|
|
|
| 激光定向能量沉积17-4PH不锈钢钝化与点蚀行为研究 |
谷清宇1, 宋雁飞1, 张亮亮2, 王楠1, 雷晓维1( ) |
1.西北工业大学物理科学与技术学院 西安 710129 2.西安建筑科技大学冶金工程学院 西安 710055 |
|
| Passivation and Pitting Corrosion Behavior of Laser Directed Energy Deposited 17-4PH Stainless Steel |
GU Qingyu1, SONG Yanfei1, ZHANG Liangliang2, WANG Nan1, LEI Xiaowei1( ) |
1.School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, China 2.School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China |
引用本文:
谷清宇, 宋雁飞, 张亮亮, 王楠, 雷晓维. 激光定向能量沉积17-4PH不锈钢钝化与点蚀行为研究[J]. 中国腐蚀与防护学报, 2026, 46(1): 103-114.
Qingyu GU,
Yanfei SONG,
Liangliang ZHANG,
Nan WANG,
Xiaowei LEI.
Passivation and Pitting Corrosion Behavior of Laser Directed Energy Deposited 17-4PH Stainless Steel[J]. Journal of Chinese Society for Corrosion and protection, 2026, 46(1): 103-114.
| [1] |
Galindo-Nava E I, Rainforth W M, Rivera-Díaz-del-Castillo P E J. Predicting microstructure and strength of maraging steels: Elemental optimisation [J]. Acta Mater., 2016, 117: 270
doi: 10.1016/j.actamat.2016.07.020
|
| [2] |
Wang J, Zou H, Li C, et al. The effect of microstructural evolution on hardening behavior of type 17-4PH stainless steel in long-term aging at 350 oC [J]. Mater. Charact., 2006, 57: 274
doi: 10.1016/j.matchar.2006.02.004
|
| [3] |
Nakhaie D. Investigating the impact of pre-deformation on age hardening and pitting corrosion resistance of 17-4PH stainless steel [J]. Metall. Mater. Trans., 2023, 54A: 3653
|
| [4] |
LeBrun T, Nakamoto T, Horikawa K, et al. Effect of retained austenite on subsequent thermal processing and resultant mechanical properties of selective laser melted 17-4PH stainless steel [J]. Mater. Des., 2015, 81: 44
doi: 10.1016/j.matdes.2015.05.026
|
| [5] |
Stoudt M R, Ricker R E, Lass E A, et al. Influence of postbuild microstructure on the electrochemical behavior of additively manufactured 17-4 PH stainless steel [J]. JOM, 2017, 69: 506
doi: 10.1007/s11837-016-2237-y
pmid: 28757787
|
| [6] |
Barroux A, Ducommun N, Nivet E, et al. Pitting corrosion of 17-4PH stainless steel manufactured by laser beam melting [J]. Corros. Sci., 2020, 169: 108594
doi: 10.1016/j.corsci.2020.108594
|
| [7] |
Wang T, Wang Z Y, Wang R, et al. Effect of solution aging treatment on corrosion resistance and erosion resistance of laser metal deposition 17-4PHss [J]. Eng. Failure Anal., 2025, 169: 109167
doi: 10.1016/j.engfailanal.2024.109167
|
| [8] |
Garcia-Cabezon C, Castro-Sastre M A, Fernandez-Abia A I, et al. Microstructure-hardness-corrosion performance of 17-4 precipitation hardening stainless steels processed by selective laser melting in comparison with commercial alloy [J]. Met. Mater. Int., 2022, 28: 2652
doi: 10.1007/s12540-021-01155-8
|
| [9] |
Standard test methods for electrochemical critical pitting temperature testing of stainless steels [S]. West Conshohocken, Pennsylvania: ASTM International, 2013
|
| [10] |
Deng B, Jiang Y M, Hao R W, et al. Synergetic effect of fluoride and chloride on the critical pitting temperature of 316 stainless steel [J]. J. Chin. Soc. Corros. Prot., 2008, 28: 30
|
| [10] |
邓 博, 蒋益明, 郝允卫 等. F-和Cl-对316不锈钢临界点蚀温度的协同作用 [J]. 中国腐蚀与防护学报, 2008, 28: 30
|
| [11] |
Yang Z Y, Ji C, Guo L Y, et al. Initial corrosion behavior of several pure irons and steels in 3.5%NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 469
|
| [11] |
杨震宇, 基 超, 郭丽雅 等. 6种典型商用纯铁和钢材在3.5%NaCl溶液中的初期腐蚀行为 [J]. 中国腐蚀与防护学报, 2025, 45: 469
doi: 10.11902/1005.4537.2024.338
|
| [12] |
Hou Y, Zhao J, Cao T S, et al. Improvement on the pitting corrosion resistance of 304 stainless steel via duplex passivation treatment [J]. Mater. Corros., 2019, 70: 1764
|
| [13] |
Goodlet G, Faty S, Cardoso S, et al. The electronic properties of sputtered chromium and iron oxide films [J]. Corros. Sci., 2004, 46: 1479
doi: 10.1016/j.corsci.2003.09.022
|
| [14] |
Li Z, Zhang Y W, Meng G Z, et al. Electrochemical corrosion behavior of 17-4PH stainless steel with laser surface melting treatment [J]. J. Chin. Soc. Corros. Prot., 2012, 32: 210
|
| [14] |
李 众, 张峻巍, 孟国哲 等. 激光表面处理17-4PH不锈钢的电化学腐蚀行为 [J]. 中国腐蚀与防护学报, 2012, 32: 210
|
| [15] |
Olugbade T O, Oladapo B I, Omiyale B O. Electrochemical and microstructural characterization of a precipitation hardened 17-4 steel in different environments [J]. Colloids Surf., 2025, 706A: 135795
|
| [16] |
Wang Z, Feng Z, Zhang L. Effect of high temperature on the corrosion behavior and passive film composition of 316L stainless steel in high H2S-containing environments [J]. Corros. Sci., 2020, 174: 108844
doi: 10.1016/j.corsci.2020.108844
|
| [17] |
Carmezim M J, Simões A M, Montemor M F, et al. Capacitance behaviour of passive films on ferritic and austenitic stainless steel [J]. Corros. Sci., 2005, 47: 581
doi: 10.1016/j.corsci.2004.07.002
|
| [18] |
Barroux A, Duguet T, Ducommun N, et al. Combined XPS/TEM study of the chemical composition and structure of the passive film formed on additive manufactured 17-4PH stainless steel [J]. Surf. Interfaces, 2021, 22: 100874
|
| [19] |
Biesinger M C, Payne B P, Grosvenor A P, et al. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni [J]. Appl. Surf. Sci., 2011, 257: 2717
doi: 10.1016/j.apsusc.2010.10.051
|
| [20] |
Süzer S, Kadirgan F, Söhmen H M. XPS characterization of Co and Cr pigmented copper solar absorbers [J]. Sol. Energy Mater. Sol. Cells, 1999, 56: 183
doi: 10.1016/S0927-0248(98)00159-7
|
| [21] |
Lei X W, Feng Y R, Zhang J X, et al. Impact of reversed austenite on the pitting corrosion behavior of super 13Cr martensitic stainless steel [J]. Electrochim. Acta, 2016, 191: 640
doi: 10.1016/j.electacta.2016.01.094
|
| [22] |
Ping S B, Xie F, Wang R K, et al. Diffusion kinetics of chromium in a novel Super304H stainless steel [J]. High Temp. Mater. Processes, 2017, 36: 175
doi: 10.1515/htmp-2015-0227
|
| [23] |
Wang L, Dong C F, Man C, et al. Effect of microstructure on corrosion behavior of high strength martensite steel: A literature review [J]. Int. J. Miner. Metall. Mater., 2021, 28: 754
doi: 10.1007/s12613-020-2242-6
|
| [24] |
Tavares S S M, da Silva F J, Scandian C, et al. Microstructure and intergranular corrosion resistance of UNS S17400 (17-4PH) stainless steel [J]. Corros. Sci., 2010, 52: 3835
doi: 10.1016/j.corsci.2010.07.016
|
| [25] |
Colaço R, Vilar R. Stabilisation of retained austenite in laser surface melted tool steels [J]. Mater. Sci. Eng., 2004, 385A: 123
|
| [26] |
Ralston K D, Birbilis N, Davies C H J. Revealing the relationship between grain size and corrosion rate of metals [J]. Scr. Mater., 2010, 63: 1201
doi: 10.1016/j.scriptamat.2010.08.035
|
| [27] |
Li Y, Zhang B C, Qu X H. Research progress on the influence of microstructure characteristics of metal additive manufacturing on its corrosion resistance [J]. Chin. J. Eng., 2022, 44: 573
|
| [27] |
李 莹, 张百成, 曲选辉. 金属增材制造的微观组织特征对其抗腐蚀行为影响的研究进展 [J]. 工程科学学报, 2022, 44: 573
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|