIS equivalent circuit model prediction using interpretable machine learning and parameter identification using global optimization algorithms

[J]. Electrochim. Acta, 2022, 418: 140350

DOI      URL     [本文引用: 1]

Lazanas A C, Prodromidis M I.

Electrochemical impedance spectroscopy─A tutorial

[J]. ACS Meas. Sci. Au, 2023, 3: 162

DOI      URL     [本文引用: 1]

Liu G Q, Zhang D F, Chen H X, et al.

Electrochemical corrosion behavior of 2304 duplex stainless steel in a simulated pore solution in reinforced concrete serving in marine environment

[J]. J. Chin. Soc. Corros. Prot., 2024, 44: 204

[本文引用: 1]

刘国强, 张东方, 陈昊翔 .

2304双相不锈钢钢筋在混凝土孔隙模拟液中的电化学腐蚀行为研究

[J]. 中国腐蚀与防护学报, 2024, 44: 204

[本文引用: 1]

Blanco G, Bautista A, Takenouti H.

EIS study of passivation of austenitic and duplex stainless steels reinforcements in simulated pore solutions

[J]. Cem. Concr. Compos., 2006, 28: 212

DOI      URL     [本文引用: 1]

Michel A, Pease B J, Geiker M R, et al.

Monitoring reinforcement corrosion and corrosion-induced cracking using non-destructive x-ray attenuation measurements

[J]. Cem. Concr. Res., 2011, 41: 1085

DOI      URL     [本文引用: 1]

Djenaoucine L, Argiz C, Picazo Á, et al.

The corrosion-inhibitory influence of graphene oxide on steel reinforcement embedded in concrete exposed to a 3.5M NaCl solution

[J]. Cem. Concr. Compos., 2025, 155: 105835

DOI      URL     [本文引用: 1]

Zhang T M, Zhao W M, Li T T, et al.

Comparison of hydrogen embrittlement susceptibility of three cathodic protected subsea pipeline steels from a point of view of hydrogen permeation

[J]. Corros. Sci., 2018, 131: 104

DOI      URL     [本文引用: 1]

/