Please wait a minute...
中国腐蚀与防护学报  2026, Vol. 46 Issue (1): 261-272     CSTR: 32134.14.1005.4537.2025.098      DOI: 10.11902/1005.4537.2025.098
  研究报告 本期目录 | 过刊浏览 |
基于DFT与分子动力学模拟多尺度计算揭示含环类氨基酸缓蚀机制
白瑞雨1, 黄维安1,2(), 贾江鸿3, 张燕明4, 刘云峰5, 王增宝1
1.中国石油大学(华东)石油工程学院 青岛 266580
2.中国石油大学(华东) 深层油气全国重点实验室 青岛 266580
3.中石化中原油田分公司工程技术管理部 濮阳 457001
4.中国石油长庆油田分公司油气工艺研究院 西安 710018
5.中国石油西南油气田公司天然气研究院 成都 610213
Multiscale Computational Study of Corrosion Inhibition Mechanism for Five Cyclic Amino Acids Based on Density Functional Theory (DFT) and Molecular Dynamics (MD) Simulations
BAI Ruiyu1, HUANG Wei'an1,2(), JIA Jianghong3, ZHANG Yanming4, LIU Yunfeng5, WANG Zengbao1
1.School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
2.National Key Laboratory of Deep Oil and Gas, China University of Petroleum (East China), Qingdao 266580, China
3.Sinopec, Zhongyuan Oilfield Company, Engineering Technology Management Department, Puyang 457001, China
4.Petro China Changqing Oilfield Company Oil and Gas Process Research Institute, Xi'an 710018, China
5.Petro China Southwest Oil & Gasfield Company, Research Institute of Natural Gas Technology, Chengdu 610213, China
引用本文:

白瑞雨, 黄维安, 贾江鸿, 张燕明, 刘云峰, 王增宝. 基于DFT与分子动力学模拟多尺度计算揭示含环类氨基酸缓蚀机制[J]. 中国腐蚀与防护学报, 2026, 46(1): 261-272.
Ruiyu BAI, Wei'an HUANG, Jianghong JIA, Yanming ZHANG, Yunfeng LIU, Zengbao WANG. Multiscale Computational Study of Corrosion Inhibition Mechanism for Five Cyclic Amino Acids Based on Density Functional Theory (DFT) and Molecular Dynamics (MD) Simulations[J]. Journal of Chinese Society for Corrosion and protection, 2026, 46(1): 261-272.

全文: PDF(10554 KB)   HTML
摘要: 

通过分子动力学(MD)模拟与密度泛函理论(DFT)计算,系统探究了色氨酸、组氨酸、脯氨酸、苯丙氨酸及酪氨酸5种含环氨基酸在HCl溶液中对Fe的缓蚀性能及作用机制。结果表明,5种含环氨基酸均具有一定缓蚀作用,色氨酸因独特的吲哚环π电子共轭效应与氨基配位能力,展现出最优异缓蚀性能。分子动力学模拟显示,色氨酸可以吸附在金属表面形成致密的吸附层,其吸附能(-381.45 kJ/mol)显著高于其他氨基酸(如组氨酸:-307.11 kJ/mol),且分子取向利于疏水屏障构建,有效阻隔H⁺/Cl-侵蚀。DFT分析进一步揭示,色氨酸的HOMO轨道(最高分子占据轨道)集中于吲哚环与氨基,可通过电子反馈与金属空d轨道形成强化学键;LUMO轨道(最低分子占据轨道)则分布于吲哚环和羧酸基团,增强吸附稳定性。其全局反应性参数(ΔN = 0.456)远高于其他氨基酸(如脯氨酸,ΔN = 0.325)表明其电荷转移能力突出,抑制金属阳极溶解与阴极析氢的协同效果显著。同时,经过电化学评价,色氨酸同样具有最佳的缓蚀行性能,与理论计算结果保持一致。

关键词 含环类氨基酸缓蚀剂色氨酸分子动力学模拟DFT计算致密吸附    
Abstract

The corrosion inhibition performance and mechanisms of five cyclic amino acids, namely tryptophan, histidine, proline, phenylalanine, and tyrosine, for Fe in HCl solution were investigated by means of molecular dynamics (MD) simulations and density functional theory (DFT) calculations. The results demonstrate that all the five cyclic amino acids exhibit significant corrosion inhibition effect. Among others, tryptophan (Trp) exhibits the most outstanding inhibition performance, which may be attributed to the unique π-electron conjugation effect of its indole ring and the strong coordinating ability of its amino group. MD simulations reveal that Trp forms a dense adsorption film on the metal surface, with a significantly higher adsorption energy (-381.45 kJ/mol) rather than other amino acids (e.g., histidine: -307.11 kJ/mol). Its molecular orientation facilitates the construction of a hydrophobic barrier, effectively impeding the ingress of H+/Cl- ions. DFT analysis further elucidates that the highest occupied molecular orbital (HOMO) of Trp is localized on the indole ring and amino group, enabling strong chemical bonding with vacant d-orbitals of metal Fe via electron back-donation. Conversely, the lowest unoccupied molecular orbital (LUMO) is distributed over the indole ring and carboxyl group, enhancing its adsorption stability. Trp's global reactivity parameter (ΔN = 0.456) is considerably higher than that of other amino acids (e.g., proline ΔN = 0.325), indicating superior charge transfer capability. This results in a pronounced synergistic effect suppressing both anodic metal dissolution and cathodic hydrogen evolution. Consistent with the theoretical findings, electrochemical evaluation confirms that Trp also delivers the best corrosion inhibition performance.

Key wordscyclic amino acid corrosion inhibitor    tryptophan    molecular dynamics simulation    DFT calculation    dense adsorption
收稿日期: 2025-03-25      32134.14.1005.4537.2025.098
ZTFLH:  TQ015.9  
基金资助:国家自然科学基金(52374026);国家自然科学基金(51974351);山东省自然科学基金(ZR2024ME125)
通讯作者: 黄维安,E-mail:20070067@upc.edu.cn,研究方向为油田化学提高采收率技术
作者简介: 白瑞雨,男,1997年生,博士生
图1  组氨酸、苯丙氨酸、脯氨酸、色氨酸以及酪氨酸的分子结构图
图2  组氨酸、苯丙氨酸、脯氨酸、色氨酸以及酪氨酸的几何优化结构
图3  组氨酸、苯丙氨酸、脯氨酸、色氨酸以及酪氨酸的HOMO、LUMO轨道及静电势(ESP)分布
InhibitorsEHOMO / eVELUMO / eVΔE / eVI / eVA / eVμ / eVχ / eVΔN
Histidine-5.082-0.8764.2065.0820.8762.1032.9790.361
Phenylalanine-5.365-1.1134.2525.3651.1132.1263.2390.296
Proline-5.131-1.064.0715.1311.062.0353.0950.345
Tryptophan-4.586-0.9813.6054.5860.9811.8022.7830.476
Tyrosine-5.12-1.0274.0935.121.0272.0463.0730.378
表1  含环氨基酸量子计算相关参数值
图4  组氨酸、苯丙氨酸、脯氨酸、色氨酸以及酪氨酸的Fukui函数指数
图5  组氨酸、苯丙氨酸、脯氨酸、色氨酸以及酪氨酸在Fe(110)表面吸附前、后构像
InhibitorsEads / kJ·mol-1Ebinding / kJ·mol-1
Histidine-307.11307.11
Phenylalanine-379.01379.01
Proline-288.16288.16
Tryptophan-381.45381.45
Tyrosine-366.40366.40
表2  含环氨基酸与Fe(110)表面的相互作用吸附能和结合能
图6  H+和Cl-在空白H2O相和吸附氨基酸分子膜相中扩散的均方位移图
SolutionH+ / cm2·s-1Cl- / cm2·s-1
H2O2.87 × 10-52.19 × 10-6
Histidine2.78 × 10-62.67 × 10-7
Phenylalanine2.02 × 10-63.54 × 10-8
Proline1.39 × 10-69.15 × 10-9
Tryptophan5.67 × 10-71.77 × 10-9
Tyrosine6.46 × 10-72.52 × 10-9
表3  腐蚀性物质(H+、Cl-)在H2O相和氨基酸分子膜相中的扩散系数
图7  氨基酸分子在HOMO及LUMO DFT模拟误差棒图
图8  氨基酸分子在Fe(110)表面MD模拟误差图
图9  N80钢在含和不含氨基酸的20%HCl溶液中的电化学测试结果
图10  EIS等效电路图
InhibitorsRs/ Ω·cm2Rp/ Ω·cm2CPE-T/ µF·cm-2CPE-PηE/ %
Blank4.00950.75233.810.82-
Histidine1.738108.4062.080.7953.18
Phenylalanine1.477202.6341.190.7574.95
Proline2.62990.7982.930.7444.10
Tryptophan1.668276.5436.800.5881.65
Tyrosine1.690133.9354.910.9062.11
表4  N80碳钢在20%HCl中含不同氨基酸时的阻抗参数
Inhibitorba / mV·dec-1bc / mV·dec-1I / mA·cm-2ηE / %
Blank94.455185.501.09-
Histidine96.44129.770.2661.35
Phenylalanine65.227259.740.1775.82
Proline99.185133.410.4955.32
Tryptophan96.886119.310.1783.93
Tyrosine67.825130.820.2973.15
表5  未添加和添加不氨基酸的N80碳钢在20%HCl中的PDP参数
[1] Li H, Luo B, Tang Z B, et al. Research, development and performance evaluation of XAI-180, a new acid corrosion inhibitor with high temperature resistance [J]. Nat. Gas Ind., 2019, 39(9): 89
[1] 李 晖, 罗 斌, 唐祖兵 等. 新型耐高温酸化缓蚀剂XAI-180的研发与性能评价 [J]. 天然气工业, 2019, 39(9): 89
[2] Wang D L, Li Y M, Jiang L M, et al. Performance of two new surfactants as acidizing inhibitors for oil and gas fields [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 542
[2] 王鼎立, 李勇明, 蒋立明 等. 新型表面活性剂作为油气田酸化缓蚀剂的制备及其性能研究 [J]. 中国腐蚀与防护学报, 2021, 41: 542
doi: 10.11902/1005.4537.2020.124
[3] Yang H M. Role of organic and eco-friendly inhibitors on the corrosion mitigation of steel in acidic environments—A state-of-art review [J]. Molecules, 2021, 26: 3473
doi: 10.3390/molecules26113473
[4] Ovalle V J, Waegele M M. Understanding the impact of N-Arylpyridinium ions on the selectivity of CO2 reduction at the Cu/electrolyte interface [J]. J. Phys. Chem. C, 2019, 123: 24453
doi: 10.1021/acs.jpcc.9b08666
[5] Finšgar M, Jackson J. Application of corrosion inhibitors for steels in acidic media for the oil and gas industry: A review [J]. Corros. Sci., 2014, 86: 17
doi: 10.1016/j.corsci.2014.04.044
[6] Li J B, Zhang L M, Hu Z H, et al. Applied research of Mannich reaction in synthesis of acidifying corrosion inhibitor [J]. Fine Spec. Chem., 2014, 22(7): 11
[6] 李建波, 张莉梅, 胡正海 等. Mannich反应在酸化缓蚀剂合成中的应用 [J]. 精细与专用化学品, 2014, 22(7): 11
[7] Zhang M, Cheng G, Fang Y, et al. Research status and development trend of inhibitors [J]. Technol. Dev. Chem. Ind., 2020, 49(4): 43
[7] 张 明, 程 刚, 方 勇 等. 缓蚀剂的研究现状及发展趋势 [J]. 化工技术与开发, 2020, 49(4): 43
[8] Mu X J, Li X H, Lei R, et al. Inhibitory action of coffee skin extract on corrosion of steel in trichloroacetic acid solution [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1465
[8] 穆显菊, 李向红, 雷 然 等. 咖啡果皮提取物对钢在三氯乙酸溶液中的缓蚀性能 [J]. 中国腐蚀与防护学报, 2024, 44: 1465
doi: 10.11902/1005.4537.2024.062
[9] Feng H X, Zhang C, Xu H D, et al. Application and research progress of chitosan in corrosion inhibitor [J]. New Chem. Mater., 2021, 49(7): 216
[9] 冯辉霞, 张 晨, 徐海东 等. 壳聚糖在缓蚀剂领域的应用研究进展 [J]. 化工新型材料, 2021, 49(7): 216
doi: 10.19817/j.cnki.issn 1006-3536.2021.07.048
[10] Long W J, Tang J, Luo Q L, et al. Corrosion inhibition performance of biomass-derived carbon dots on Q235 steel [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 807
[10] 龙武剑, 唐 杰, 罗启灵 等. 生物质碳点对Q235钢的缓蚀性能研究 [J]. 中国腐蚀与防护学报, 2024, 44: 807
doi: 10.11902/1005.4537.2023.233
[11] Deng Z H, Lei R, Zhang Z Y, et al. Corrosion inhibition of vetiver extract on steel in hydrochloric acid environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 173
[11] 邓志华, 雷 然, 张智勇 等. 香根草提取物对冷轧钢在盐酸溶液中的缓蚀作用 [J]. 中国腐蚀与防护学报, 2023, 43: 173
doi: 10.11902/1005.4537.2022.065
[12] Wang D L, Li Y M, Chang T, et al. Experimental and theoretical studies of chitosan derivatives as green corrosion inhibitor for oil and gas well acid acidizing [J]. Colloids Surf., 2021, 628A: 127308
[13] Kadhim M M, Alabboodi K O, Hachim S K, et al. Analysis of the protection of copper corrosion by using amino acid inhibitors [J]. J. Mol. Model., 2023, 29: 27
doi: 10.1007/s00894-022-05424-0
[14] Wang Y F, Wang J, Yang Z, et al. Synthesis and performance of a novel acidizing corrosion inhibitor for high temperature reservoirs [J]. Chem. Ind. Eng. Prog., 2024, 43: 5712
doi: 10.16085/j.issn.1000-6613.2023-1615
[14] 王业飞, 王 婧, 杨 震 等. 新型高温酸化缓蚀剂的制备及性能评价 [J]. 化工进展, 2024, 43: 5712
doi: 10.16085/j.issn.1000-6613.2023-1615
[15] Zhang L D, Gong M, Zheng X W, et al. Application of quantum chemistry method in the performance evaluation and mechanism study of corrosion inhibitors [J]. Corros. Prot., 2017, 38: 829
[15] 张龄丹, 龚 敏, 郑兴文 等. 量子化学方法在缓蚀剂性能评价和机理研究中的应用 [J]. 腐蚀与防护, 2017, 38: 829
[16] Feng Y, Zhao M J, Cui Q, et al. Research progress of molecular simulation technology in the development and application of chitosan functional materials [J]. Chem. Ind. Eng. Prog., 2022, 41: 4241
doi: 10.16085/j.issn.1000-6613.2021-2176
[16] 冯 颖, 赵孟杰, 崔 倩 等. 分子模拟技术在壳聚糖功能材料开发和应用中的研究进展 [J]. 化工进展, 2022, 41: 4241
[17] Peng S Y, Jiang Z N, Li Y R, et al. A new exceptional imidazoline derivative corrosion inhibitor for carbon steel in supercritical CO2 environment [J]. Corros. Sci., 2025, 245: 112663
doi: 10.1016/j.corsci.2024.112663
[18] Omer R A, Azeez Y H, Kareem R O, et al. Combined DFT and Monte Carlo simulation studies of potential corrosion inhibition properties of coumarin derivatives [J]. J. Mol. Model., 2024, 30: 288
doi: 10.1007/s00894-024-06090-0 pmid: 39073489
[19] Wang P J, Song Y H, Fan L, et al. Inhibition of Q235 steel in 1 mol/L HCl solution by a new efficient imidazolium Schiff base corrosion inhibitor [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 59
[19] 王鹏杰, 宋昱灏, 樊 林 等. 新型高效咪唑希夫碱缓蚀剂对Q235钢在1 mol/L HCl溶液中的缓蚀作用 [J]. 中国腐蚀与防护学报, 2024, 44: 59
[20] Liu W C, Wang P J, Tang Z J, et al. Mechanism analysis of highly effective imidazole-Schiff corrosion inhibitor on P110 in HCl solution [J]. Mater. Prot., 2025, 58(3): 87
[20] 刘文超, 王鹏杰, 汤梓杰 等. 高效咪唑-席夫缓蚀剂对P110在HCl溶液中的缓蚀机理分析 [J]. 材料保护, 2025, 58(3): 87
[21] Shi K, Ma F, Song R M, et al. Diffusion behavior of waste soybean oil rejuvenated bitumen based on molecular simulation [J]. Chem. Ind. Eng. Prog., 2024, 43: 6794
doi: 10.16085/j.issn.1000-6613.2023-1107
[21] 史 柯, 马 峰, 宋瑞萌 等. 基于分子模拟的废大豆油再生沥青扩散行为 [J]. 化工进展, 2024, 43: 6794
[22] Hu H H, Chen C F. Mechanism of temperature influence on adsorption of schiff base [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 786
[22] 胡慧慧, 陈长风. 温度影响席夫碱缓蚀剂吸附的机理研究 [J]. 中国腐蚀与防护学报, 2021, 41: 786
doi: 10.11902/1005.4537.2020.156
[23] Wen F S, Du Y X, Zhang H, et al. Evaluation of corrosion inhibition of a bis-imidazoline corrosion inhibitor [J]. Corros. Prot., 2019, 40: 92
[23] 温福山, 杜永霞, 张 涵 等. 双咪唑啉缓蚀剂的缓蚀性能评价 [J]. 腐蚀与防护, 2019, 40: 92
[24] Chauhan D S, Quraishi M A, Mazumder M A J, et al. Design and synthesis of a novel corrosion inhibitor embedded with Quaternary ammonium, amide and amine motifs for protection of carbon steel in 1 M HCl [J]. J. Mol. Liq., 2020, 317: 113917
doi: 10.1016/j.molliq.2020.113917
[25] Zhang Q H, Li Y Y, Lei Y, et al. Comparison of the synergistic inhibition mechanism of two eco-friendly amino acids combined corrosion inhibitors for carbon steel pipelines in oil and gas production [J]. Appl. Surf. Sci., 2022, 583: 152559
doi: 10.1016/j.apsusc.2022.152559
[26] Kumar A M, Rajesh T, Obot I B, et al. Water-soluble chitosan salt as ecofriendly corrosion inhibitor for N80 pipeline steel in artificial sea water: experimental and theoretical approach [J]. Int. J. Biol. Macromol., 2024, 254: 127697
doi: 10.1016/j.ijbiomac.2023.127697
[27] Zhou W B, Li M R, Zhou X, et al. Oil soluble mannich base corrosion inhibitor for corrosion inhibition of copper in transformer oil [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 453
[27] 周文彬, 李梦冉, 周 欣 等. 油溶性曼尼希碱缓蚀剂对紫铜在变压器油中的缓蚀行为研究 [J]. 中国腐蚀与防护学报, 2024, 44: 453
doi: 10.11902/1005.4537.2023.077
[28] Wang J J, Cao Y H, Xue J H, et al. A comparative experimental and theoretical calculation study of CaAl-LDH modified with various aromatic inhibitors for corrosion protection study in epoxy coatings [J]. Corros. Sci., 2024, 231: 111994
doi: 10.1016/j.corsci.2024.111994
[29] Tan B C, Zhang S T, Li W P, et al. Food spices 2,5-dihydroxy-1,4-dithiane as an eco-friendly corrosion inhibitor for X70 steel in 0.5 mol/L H2SO4 solution [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 469
[29] 谭伯川, 张胜涛, 李文坡 等. 食用香料1,4-二硫-2,5-二醇环保型缓蚀剂对X70钢在0.5 mol/L H2SO4溶液中的缓蚀性能研究 [J]. 中国腐蚀与防护学报, 2021, 41: 469
doi: 10.11902/1005.4537.2020.100
[30] Fu J J, Li S N, Cao L H, et al. L-Tryptophan as green corrosion inhibitor for low carbon steel in hydrochloric acid solution [J]. J. Mater. Sci., 2010, 45: 979
doi: 10.1007/s10853-009-4028-0
[31] Wang X L, Li W, Tan B M, et al. Corrosion inhibition effect of benzimidazole and two derivatives on copper in alkaline environments: experimental and theoretical analyses [J]. J. Mol. Liq., 2023, 390: 122985
doi: 10.1016/j.molliq.2023.122985
[32] Dong H M, Li B Y, Ran B Y, et al. Corrosion inhibition mechanism of the eco-friendly corrosion inhibitor linagliptin on copper in sulfuric acid [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1031
[32] 董红梅, 李宝毅, 冉博元 等. 一种环保型缓蚀剂利拉利汀对紫铜在硫酸中的缓蚀机理研究 [J]. 中国腐蚀与防护学报, 2023, 43: 1031
doi: 10.11902/1005.4537.2023.144
[33] Wang J, Wang Y F, Yang Z, et al. Synthesis of a novel fused heterocyclic Quaternary ammonium salt and its performance in ultra-low dosage as acidizing corrosion inhibitor [J]. J. Mol. Struct., 2024, 1303: 137571
doi: 10.1016/j.molstruc.2024.137571
[34] El Caid Z A, Left D B, Thoume A, et al. A comprehensive computational study of N-phenylacetamide derivatives as corrosion inhibitors for copper: Insights from DFT and molecular dynamics [J]. J. Bio- Tribo-Corros., 2023, 9: 83
[35] Rebaz A O, Karzan M A, Shalaw K S, et al. N, N-Bis (2,4-dihydroxy benzaldehyde) benzidine:Synthesis, characterization, DFT,and theoretical corrosion study [J]. J. Mol. Struct., 2024, 1300:137279
doi: 10.1016/j.molstruc.2023.137279
[36] Iravani D, Esmaeili N, Berisha A, et al. The Quaternary ammonium salts as corrosion inhibitors for X65 carbon steel under sour environment in NACE 1D182 solution: experimental and computational studies [J]. Colloids Surf., 2023, 656A: 130544
[37] Berdimurodov E, Kholikov A, Akbarov K, et al. Novel gossypol-indole modification as a green corrosion inhibitor for low-carbon steel in aggressive alkaline-saline solution [J]. Colloids Surf., 2022, 637A: 128207
[38] Tu S, Jiang J, Li P X, et al. Gleditsia sinensic extract as green corrosion inhibitor for N80 steel in 1 M HCl [J]. J. Mol. Struct., 2025, 1321: 139890
doi: 10.1016/j.molstruc.2024.139890
[39] Yang Q S, Huang C, Lian Y B, et al. Synthesis and multifunctional application of two novel carbon quantum dots as corrosion inhibitors [J]. Colloids Surf., 2024, 702A: 135165
[40] Mehta R K, Gupta S K, Yadav M. Studies on pyrimidine derivative as green corrosion inhibitor in acidic environment: electrochemical and computational approach [J]. J. Environ. Chem. Eng., 2022, 10: 108499
doi: 10.1016/j.jece.2022.108499
[41] Gupta S K, Mehta R K, Yadav M. Schiff bases as corrosion inhibitorson mild steel in acidic medium: gravimetric, electrochemical, surface morphological and computational studies [J]. J. Mol. Liq., 2022, 368: 120747
doi: 10.1016/j.molliq.2022.120747
[42] Palimi M J, Tang Y, Alvarez V, et al. Green corrosion inhibitors for drilling operation: new derivatives of fatty acid-based inhibitors in drilling fluids for 1018 carbon steel in CO2-saturated KCl environments [J]. Mater. Chem. Phys., 2022, 288: 126406
doi: 10.1016/j.matchemphys.2022.126406
[43] Ma X Y, Jiang X H, Xia S W, et al. New corrosion inhibitor acrylamide methyl ether for mild steel in 1 M HCl [J]. Appl. Surf. Sci., 2016, 371: 248
doi: 10.1016/j.apsusc.2016.02.212
[44] Han P, He Y, Chen C F, et al. Study on synergistic mechanism of inhibitor mixture based on electron transfer behavior [J]. Sci. Rep., 2016, 6: 33252
doi: 10.1038/srep33252 pmid: 27671332
[45] Wang G, Li W T, Wang X, et al. Experimental and theoretical investigations of three Mannich-base imidazoline quaternary ammonium salts as efficient inhibitors for Q235 steel in sulfuric acid [J]. Appl. Surf. Sci., 2023, 638: 157946
doi: 10.1016/j.apsusc.2023.157946
[1] 夏渊, 廉兵杰, 程佳, 李文. 聚天冬氨酸酯聚脲胺基组分分子结构对涂层微观结构及腐蚀介质扩散行为影响的分子动力学模拟研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 975-982.
[2] 程学雨, 叶桓, 郭程皓, 卢立新, 李伟哲. 苯骈三氮唑与苯甲酸钠在气相防锈膜中扩散机理的分子动力学模拟研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1323-1331.
[3] 陈昊, 樊志彬, 陈志坚, 周学杰, 郑鹏华, 吴军. Cl-与HSO3-对建筑用439不锈钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(3): 493-500.
[4] 孙伟松, 于思荣, 高嵩, 姚新宽, 徐海亮, 钱冰, 王冰姿. 水分子在石墨烯增强环氧树脂防腐涂层扩散的分子动力学模拟[J]. 中国腐蚀与防护学报, 2021, 41(3): 411-416.
[5] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[6] 吕祥鸿,张晔,闫亚丽,侯娟,李健,王晨. 两种新型曼尼希碱缓蚀剂的性能及吸附行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[7] 刘峥, 李海莹, 王浩, 赵永, 谢思维, 张淑芬. 分子动力学模拟水溶液中席夫碱基表面活性剂在Zn表面的吸附行为[J]. 中国腐蚀与防护学报, 2018, 38(4): 381-390.
[8] 赵景茂,赵起锋,姜瑞景. 咪唑啉缓蚀剂在CO2/H2S共存体系中的构效关系研究[J]. 中国腐蚀与防护学报, 2017, 37(2): 142-147.
[9] 赵景茂,赵雄,姜瑞景. 在动态H2S/CO2体系中疏水链上的双键对咪唑啉衍生物缓蚀性能的影响[J]. 中国腐蚀与防护学报, 2015, 35(6): 505-509.
[10] 苏铁军, 罗运柏, 李克华, 李凡修, 邓仕英, 习伟. 苯并咪唑-N-曼尼希碱对盐酸中N80钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2015, 35(5): 415-422.
[11] 冯丽娟,赵康文,杨怀玉,唐囡,王福会,上官帖. 混凝土模拟液中咪唑啉衍生物与四乙烯五胺间缓蚀协同效应[J]. 中国腐蚀与防护学报, 2015, 35(4): 297-304.
[12] 刘洁, 刘峥, 刘进, 谢思维. 3,5-二溴水杨醛-2-噻吩甲酰肼席夫碱缓蚀剂在油田水中对碳钢的缓蚀性能及分子动力学模拟[J]. 中国腐蚀与防护学报, 2014, 34(2): 101-111.
[13] 吴刚,耿玉凤,贾晓林,孙霜青,胡松青. 异恶唑衍生物缓蚀剂缓蚀性能的理论评价[J]. 中国腐蚀与防护学报, 2012, 32(6): 513-519.