Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (6): 1610-1618     CSTR: 32134.14.1005.4537.2025.082      DOI: 10.11902/1005.4537.2025.082
  研究报告 本期目录 | 过刊浏览 |
NaCl347HGH3539在熔融硝酸盐中热腐蚀行为的影响
彭望1,2, 陈荐1, 杨凌旭2, 刘会军2(), 梁建平3, 曾潮流2()
1 长沙理工大学能源与动力工程学院 长沙 410114
2 松山湖材料实验室 东莞 523808
3 中国科学院上海应用物理研究所 上海 201800
Effect of NaCl on Hot Corrosion Behavior of 347H Stainless Steel and Ni-based GH3539 Alloy in Molten Nitrate Salts
PENG Wang1,2, CHEN Jian1, YANG Lingxu2, LIU Huijun2(), LIANG Jianping3, ZENG Chaoliu2()
1 College of Energy and Power Engineering, Changsha University of Science and Technology, Changsha 410114, China
2 Songshan Lake Materials Laboratory, Dongguan 523808, China
3 Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
引用本文:

彭望, 陈荐, 杨凌旭, 刘会军, 梁建平, 曾潮流. NaCl347HGH3539在熔融硝酸盐中热腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(6): 1610-1618.
Wang PENG, Jian CHEN, Lingxu YANG, Huijun LIU, Jianping LIANG, Chaoliu ZENG. Effect of NaCl on Hot Corrosion Behavior of 347H Stainless Steel and Ni-based GH3539 Alloy in Molten Nitrate Salts[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(6): 1610-1618.

全文: PDF(12417 KB)   HTML
摘要: 

研究了NaCl对347H不锈钢与GH3539镍基合金在600 ℃熔融(Na, K)NO3中热腐蚀行为的影响。结果表明,NaCl加速了347H和GH3539的热腐蚀,其中对347H的加速作用更为明显。在熔融(Na, K)NO3中,347H表面能形成富Cr氧化膜,而GH3535表面则形成外层为NiO、中间层为金属Ni和内层为内氧化区的腐蚀产物层。在熔融(Na, K)NO3中加入NaCl后,Cl向金属基体扩散,使基体合金元素发生氯化反应,破坏了氧化膜与合金基体的结合力,从而加速了腐蚀,且这种加速作用随NaCl含量的升高而增强。

关键词 热腐蚀347H不锈钢镍基GH3539合金硝酸盐氯化盐    
Abstract

The effect of NaCl on the corrosion behavior of 347H stainless steel and GH3539 nickel-based alloy in molten (Na, K)NO3 at 600 oC has been investigated. It is shown that the addition of NaCl can markedly accelerate the corrosion of 347H and GH3539 in the melt, with a more pronounced effect on 347H. In molten (Na, K)NO3, 347H can form a Cr-rich oxide scale, while GH3539 produces layered products composed of an outer NiO, a middle metallic Ni, and an inner internal oxidation layer. When NaCl is added to molten (Na, K)NO3, chlorine produced by the reaction between NaCl and oxides formed on the alloy surface diffuses into the alloy matrix, giving rise to chlorination reactions of alloying elements. This chlorine-induced corrosion weakens the bonding between the oxide scale and the alloy matrix, ultimately leading to accelerated corrosion of both alloys, with the effect enhanced by higher NaCl content.

Key wordshot corrosion    347H stainless steel    GH3539 nickel-based alloy    nitrate salts    chloride salts
收稿日期: 2025-03-11      32134.14.1005.4537.2025.082
ZTFLH:  TG174.4  
基金资助:国家重点研发计划(2021YFB3700603)
通讯作者: 刘会军,E-mail:hui_jun_liu@163.com,研究方向为金属的腐蚀与防护曾潮流,E-mail:clzeng@imr.ac.cn,研究方向为金属的腐蚀与防护
Corresponding author: LIU Huijun, E-mail: hui_jun_liu@163.comZENG Chaoliu, E-mail: clzeng@imr.ac.cn
作者简介: 彭 望,男,2000年生,硕士生
AlloyFeNiCrWMoMnSiCTi
347HBal.9.4317.45-0.321.610.630.0570.060
GH35390.51Bal.5.8226.101.04-0.130.0260.21
表1  347H不锈钢和GH3539合金的化学成分
图1  347H不锈钢和GH3539合金在600 ℃熔融(Na, K)NO3-NaCl中的腐蚀失重曲线
图2  347H不锈钢和GH3539合金在600 ℃熔融(Na, K)NO3中腐蚀1000 h后的表面XRD图谱
图3  347H不锈钢和GH3539合金在600 ℃熔融(Na, K)NO3-1%NaCl中腐蚀不同时间后的表面XRD图谱
图4  347H不锈钢在600 ℃熔融(Na, K)NO3中腐蚀1000 h后的腐蚀产物断面形貌
图5  347H不锈钢在600 ℃熔融(Na, K)NO3-1%NaCl)中腐蚀100 h后的断面形貌
图6  347H不锈钢在600 ℃熔融(Na, K)NO3-1%NaCl中热腐蚀不同时间后的腐蚀产物断面形貌
图7  347H不锈钢在600 ℃熔融(Na, K)NO3-5%NaCl中热腐蚀100和400 h后的腐蚀产物断面形貌
图8  GH3539合金在600 ℃熔融(Na, K)NO3中腐蚀1000 h后的腐蚀产物断面形貌
图9  GH3539合金在600 ℃熔融(Na, K)NO3-1%NaCl中热腐蚀不同时间后的腐蚀产物断面形貌
图10  GH3539合金在600 ℃熔融(Na, K)NO3-5%NaCl热腐蚀100 h和400 h后的断面形貌
图 11  W-Cl2-O2在600 ℃的热力学稳定性图
[1] He Y L, Qiu Y, Wang K, et al. Perspective of concentrating solar power [J]. Energy, 2020, 198: 117373
[2] Yao Y B, Zheng S Z, Yang Y, et al. Progress and prospects on solar energy resource evaluation and utilization efficiency in China [J]. Acta Energ. Sol. Sin., 2022, 43: 524
[2] (姚玉璧, 郑绍忠, 杨 扬 等. 中国太阳能资源评估及其利用效率研究进展与展望 [J]. 太阳能学报, 2022, 43: 524)
[3] Li G, Fu Y C, Yu H C, et al. Research progress in thermal energy storage molten salts for concentrated solar power systems [J]. Mater. Rep., 2025, 39: 24010158
[3] (李 广, 付一川, 余海存 等. 光热发电储能熔盐研究进展 [J]. 材料导报, 2025, 39: 24010158)
[4] Bonk A, Braun M, Sötz V A, et al. Solar Salt-Pushing an old material for energy storage to a new limit [J]. Appl. Energy, 2020, 262: 114535
[5] Bonk A, Rückle D, Kaesche S, et al. Impact of Solar Salt aging on corrosion of martensitic and austenitic steel for concentrating solar power plants [J]. Sol. Energy Mater. Sol. Cells, 2019, 203: 110162
[6] Li K Y, Zhai Y L, Hu X Y, et al. Research progress on high temperature corrosion of eutectic high entropy alloys [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1377
[6] (李开洋, 翟蕴龙, 胡新宇 等. 共晶高熵合金高温腐蚀的研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 1377)
[7] Li H, Feng X C, Wang X W, et al. Impact of temperature on corrosion behavior of austenitic stainless steels in solar salt for CSP application: An electrochemical study [J]. Sol. Energ. Mater. Sol. Cells, 2022, 239: 111661
[8] Bonk A, Ding W J, Hanke A, et al. Effect of gas management on corrosion resistance in molten solar salt up to 620 oC: Corrosion of SS316-types and SS347 [J]. Corros. Sci., 2024, 227: 111700
[9] Liu Q Y, Qian J, Barker R, et al. Effect of thermal cycling on the corrosion behaviour of stainless steels and Ni-based alloys in molten salts under air and argon [J]. Sol. Energy, 2022, 238: 248
[10] Sun Z, Su L, Gao X Y, et al. Influences of impurity Cl- on the thermal performance of solar salt for thermal energy storage [J]. Sol. Energy, 2021, 216: 90
[11] Castro-Quijada M, Faundez D, Rojas R, et al. Improving the working fluid based on a NaNO3-KNO3-NaCl-KCl molten salt mixture for concentrating solar power energy storage [J]. Sol. Energy, 2022, 231: 464
[12] Zhu M, Zeng S, Sharif A, et al. Effects of chloride ions on electrochemical reaction of 316 stainless steel in mixtures of molten nitrate salts [J]. Mater. Sci. Eng. Technol., 2020, 51: 1161
[13] Li H, Wang X W, Yin X Z, et al. Corrosion and electrochemical investigations for stainless steels in molten solar salt: The influence of chloride impurity [J]. J. Energy Storage, 2021, 39: 102675
[14] Wang Y L, Huang J N, Liu H J, et al. Effect of chlorides and sulfates on the corrosion of SS347 and GH3539 in molten solar salt [J]. Sol. Energy Mater. Sol. Cells, 2024, 270: 112820
[15] Gomes A, Navas M, Uranga N, et al. High-temperature corrosion performance of austenitic stainless steels type AISI 316L and AISI 321H, in molten solar salt [J]. Sol. Energy, 2019, 177: 408
[16] Gao Q, Lu Y W, Yang Y C, et al. Are unexpected chloride ions in molten salt really harmful to stainless steel? [J]. J. Energy Storage, 2022, 54: 105317
[17] Zhang J L, Fu G Y, Ning L K, et al. Hot corrosion behavior of a nickel based single crystal high temperature alloy subjected to different heat treatments [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1625
[17] (张金龙, 付广艳, 宁礼奎 等. 两种热处理状态的镍基单晶高温合金在900 ℃下(Na2SO4 + NaCl)混合盐中热腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1625)
[18] Yan J D, Liu W H, Tang Z F. Corrosion behavior and mechanism of GH3539 alloy in molten NaCl-KCl-CaCl2 salts at 800 oC [J]. J. Energy Storage, 2024, 98: 112942
[19] Liu S L, Ye X X, Yan S, et al. Unexpected accelerated corrosion of Cr in Ni-xW-6Cr alloy with W content increasing [J]. Corros. Sci., 2021, 191: 109761
[20] Soleimani Dorcheh A, Durham R N, Galetz M C. Corrosion behavior of stainless and low-chromium steels and IN625 in molten nitrate salts at 600 oC [J]. Sol. Energy Mater. Sol. Cells, 2016, 144:109
[21] Bauer T, Laing D, Tamme R. Characterization of sodium nitrate as phase change material [J]. Int. J. Thermophys., 2012, 33: 91
[22] Smith S W, Vogel W M, Kapelner S. Solubilities of oxygen in fused Li2CO3-K2CO3 [J]. J. Electrochem. Soc., 1982, 129: 1668
[23] Singh I B. The influence of moisture on the oxidation rate of iron in NaNO3 and KNO3 melts [J]. Corros. Sci., 1995, 37: 1981
[24] Zeng C L, Wang W, Wu W T. Electrochemical-impedance study of the corrosion of Ni and FeAl intermetallic alloy in molten (0.62Li, 0.38K)2CO3 at 650 oC [J]. Oxid. Met., 2000, 53: 289
[25] Palacios A, Navarro M E, Jiang Z, et al. High-temperature corrosion behaviour of metal alloys in commercial molten salts [J]. Sol. Energy, 2020, 201: 437
[26] Audigié P, Encinas-Sánchez V, Juez-Lorenzo M, et al. High temperature molten salt corrosion behavior of aluminide and nickel-aluminide coatings for heat storage in concentrated solar power plants [J]. Surf. Coat. Technol., 2018, 349: 1148
[27] Guruswamy S, Park S M, Hirth J P, et al. Internal oxidation of Ag-in alloys: Stress relief and the influence of imposed strain [J]. Oxid. Met., 1986, 26: 77
[1] 叶俊, 罗鑫, 镇咸生, 李新平, 谢云, 彭晓. Inconel 718合金在750 ℃下不同气氛中的氧化与热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(6): 1528-1536.
[2] 白英雄, 王艳丽, 李相伟, 吴泽峰, 张书彦. 热处理对激光选区熔化GH4099镍基高温合金900 ℃(75%Na2SO4 + 25%NaCl)热腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(6): 1709-1716.
[3] 赵欣宇, 刘恩泽, 张功, 赵媛, 宁礼奎, 信昕, 贾丹, 刘伟华, 谭政. 不同温度下DD10合金钎焊接头热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(5): 1361-1370.
[4] 王宇晗, 李俊, 刘恒维, 许楠, 刘杰, 陈旭. 海洋环境中金属材料微生物腐蚀研究进展[J]. 中国腐蚀与防护学报, 2025, 45(3): 577-588.
[5] 张勇康, 翟海民, 李旭强, 李文生. Fe基非晶涂层在Na2SO4 + K2SO4Na2SO4 +NaCl混合盐中的热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(1): 92-102.
[6] 黄勤英, 李彧卓, 阳颖飞, 任盼, 王启伟. Pt改性共晶高熵合金AlCoCrFeNi2.1 热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(1): 115-126.
[7] 王粤, 耿树江, 王金龙, 王福会, 孙清云, 吴勇, 夏思瑶. K444合金表面CVD渗铝涂层耐高温95%Na2SO4 + 5%NaCl腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(1): 127-136.
[8] 喻政, 陈明辉, 王金龙, 杨莎莎, 王福会. 煤灰中碱金属硫酸盐和氯盐含量对HR3C和渗铝HR3C不锈钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(6): 1389-1398.
[9] 张金龙, 付广艳, 宁礼奎, 刘恩泽, 谭政, 佟健, 郑志. 两种热处理状态的镍基单晶高温合金在900℃(Na2SO4 + NaCl)混合盐中热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1625-1632.
[10] 胡琪, 耿树江, 王金龙, 王福会, 孙清云, 吴勇, 夏思瑶. Inconel 718及其渗铝涂层在Na2SO4 + 5%NaCl混合盐膜下的热腐蚀行为[J]. 中国腐蚀与防护学报, 2024, 44(3): 623-634.
[11] 王华, 王英杰, 刘恩泽. Ni含量对Co-Al-W合金热腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1419-1426.
[12] 吴佳佳, 徐鸣, 王鹏, 张盾. 天然海水中硝酸盐的添加对EH40钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2023, 43(4): 765-772.
[13] 尚进, 古岩, 赵京, 王哲, 张博, 赵统君, 陈泽浩, 王金龙. 增材制造Hastelloy X合金在850 ℃混合硫酸盐中热腐蚀行为及其对力学性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(3): 671-676.
[14] 申聚宝, 崔宇, 刘莉, 刘叡, 孟凡帝, 王福会. DZ40M和K452高温合金在NaCl熔盐中的循环热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 280-288.
[15] 韩瑞珠, 贾建文, 李阳, 张威, 徐芳泓, 侯利锋, 卫英慧. 超级奥氏体不锈钢的热腐蚀行为及机理研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 421-427.