Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (6): 1619-1626     CSTR: 32134.14.1005.4537.2025.024      DOI: 10.11902/1005.4537.2025.024
  研究报告 本期目录 | 过刊浏览 |
耐压海乳杆菌对2205双相不锈钢腐蚀行为的影响
李雨情1,2, 张铁志1, 黄兴林1,2, 孙振美2, 张怡2(), 尹衍升2()
1 辽宁科技大学土木工程学院 鞍山 114051
2 广州航海学院 海洋严酷环境使役材料与运维装备广东省高校重点实验室 广州 510725
Effect of Marinilactibacillus Piezotolerans on Corrosion Behavior of 2205 Duplex Stainless Steel
LI Yuqing1,2, ZHANG Tiezhi1, HUANG Xinglin1,2, SUN Zhenmei2, ZHANG Yi2(), YIN Yansheng2()
1 School of Civil Engineering, University of Science and Technology Liaoning, Anshan 114051, China
2 Guangdong Key Laboratory of Materials and Equipment in Harsh Marine Environment, Guangzhou Maritime University, Guangzhou 510725, China
引用本文:

李雨情, 张铁志, 黄兴林, 孙振美, 张怡, 尹衍升. 耐压海乳杆菌对2205双相不锈钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(6): 1619-1626.
Yuqing LI, Tiezhi ZHANG, Xinglin HUANG, Zhenmei SUN, Yi ZHANG, Yansheng YIN. Effect of Marinilactibacillus Piezotolerans on Corrosion Behavior of 2205 Duplex Stainless Steel[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(6): 1619-1626.

全文: PDF(8771 KB)   HTML
摘要: 

以深海耐压菌为实验对象,研究其在最佳生长温度28 ℃条件下对2205双相不锈钢腐蚀影响规律及作用机制,旨在为深海环境中金属使役材料的微生物腐蚀研究提供理论支撑。本文选择了从南太平洋环流区洋底沉积物中分离提纯出来的耐压海乳杆菌(M. piezotolerans),采用激光共聚焦显微镜(CLSM)、扫描电子显微镜(SEM)、射线光电子能谱(XPS)和电化学阻抗谱(EIS)等表征方法研究了2205双相不锈钢在耐压海乳杆菌中的腐蚀行为。结果表明M. piezotolerans在样品表面形成了一层具有三维结构的腐蚀产物膜。M. piezotolerans具有更小的阻抗值和更大的腐蚀电流,其均匀腐蚀速率也更低,并且M. piezotolerans培养液中样品表面出现小点蚀坑。总的来说,在M. piezotolerans菌液中,2205双相不锈钢表面附着形成的生物膜,可以在一定程度上抑制样品表面的均匀腐蚀,但加剧局部腐蚀,金属表面出现明显点蚀坑。

关键词 2205双相不锈钢耐压海乳杆菌微生物腐蚀电化学分析生物膜    
Abstract

In the harsh marine environment, various metallic materials in service are subjected to varying degrees of corrosion damage, significantly impacting marine ecosystems and economic efficiency. While the mechanisms of microbial corrosion in shallow marine environments have become a focal point of international research, with substantial progress made in theoretical frameworks and experimental data accumulation, the understanding of microbial corrosion mechanisms under the unique conditions of deep-sea environments remains limited. This study focuses on the effect of deep-sea piezotolerant bacteria on the corrosion of 2205 duplex stainless steel in M. piezotolerans bacteria containing media at 28 oC, namely the optimal growth temperature of that bacteria, aiming to provide theoretical support for microbial corrosion research on metallic materials in deep-sea environments. The M. piezotolerans bacteria used in this study, was isolated and purified from sampling sediments from the South Pacific Gyre. Characterization techniques such as confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), X-ray photoelectron currents. The uniform corrosion rate was reduced; however, small pitting corrosion sites were observed on the spectroscopy (XPS), and electrochemical impedance spectroscopy (EIS) were employed to examine the corrosion behavior of 2205 duplex stainless steel in the presence of M. piezotolerans. The results demonstrated that the presence of M. piezotolerans may facilitate the formation of a three-dimensional structured corrosion products film on the steel surface. Compared to sterile solutions, steels in M. piezotolerans culture exhibited lower impedance values and higher corrosion rate. Overall, the biofilm formed in the presence of M. piezotolerans on 2205 duplex stainless steel could partially inhibit the uniform corrosion of the steel but exacerbated localized corrosion, resulting in the formation of distinct pitting sites on the steel surface.

Key words2205 duplex stainless steel    M. piezotolerans    microbial corrosion    electrochemical analysis    biofilm
收稿日期: 2025-01-16      32134.14.1005.4537.2025.024
ZTFLH:  TG172  
基金资助:广州市“羊城学者”科研项目(2024312143);国家自然科学基金(52371059);国家自然科学基金(52001081);国家自然科学基金(52274296)
通讯作者: 张怡,E-mail:zhangyizzdx@163.com,研究方向为海洋工程材料防护及防腐尹衍升,E-mail:ysyin@shmtu.edu.cn,研究方向为船舶工程材料、海洋工程装备蚀损防护及海洋极端环境材料研发
Corresponding author: ZHANG Yi, E-mail: zhangyizzdx@163.comYIN Yansheng, E-mail: ysyin@shmtu.edu.cn
作者简介: 李雨情,女,1999年生,硕士生
图1  2205双相不锈钢在M. piezotolerans培养液中浸泡7和14 d后表面生物膜的CLSM像
图2  2205双相不锈钢分别在灭菌和有菌介质中浸泡7和14 d后的SEM图
图3  2205双相不锈钢分别在灭菌和有菌介质中浸泡7和14 d并酸洗后的CLSM形貌
图4  2205双相不锈钢分别在灭菌和有菌介质中浸泡14 d后表面XPS全谱图
GroupCOFeCrCl
Control19.9810.181.569.665.84
M. piezotolerans30.2816.191.5510.941.76
表1  2205双相不锈钢在灭菌和有菌介质中浸泡14 d后表面XPS成分分析结果 (atomic fraction / %)
图5  2205双相不锈钢分别在灭菌和有菌介质中浸泡14 d并酸洗后的表面Fe和Cr的XPS精细谱图
图6  2205双相不锈钢在灭菌和有菌介质中浸泡14 d后的极化曲线
图7  2205双相不锈钢在灭菌和有菌介质中浸泡14 d后的电化学阻抗谱
MediaTime / dRs / Ω·cm2nRf / Ω·cm2nRct / Ω·cm2
Control126440.91.69 × 1080.801.73 × 107
331640.81.58 × 1080.969.66 × 107
528660.91.61 × 1080.913.96 × 107
724580.91.62 × 1080.804.75 × 107
917810.92.54 × 1080.628.18 × 107
1219910.91.19 × 1090.533.15 × 108
1420780.91.22 × 1090.432.28 × 108
M. piezotolerans118330.93.01 × 1050.801.54 × 108
322430.81.05 × 1080.966.74 × 107
516630.81.42 × 1080.803.01 × 107
715860.91.61 × 1080.82.96 × 107
915570.91.51 × 1080.82.79 × 107
1215160.91.01 × 1080.762.79 × 107
1414780.91.01 × 1080.793.96 × 107
表2  2205双相不锈钢在灭菌和有菌介质中浸泡14 d后的电化学阻抗谱拟合数据
[1] Iannuzzi M, Frankel G S. The carbon footprint of steel corrosion [J]. npj Mater. Degrada., 2022, 6: 101
[2] Hou B R, Zhang D, Wang P. Marine corrosion and protection: Current status and prospect [J]. Bull. Chin. Acad. Sci., 2016, 31: 1326
[2] (侯保荣, 张 盾, 王 鹏. 海洋腐蚀防护的现状与未来 [J]. 中国科学院院刊, 2016, 31: 1326)
[3] Zhang W Y. Advances in the study of microbiologically influenced corrosion in marine environment [J]. Total Corros. Control, 2017, 31(1): 8
[3] (张文毓. 海洋微生物腐蚀研究进展 [J]全面腐蚀控制, 2017, 31(1): 8)
[4] Wang Z Q, Wang X T, Huang Y L, et al. Metagenomic insights into nutrient and hypoxic microbial communities at the macrofouling/steel interface leading to severe MIC [J]. npj Mater. Degrad., 2023, 7: 41
[5] Pal M K, Lavanya M. Microbial influenced corrosion: Understanding bioadhesion and biofilm formation [J]. J. Bio Tribo Corros., 2022, 8: 76
[6] Traverso P, Canepa E. A review of studies on corrosion of metals and alloys in deep-sea environment [J]. Ocean Eng., 2014, 87: 10
[7] Gerald O J, Li W G, Li Z, et al. Corrosion behaviour of 2205 duplex stainless steel in marine conditions containing Erythrobacter pelagi bacteria [J]. Mater. Chem. Phys., 2020, 239: 122010
[8] Liu Y Z. Study of the corrosion behaviour of 2205 duplex stainless steel in the environment containing pseudomona saeruginosa [D]. Harbin: Harbin Engineering University, 2017
[8] (刘玉芝. 2205双相不锈钢在含铜绿假单胞菌环境下的腐蚀行为研究 [D]. 哈尔滨: 哈尔滨工程大学, 2017)
[9] Hua W X, Sun R, Wang X Y, et al. Corrosion of Q235 carbon steel induced by sulfate-reducing bacteria in groundwater: Corrosion behavior, corrosion product, and microbial community structure [J]. Environ. Sci. Pollut. Res., 2024, 31: 4269
[10] Xu D K, Gu T Y, Lovley D R. Microbially mediated metal corrosion [J]. Nat. Revi. Microbiol., 2023, 21: 705
[11] Giorgi-Pérez A M, Arboleda-Ordoñez A M, Villamizar-Suárez W, et al. Biofilm formation and its effects on microbiologically influenced corrosion of carbon steel in oilfield injection water via electrochemical techniques and scanning electron microscopy [J]. Bioelectrochemistry, 2021, 141: 107868
[12] Zeng X, Alain K, Shao Z Z. Microorganisms from deep-sea hydrothermal vents [J]. Mar. Life Sci. Technol., 2021, 3: 204
[13] Marsili E, Baron D B, Shikhare I D, et al. Shewanella secretes flavins that mediate extracellular electron transfer [J]. Proc. Natl. Acad. Sci. USA, 2008, 105: 3968
[14] Xu P, Zhao M H, Bai P K. Effect of hydroxyethylidene diphosphonic acid on iron bacteria induced corrosion of carbon steel in circulating cooling water [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 988
[14] (许 萍, 赵美惠, 白鹏凯. 循环冷却水中HEDP对铁细菌腐蚀影响及机理研究 [J] 中国腐蚀与防护学报, 2022, 42: 988)
[15] Hamzah E, Hussain M F, Ibrahim Z, et al. Corrosion behaviour of carbon steel in sea water medium in presence of P. aeruginosa bacteria [J]. Arab. J. Sci. Eng., 2014, 39: 6863
[16] Yuan S J, Pehkonen S O. Microbiologically influenced corrosion of 304 stainless steel by aerobic Pseudomonas NCIMB 2021 bacteria: AFM and XPS study [J]. Colloids Surf., 2007, 59B: 87
[17] Lou Y T, Chang W W, Cui T Y, et al. Microbiologically influenced corrosion inhibition mechanisms in corrosion protection: A review [J]. Bioelectrochemistry, 2021, 141: 107883
[18] Ma K J, Wang M M, Shi Z L, et al. Influence of temperature on microbial induced corrosion of tank bottom for crude oil storage [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1051
[18] (马凯军, 王萌萌, 史振龙 等. 温度对原油储罐罐底微生物腐蚀影响规律的研究 [J] 中国腐蚀与防护学报, 2022, 42: 1051)
[19] Wang Y Y, Zhang R Y, Duan J Z, et al. Extracellular polymeric substances and biocorrosion/biofouling: Recent advances and future perspectives [J]. Int. J. Mol. Sci., 2022, 23: 5566
[20] Li C, Wu J J, Zhang D, et al. Effects of Pseudomonas aeruginosa on EH40 steel corrosion in the simulated tidal zone [J]. Water Res., 2023, 232: 119708
[21] Chang X T, Song J Q, Wang B, et al. Effect of micro-alloying with Cr, N and Al on corrosion resistance of high manganese austenitic steel in acidic salt spray environment [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 47
[21] (常雪婷, 宋嘉琪, 王 冰 等. 微合金化对高锰奥氏体钢在酸性盐雾环境下的耐蚀性能影响研究 [J] 中国腐蚀与防护学报, 2024, 44: 47)
[22] Wang X T. Effects of sulfate-reducing bacteria on the corrosion behavior of 2205 duplex stainless steel in 3.5%NaCl solution [D]. Fushun: LiaoNing Petrochemical University, 2020
[22] (王欣彤. 硫酸盐还原菌对2205双相不锈钢在3.5%NaCl溶液中腐蚀行为影响研究 [D]. 抚顺: 辽宁石油化工大学, 2020)
[23] Li Y P. Corrosion behavior of 2205 duplex stainless steel in extreme environment [D]. Xi'an: Xi'an Shiyou University, 2022
[23] (李彦鹏. 极端环境下2205双相不锈钢腐蚀行为研究 [D] 西安: 西安石油大学, 2022)
[24] Sun Z M, Guo N, Wang X Y, et al. Adhesion and corrosion effects of biofilms on steel surface mediated by hydrophilic exopolysaccharide colanic acid [J]. Corros. Sci., 2024, 229: 111876
[1] 邓艳, 彭子飘, 刘毅超, 钟显康. 一种新型含铜钛合金的制备与抗菌性能研究[J]. 中国腐蚀与防护学报, 2025, 45(6): 1649-1658.
[2] 杨宝齐, 闫茂成, 史显波, 高博文. 新型耐微生物腐蚀油管钢的硫酸盐还原菌腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(6): 1755-1763.
[3] 郭章伟, 叶婷雨, 郭娜, 刘涛. EH36钢中MoSRB附着和腐蚀的影响及机理[J]. 中国腐蚀与防护学报, 2025, 45(5): 1341-1350.
[4] 黄诗雨, 刘士琛, 杨淞普, 刘家兵, 李刚, 郭娜, 刘涛. FH40船用钢在模拟极地海水环境中的腐蚀与磨蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(4): 859-868.
[5] 张维智, 冯思乔, 宋霄鹏, 刘艾华, 唐德志, 闫茂成, 韩恩厚. 聚合物驱集输管道微生物腐蚀行为实验研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 1098-1106.
[6] 戚鹏, 王鹏, 曾艳, 张盾. 微生物腐蚀的检测方法和预测模型[J]. 中国腐蚀与防护学报, 2025, 45(3): 602-610.
[7] 姜慧芳, 刘扬豪, 刘莹, 李迎超, 于浩波, 赵博, 陈曦. 地下储氢库J55钢氢环境下微生物腐蚀机理研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 347-358.
[8] 汤熠鑫, 张飞, 崔中雨, 崔洪芝, 李燚周. 氢对2205双相不锈钢在3.5%NaCl溶液中缝隙腐蚀行为影响[J]. 中国腐蚀与防护学报, 2025, 45(2): 431-437.
[9] 许竞翔, 黄睿阳, 褚振华, 蒋全通. FeNiCoCrW0.2Al0.1 高熵合金在硫酸盐还原菌溶液环境下的腐蚀研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 460-468.
[10] 燕冰川, 曾云鹏, 张宁, 史显波, 严伟. 石油管材用含Cu钢焊接接头的微生物腐蚀研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 479-488.
[11] 王娅利, 管方, 段继周, 张丽娜, 杨政险, 侯保荣. 鼠李糖脂与2,2-二溴-3-次氮基丙酰胺协同抑制X80管线钢的微生物腐蚀[J]. 中国腐蚀与防护学报, 2024, 44(6): 1412-1422.
[12] 柯楠, 倪莹莹, 何嘉淇, 柳海宪, 金正宇, 刘宏伟. 微生物胞外聚合物引起的金属腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2024, 44(2): 278-294.
[13] 裴莹莹, 管方, 董续成, 张瑞永, 段继周, 侯保荣. Desulfovibrio Bizertensis SY-1在阴极极化条件下对X70 管线钢的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 345-354.
[14] 高秋英, 曾文广, 王恒, 刘元聪, 扈俊颖. 流体冲刷作用对SRB的腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1087-1093.
[15] 吴佳佳, 徐鸣, 王鹏, 张盾. 天然海水中硝酸盐的添加对EH40钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2023, 43(4): 765-772.