|
|
|
| 耐压海乳杆菌对2205双相不锈钢腐蚀行为的影响 |
李雨情1,2, 张铁志1, 黄兴林1,2, 孙振美2, 张怡2( ), 尹衍升2( ) |
1 辽宁科技大学土木工程学院 鞍山 114051 2 广州航海学院 海洋严酷环境使役材料与运维装备广东省高校重点实验室 广州 510725 |
|
| Effect of Marinilactibacillus Piezotolerans on Corrosion Behavior of 2205 Duplex Stainless Steel |
LI Yuqing1,2, ZHANG Tiezhi1, HUANG Xinglin1,2, SUN Zhenmei2, ZHANG Yi2( ), YIN Yansheng2( ) |
1 School of Civil Engineering, University of Science and Technology Liaoning, Anshan 114051, China 2 Guangdong Key Laboratory of Materials and Equipment in Harsh Marine Environment, Guangzhou Maritime University, Guangzhou 510725, China |
引用本文:
李雨情, 张铁志, 黄兴林, 孙振美, 张怡, 尹衍升. 耐压海乳杆菌对2205双相不锈钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(6): 1619-1626.
Yuqing LI,
Tiezhi ZHANG,
Xinglin HUANG,
Zhenmei SUN,
Yi ZHANG,
Yansheng YIN.
Effect of Marinilactibacillus Piezotolerans on Corrosion Behavior of 2205 Duplex Stainless Steel[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(6): 1619-1626.
| [1] |
Iannuzzi M, Frankel G S. The carbon footprint of steel corrosion [J]. npj Mater. Degrada., 2022, 6: 101
|
| [2] |
Hou B R, Zhang D, Wang P. Marine corrosion and protection: Current status and prospect [J]. Bull. Chin. Acad. Sci., 2016, 31: 1326
|
| [2] |
(侯保荣, 张 盾, 王 鹏. 海洋腐蚀防护的现状与未来 [J]. 中国科学院院刊, 2016, 31: 1326)
|
| [3] |
Zhang W Y. Advances in the study of microbiologically influenced corrosion in marine environment [J]. Total Corros. Control, 2017, 31(1): 8
|
| [3] |
(张文毓. 海洋微生物腐蚀研究进展 [J]全面腐蚀控制, 2017, 31(1): 8)
|
| [4] |
Wang Z Q, Wang X T, Huang Y L, et al. Metagenomic insights into nutrient and hypoxic microbial communities at the macrofouling/steel interface leading to severe MIC [J]. npj Mater. Degrad., 2023, 7: 41
|
| [5] |
Pal M K, Lavanya M. Microbial influenced corrosion: Understanding bioadhesion and biofilm formation [J]. J. Bio Tribo Corros., 2022, 8: 76
|
| [6] |
Traverso P, Canepa E. A review of studies on corrosion of metals and alloys in deep-sea environment [J]. Ocean Eng., 2014, 87: 10
|
| [7] |
Gerald O J, Li W G, Li Z, et al. Corrosion behaviour of 2205 duplex stainless steel in marine conditions containing Erythrobacter pelagi bacteria [J]. Mater. Chem. Phys., 2020, 239: 122010
|
| [8] |
Liu Y Z. Study of the corrosion behaviour of 2205 duplex stainless steel in the environment containing pseudomona saeruginosa [D]. Harbin: Harbin Engineering University, 2017
|
| [8] |
(刘玉芝. 2205双相不锈钢在含铜绿假单胞菌环境下的腐蚀行为研究 [D]. 哈尔滨: 哈尔滨工程大学, 2017)
|
| [9] |
Hua W X, Sun R, Wang X Y, et al. Corrosion of Q235 carbon steel induced by sulfate-reducing bacteria in groundwater: Corrosion behavior, corrosion product, and microbial community structure [J]. Environ. Sci. Pollut. Res., 2024, 31: 4269
|
| [10] |
Xu D K, Gu T Y, Lovley D R. Microbially mediated metal corrosion [J]. Nat. Revi. Microbiol., 2023, 21: 705
|
| [11] |
Giorgi-Pérez A M, Arboleda-Ordoñez A M, Villamizar-Suárez W, et al. Biofilm formation and its effects on microbiologically influenced corrosion of carbon steel in oilfield injection water via electrochemical techniques and scanning electron microscopy [J]. Bioelectrochemistry, 2021, 141: 107868
|
| [12] |
Zeng X, Alain K, Shao Z Z. Microorganisms from deep-sea hydrothermal vents [J]. Mar. Life Sci. Technol., 2021, 3: 204
|
| [13] |
Marsili E, Baron D B, Shikhare I D, et al. Shewanella secretes flavins that mediate extracellular electron transfer [J]. Proc. Natl. Acad. Sci. USA, 2008, 105: 3968
|
| [14] |
Xu P, Zhao M H, Bai P K. Effect of hydroxyethylidene diphosphonic acid on iron bacteria induced corrosion of carbon steel in circulating cooling water [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 988
|
| [14] |
(许 萍, 赵美惠, 白鹏凯. 循环冷却水中HEDP对铁细菌腐蚀影响及机理研究 [J] 中国腐蚀与防护学报, 2022, 42: 988)
|
| [15] |
Hamzah E, Hussain M F, Ibrahim Z, et al. Corrosion behaviour of carbon steel in sea water medium in presence of P. aeruginosa bacteria [J]. Arab. J. Sci. Eng., 2014, 39: 6863
|
| [16] |
Yuan S J, Pehkonen S O. Microbiologically influenced corrosion of 304 stainless steel by aerobic Pseudomonas NCIMB 2021 bacteria: AFM and XPS study [J]. Colloids Surf., 2007, 59B: 87
|
| [17] |
Lou Y T, Chang W W, Cui T Y, et al. Microbiologically influenced corrosion inhibition mechanisms in corrosion protection: A review [J]. Bioelectrochemistry, 2021, 141: 107883
|
| [18] |
Ma K J, Wang M M, Shi Z L, et al. Influence of temperature on microbial induced corrosion of tank bottom for crude oil storage [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1051
|
| [18] |
(马凯军, 王萌萌, 史振龙 等. 温度对原油储罐罐底微生物腐蚀影响规律的研究 [J] 中国腐蚀与防护学报, 2022, 42: 1051)
|
| [19] |
Wang Y Y, Zhang R Y, Duan J Z, et al. Extracellular polymeric substances and biocorrosion/biofouling: Recent advances and future perspectives [J]. Int. J. Mol. Sci., 2022, 23: 5566
|
| [20] |
Li C, Wu J J, Zhang D, et al. Effects of Pseudomonas aeruginosa on EH40 steel corrosion in the simulated tidal zone [J]. Water Res., 2023, 232: 119708
|
| [21] |
Chang X T, Song J Q, Wang B, et al. Effect of micro-alloying with Cr, N and Al on corrosion resistance of high manganese austenitic steel in acidic salt spray environment [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 47
|
| [21] |
(常雪婷, 宋嘉琪, 王 冰 等. 微合金化对高锰奥氏体钢在酸性盐雾环境下的耐蚀性能影响研究 [J] 中国腐蚀与防护学报, 2024, 44: 47)
|
| [22] |
Wang X T. Effects of sulfate-reducing bacteria on the corrosion behavior of 2205 duplex stainless steel in 3.5%NaCl solution [D]. Fushun: LiaoNing Petrochemical University, 2020
|
| [22] |
(王欣彤. 硫酸盐还原菌对2205双相不锈钢在3.5%NaCl溶液中腐蚀行为影响研究 [D]. 抚顺: 辽宁石油化工大学, 2020)
|
| [23] |
Li Y P. Corrosion behavior of 2205 duplex stainless steel in extreme environment [D]. Xi'an: Xi'an Shiyou University, 2022
|
| [23] |
(李彦鹏. 极端环境下2205双相不锈钢腐蚀行为研究 [D] 西安: 西安石油大学, 2022)
|
| [24] |
Sun Z M, Guo N, Wang X Y, et al. Adhesion and corrosion effects of biofilms on steel surface mediated by hydrophilic exopolysaccharide colanic acid [J]. Corros. Sci., 2024, 229: 111876
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|