Please wait a minute...
中国腐蚀与防护学报  2026, Vol. 46 Issue (1): 186-192     CSTR: 32134.14.1005.4537.2025.266      DOI: 10.11902/1005.4537.2025.266
  增材制造与腐蚀专题 本期目录 | 过刊浏览 |
电弧送丝增材、激光选区熔化增材和传统TC4钛合金钝化行为的对比研究
李柯萱1, 王义朋2, 廖伯凯3()
1.宁波工程学院材料与化学工程学院 宁波 315200
2.北京工业大学材料科学与工程学院 北京 100124
3.广州大学化学化工学院 广州 510006
Comparative Study on Passive Behavior of Wire Arc Additive Manufactured, Selective Laser Melted, and Conventional TC4 Ti-alloys
LI Kexuan1, WANG Yipeng2, LIAO Bokai3()
1.Ningbo University of Technology, School of Materials and Chemical Engineering, Ningbo 315200, China
2.College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
3.School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
引用本文:

李柯萱, 王义朋, 廖伯凯. 电弧送丝增材、激光选区熔化增材和传统TC4钛合金钝化行为的对比研究[J]. 中国腐蚀与防护学报, 2026, 46(1): 186-192.
Kexuan LI, Yipeng WANG, Bokai LIAO. Comparative Study on Passive Behavior of Wire Arc Additive Manufactured, Selective Laser Melted, and Conventional TC4 Ti-alloys[J]. Journal of Chinese Society for Corrosion and protection, 2026, 46(1): 186-192.

全文: PDF(7196 KB)   HTML
摘要: 

TC4钛合金凭借其优异的综合性能在工业领域备受关注,但其加工难度较大,增材制造技术被视为一种有效的加工替代方案。本文通过电化学测试与XPS分析,对比研究了电弧增材制造、激光选区熔化增材制造与传统锻造TC4钛合金的钝化行为,结果表明,3种状态下形成的钝化膜在主要组成元素与半导体性质方面相似,但膜内各成分的相对占比及所含的缺陷浓度存在差异。

关键词 电弧增材制造激光选区熔化TC4 钛合金钝化    
Abstract

TC4 Ti-alloy has garnered significant attention in industrial applications due to its excellent comprehensive properties, but its difficult machinability makes additive manufacturing technologies a promising alternative processing method. Hence, in the article, the passivation behavior of three TC4 Ti alloys fabricated by wire arc additive manufacturing (WAAM), selective laser melting (SLM) additive manufacturing and conventional forging was comparatively assessed by means of electrochemical testing in 3.5%NaCl solution of pH = 6.8 ± 0.2 at 25 oC, and XPS analysis. The results demonstrate that while the passive films formed on the three alloys share similar characteristics in primary constituent elements and semiconducting properties, but notable differences exist in the relative proportions of constituents and defect concentrations of films.

Key wordswire arc additive manufacturing (WAAM)    selective laser melting (SLM)    TC4 Ti-alloy    passivation
收稿日期: 2025-08-25      32134.14.1005.4537.2025.266
ZTFLH:  TG174  
通讯作者: 廖伯凯,E-mail:bokailiao@gzhu.edu.cn,研究方向为金属腐蚀与防护
作者简介: 李柯萱,1987年生,2019年毕业于北京科技大学安全科学与工程专业,获博士学位。现就职于宁波工程学院化学与材料工程学院。主要研究方向为材料腐蚀与防护、房屋消防管理与矿山安全评价等,曾参与宁波市地方规范编制,先后在《中国腐蚀与防护学报》等期刊发表论文10余篇。
廖伯凯,1991 年生,2018 年毕业于华中科技大学获博士学位,2018~2019年香港理工大学博士后,现就职于广州大学,副教授,硕士生导师。主要研究方向为腐蚀电化学与缓蚀控制技术,致力于热流场、电场等物理场作用下金属腐蚀行为及电化学腐蚀机理;以及基于缓蚀剂方法的腐蚀防护策略与技术,通过化学、机械-化学等方法,设计并开发系列新型高效缓蚀剂,阐释了缓蚀剂分子吸脱附行为与膜层重构转化对缓蚀作用的影响机制。先后主持国家自然科学基金、广东省自然科学基金、广州市科技计划和企事业单位技术服务等项目多项。以第一/通讯作者在Corros. Sci.、《中国腐蚀与防护学报》等期刊发表论文80余篇,ESI高被引及热点论文8篇,被引3000 余次,H因子30;授权中国发明专利10 余项(转化专利1项);参编出版中英文专著(章节)4部;作大会/邀请报告10余次;获中国化工学会技术发明一等奖、广东省科技进步二等奖等3项;入选全球前2%顶尖科学家年度榜单。现担任《中国腐蚀与防护学报》、Corrosion Communications 青年编委。
图1  传统SLM和WAAM TC4钛合金的EBSD结果
图2  SLM、WAAM和传统TC4钛合金的XRD谱
图3  SLM、WAAM和传统TC4钛合金浸泡1800 s的OCP
图4  SLM、WAAM和传统TC4钛合金的动电位极化曲线
AlloysEcorr, SCE / VIcorr / A·cm-2Ipass / A·cm-2
Wrought-TC4-0.3724.09 × 10-75.57 × 10-6
SLM-TC4-0.3692.21 × 10-75.25 × 10-6
WAAM-TC4-0.4231.104 × 10-74.79 × 10-6
表1  SLM、WAAM和传统TC4钛合金的动电位极化曲线的拟合结果
图5  SLM、WAAM和传统TC4钛合金的恒电位图
图6  SLM、WAAM和传统TC4钛合金浸泡1800 s的恒电位极化对数处理图
图7  SLM、WAAM和传统TC4钛合金的M-S曲线
图8  SLM、WAAM和传统TC4钛合金钝化膜的ND值
图9  SLM、WAAM和传统TC4钛合金钝化膜的XPS结果
[1] Li J Q, Jin Y T, Li J H, et al. The effect of dissolved oxygen and Shewanella algae on the corrosion mechanism of titanium in a simulated marine environment [J]. Corros. Sci., 2024, 239: 112400
doi: 10.1016/j.corsci.2024.112400
[2] Liu R, Xie Y S, Jin Y, et al. Stress corrosion cracking of the titanium alloys under hydrostatic pressure resulting from the degradation of passive films [J]. Acta Mater., 2023, 252: 118946
doi: 10.1016/j.actamat.2023.118946
[3] Yang X J, Du C W, Wan H X, et al. Influence of sulfides on the passivation behavior of titanium alloy TA2 in simulated seawater environments [J]. Appl. Surf. Sci., 2018, 458: 198
doi: 10.1016/j.apsusc.2018.07.068
[4] Wang C, Yang Z Y, Wang Y W, et al. Effect of annealing treatment on the phase transformation and mechanical properties of TA15 alloy fabricated by WAAM [J]. Intermetallics, 2025, 177: 108590
doi: 10.1016/j.intermet.2024.108590
[5] Zhou S Y, Zhang J F, Yang G, et al. Microstructure evolution and fracture behavior of Ti-6Al-4V fabricated by WAAM-LDM additive manufacturing [J]. J. Mater. Res. Technol., 2024, 28: 347
doi: 10.1016/j.jmrt.2023.11.255
[6] Leban M B, Kosec T, Finšgar M. Corrosion characterization and ion release in SLM-manufactured and wrought Ti6Al4V alloy in an oral environment [J]. Corros. Sci., 2022, 209: 110716
doi: 10.1016/j.corsci.2022.110716
[7] Lu H F, Wang Z, Cai J, et al. Effects of laser shock peening on the hot corrosion behaviour of the selective laser melted Ti6Al4V titanium alloy [J]. Corros. Sci., 2021, 188: 109558
doi: 10.1016/j.corsci.2021.109558
[8] Song L F, Hu W B, Liao B K, et al. Corrosion behavior of AlCoCrFeNi2.1 eutectic high-entropy alloy in Cl--containing solution [J]. J. Alloy. Compd., 2023, 938: 168609
doi: 10.1016/j.jallcom.2022.168609
[9] Sun J F, Lu H F, Wang Z, et al. High-temperature oxidation behaviour of Ti65 titanium alloy fabricated by laser direct energy deposition [J]. Corros. Sci., 2024, 229: 111866
doi: 10.1016/j.corsci.2024.111866
[10] Li X X, Chen L Y, Hu W B, et al. Corrosion and passive behavior of SLM and wrought TA15 titanium alloys in hydrochloric acid solutions [J]. J. Iron Steel Res. Int., 2025, 32: 1356
doi: 10.1007/s42243-024-01316-0
[11] Cai F, Zhou Q, Chen J K, et al. Effect of inserting the Zr layers on the tribo-corrosion behavior of Zr/ZrN multilayer coatings on titanium alloys [J]. Corros. Sci., 2023, 213: 111002
doi: 10.1016/j.corsci.2023.111002
[12] Zhang H W, Man C, Dong C F, et al. The corrosion behavior of Ti6Al4V fabricated by selective laser melting in the artificial saliva with different fluoride concentrations and pH values [J]. Corros. Sci., 2021, 179: 109097
doi: 10.1016/j.corsci.2020.109097
[13] Wu W, Ma L, Huang S Y, et al. Comparison of electrochemical characteristics and passive film properties of selective laser melted and wrought TA15 alloys in sulfuric acid solution [J]. Corros. Sci., 2024, 236: 112254
doi: 10.1016/j.corsci.2024.112254
[14] Chen Q Q, Xu Y T, Ma A L, et al. Study of the passivation and repassivation behavior of pure titanium in 3.5wt%NaCl solution and 6M HNO3 solution [J]. Corros. Sci., 2023, 224: 111538
doi: 10.1016/j.corsci.2023.111538
[15] Tanwar R S, Jhavar S. Ti based alloys for aerospace and biomedical applications fabricated through wire + arc additive manufacturing (WAAM) [J]. Mater. Today Proc., 2024, 98: 226
[16] Yan Q B, Xue T, Liu S F, et al. A comparative study of surface characterization and corrosion behavior of micro-arc oxidation treated Ti-6Al-4V alloy prepared by SEBM and SLM [J]. J. Iron Steel Res. Int., 2023, 30: 165
doi: 10.1007/s42243-022-00800-9
[17] Su B X, Wang B B, Luo L S, et al. The corrosion behavior of Ti-6Al-3Nb-2Zr-1Mo alloy: Effects of HCl concentration and temperature [J]. J. Mater. Sci. Technol., 2021, 74: 143
doi: 10.1016/j.jmst.2020.08.066
[18] Duley P, Bairagi D, Bairi L R, et al. Effect of microstructural evolution and texture change on the in-vitro bio-corrosion behaviour of hard-plate hot forged Mg-4Zn-0.5Ca-0.16Mn (wt%) alloy [J]. Corros. Sci., 2021, 192: 109860
doi: 10.1016/j.corsci.2021.109860
[19] Song L F, Hu W B, Huang S Y, et al. Electrochemical behavior and passive film properties of Ce-added AlCoCrFeNi2.1 eutectic high-entropy alloys in sulfuric acid solution [J]. J. Electroanal. Chem., 2023, 950: 117883
doi: 10.1016/j.jelechem.2023.117883
[20] Cui Z Y, Chen S S, Dou Y P, et al. Passivation behavior and surface chemistry of 2507 super duplex stainless steel in artificial seawater: Influence of dissolved oxygen and pH [J]. Corros. Sci., 2019, 150: 218
doi: 10.1016/j.corsci.2019.02.002
[21] Cui Z Y, Wang L W, Ni H T, et al. Influence of temperature on the electrochemical and passivation behavior of 2507 super duplex stainless steel in simulated desulfurized flue gas condensates [J]. Corros. Sci., 2017, 118: 31
doi: 10.1016/j.corsci.2017.01.016
[22] Munirathinam B, Narayanan R, Neelakantan L. Electrochemical and semiconducting properties of thin passive film formed on titanium in chloride medium at various pH conditions [J]. Thin Solid Films, 2016, 598: 260
doi: 10.1016/j.tsf.2015.12.025
[23] Gai X, Bai Y, Li J, et al. Electrochemical behaviour of passive film formed on the surface of Ti-6Al-4V alloys fabricated by electron beam melting [J]. Corros. Sci., 2018, 145: 80
doi: 10.1016/j.corsci.2018.09.010
[24] Song L F, Hu W B, Li X X, et al. Comparison of electrochemical characteristics and passive behavior of as-cast and heat-treated AlCoCrFeNi2.1 eutectic high-entropy alloys in Cl-containing sulfuric acid solution [J]. J. Mater. Eng. Perform., 2025, 34: 19855
doi: 10.1007/s11665-025-10771-z
[25] Song L F, Dai C D, Zhang X W, et al. Influence of hydrogen on the passive behavior of eutectic high-entropy alloy AlCoCrFeNi2.1 in a sulfuric acid solution [J]. J. Mater. Eng. Perform., 2023, 32: 10299
doi: 10.1007/s11665-023-07837-1
[1] 衣俊达, 冷傲, 宫得伦, 韦博鑫. 低模量耐腐蚀亚稳 β 钛合金的电子束增材制造与性能研究[J]. 中国腐蚀与防护学报, 2026, 46(1): 49-59.
[2] 谷清宇, 宋雁飞, 张亮亮, 王楠, 雷晓维. 激光定向能量沉积17-4PH不锈钢钝化与点蚀行为研究[J]. 中国腐蚀与防护学报, 2026, 46(1): 103-114.
[3] 白英雄, 王艳丽, 李相伟, 吴泽峰, 张书彦. 热处理对激光选区熔化GH4099镍基高温合金900 ℃(75%Na2SO4 + 25%NaCl)热腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(6): 1709-1716.
[4] 黄泽邦, 刘光明, 范文学, 徐睿中, 朱炎彬, 刘晨辉. 钝化时间对304不锈钢耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(6): 1741-1747.
[5] 许竞翔, 黄睿阳, 褚振华, 蒋全通. FeNiCoCrW0.2Al0.1 高熵合金在硫酸盐还原菌溶液环境下的腐蚀研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 460-468.
[6] 翟熙伟, 刘士一, 王丽, 贾瑞灵, 张慧霞. 载荷对5383铝合金焊接接头电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(2): 515-522.
[7] 张雅妮, 王思敏, 樊冰. TC4钛合金在O2 + CO2 气氛的高温高压模拟水沉积液中表面形成的钝化膜研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1518-1528.
[8] 曹甫洋, 王浩权, 季谦, 丁恒楠, 袁志钟, 罗锐. 大气等离子喷涂FeCoCrNiMn高熵合金涂层的耐海水腐蚀与磨损性能[J]. 中国腐蚀与防护学报, 2024, 44(6): 1529-1537.
[9] 董征, 毛永祺, 孟洲, 陈向翔, 付传清, 陆晨涛. 应力作用下钢筋在模拟混凝土孔隙液中的钝化行为研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1547-1556.
[10] 史先飞, 陈晓华, 满成. HRB400钢在模拟混凝土孔隙液中的自然钝化行为及耐蚀性能的研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1213-1222.
[11] 彭文山, 邢少华, 钱峣, 蔺存国, 侯健, 张大磊. 流动海水冲刷下TA2纯钛管路钝化膜腐蚀特性研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1038-1046.
[12] 邢少华, 彭文山, 钱峣, 李相波, 马力, 张大磊. 海水流速对经抛光和钝化表面处理的2205不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 658-668.
[13] 张成龙, 张斌, 朱敏, 袁永锋, 郭绍义, 尹思敏. CoCrNi中熵合金在不同浓度NH4Cl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 725-734.
[14] 耿真真, 张钰柱, 杜小将, 吴汉辉. S2-Cl-316L奥氏体不锈钢的腐蚀钝化行为的协同作用[J]. 中国腐蚀与防护学报, 2024, 44(3): 797-806.
[15] 商百慧, 马元泰, 孟美江, 李瑛, 娄明, 白晶. HRB400钢筋在模拟混凝土孔隙液环境中的阳极极化特征[J]. 中国腐蚀与防护学报, 2024, 44(2): 422-428.