|
|
|
| NaCl对347H和GH3539在熔融硝酸盐中热腐蚀行为的影响 |
彭望1,2, 陈荐1, 杨凌旭2, 刘会军2( ), 梁建平3, 曾潮流2( ) |
1 长沙理工大学能源与动力工程学院 长沙 410114 2 松山湖材料实验室 东莞 523808 3 中国科学院上海应用物理研究所 上海 201800 |
|
| Effect of NaCl on Hot Corrosion Behavior of 347H Stainless Steel and Ni-based GH3539 Alloy in Molten Nitrate Salts |
PENG Wang1,2, CHEN Jian1, YANG Lingxu2, LIU Huijun2( ), LIANG Jianping3, ZENG Chaoliu2( ) |
1 College of Energy and Power Engineering, Changsha University of Science and Technology, Changsha 410114, China 2 Songshan Lake Materials Laboratory, Dongguan 523808, China 3 Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China |
引用本文:
彭望, 陈荐, 杨凌旭, 刘会军, 梁建平, 曾潮流. NaCl对347H和GH3539在熔融硝酸盐中热腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(6): 1610-1618.
Wang PENG,
Jian CHEN,
Lingxu YANG,
Huijun LIU,
Jianping LIANG,
Chaoliu ZENG.
Effect of NaCl on Hot Corrosion Behavior of 347H Stainless Steel and Ni-based GH3539 Alloy in Molten Nitrate Salts[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(6): 1610-1618.
| [1] |
He Y L, Qiu Y, Wang K, et al. Perspective of concentrating solar power [J]. Energy, 2020, 198: 117373
|
| [2] |
Yao Y B, Zheng S Z, Yang Y, et al. Progress and prospects on solar energy resource evaluation and utilization efficiency in China [J]. Acta Energ. Sol. Sin., 2022, 43: 524
|
| [2] |
(姚玉璧, 郑绍忠, 杨 扬 等. 中国太阳能资源评估及其利用效率研究进展与展望 [J]. 太阳能学报, 2022, 43: 524)
|
| [3] |
Li G, Fu Y C, Yu H C, et al. Research progress in thermal energy storage molten salts for concentrated solar power systems [J]. Mater. Rep., 2025, 39: 24010158
|
| [3] |
(李 广, 付一川, 余海存 等. 光热发电储能熔盐研究进展 [J]. 材料导报, 2025, 39: 24010158)
|
| [4] |
Bonk A, Braun M, Sötz V A, et al. Solar Salt-Pushing an old material for energy storage to a new limit [J]. Appl. Energy, 2020, 262: 114535
|
| [5] |
Bonk A, Rückle D, Kaesche S, et al. Impact of Solar Salt aging on corrosion of martensitic and austenitic steel for concentrating solar power plants [J]. Sol. Energy Mater. Sol. Cells, 2019, 203: 110162
|
| [6] |
Li K Y, Zhai Y L, Hu X Y, et al. Research progress on high temperature corrosion of eutectic high entropy alloys [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1377
|
| [6] |
(李开洋, 翟蕴龙, 胡新宇 等. 共晶高熵合金高温腐蚀的研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 1377)
|
| [7] |
Li H, Feng X C, Wang X W, et al. Impact of temperature on corrosion behavior of austenitic stainless steels in solar salt for CSP application: An electrochemical study [J]. Sol. Energ. Mater. Sol. Cells, 2022, 239: 111661
|
| [8] |
Bonk A, Ding W J, Hanke A, et al. Effect of gas management on corrosion resistance in molten solar salt up to 620 oC: Corrosion of SS316-types and SS347 [J]. Corros. Sci., 2024, 227: 111700
|
| [9] |
Liu Q Y, Qian J, Barker R, et al. Effect of thermal cycling on the corrosion behaviour of stainless steels and Ni-based alloys in molten salts under air and argon [J]. Sol. Energy, 2022, 238: 248
|
| [10] |
Sun Z, Su L, Gao X Y, et al. Influences of impurity Cl- on the thermal performance of solar salt for thermal energy storage [J]. Sol. Energy, 2021, 216: 90
|
| [11] |
Castro-Quijada M, Faundez D, Rojas R, et al. Improving the working fluid based on a NaNO3-KNO3-NaCl-KCl molten salt mixture for concentrating solar power energy storage [J]. Sol. Energy, 2022, 231: 464
|
| [12] |
Zhu M, Zeng S, Sharif A, et al. Effects of chloride ions on electrochemical reaction of 316 stainless steel in mixtures of molten nitrate salts [J]. Mater. Sci. Eng. Technol., 2020, 51: 1161
|
| [13] |
Li H, Wang X W, Yin X Z, et al. Corrosion and electrochemical investigations for stainless steels in molten solar salt: The influence of chloride impurity [J]. J. Energy Storage, 2021, 39: 102675
|
| [14] |
Wang Y L, Huang J N, Liu H J, et al. Effect of chlorides and sulfates on the corrosion of SS347 and GH3539 in molten solar salt [J]. Sol. Energy Mater. Sol. Cells, 2024, 270: 112820
|
| [15] |
Gomes A, Navas M, Uranga N, et al. High-temperature corrosion performance of austenitic stainless steels type AISI 316L and AISI 321H, in molten solar salt [J]. Sol. Energy, 2019, 177: 408
|
| [16] |
Gao Q, Lu Y W, Yang Y C, et al. Are unexpected chloride ions in molten salt really harmful to stainless steel? [J]. J. Energy Storage, 2022, 54: 105317
|
| [17] |
Zhang J L, Fu G Y, Ning L K, et al. Hot corrosion behavior of a nickel based single crystal high temperature alloy subjected to different heat treatments [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1625
|
| [17] |
(张金龙, 付广艳, 宁礼奎 等. 两种热处理状态的镍基单晶高温合金在900 ℃下(Na2SO4 + NaCl)混合盐中热腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1625)
|
| [18] |
Yan J D, Liu W H, Tang Z F. Corrosion behavior and mechanism of GH3539 alloy in molten NaCl-KCl-CaCl2 salts at 800 oC [J]. J. Energy Storage, 2024, 98: 112942
|
| [19] |
Liu S L, Ye X X, Yan S, et al. Unexpected accelerated corrosion of Cr in Ni-xW-6Cr alloy with W content increasing [J]. Corros. Sci., 2021, 191: 109761
|
| [20] |
Soleimani Dorcheh A, Durham R N, Galetz M C. Corrosion behavior of stainless and low-chromium steels and IN625 in molten nitrate salts at 600 oC [J]. Sol. Energy Mater. Sol. Cells, 2016, 144:109
|
| [21] |
Bauer T, Laing D, Tamme R. Characterization of sodium nitrate as phase change material [J]. Int. J. Thermophys., 2012, 33: 91
|
| [22] |
Smith S W, Vogel W M, Kapelner S. Solubilities of oxygen in fused Li2CO3-K2CO3 [J]. J. Electrochem. Soc., 1982, 129: 1668
|
| [23] |
Singh I B. The influence of moisture on the oxidation rate of iron in NaNO3 and KNO3 melts [J]. Corros. Sci., 1995, 37: 1981
|
| [24] |
Zeng C L, Wang W, Wu W T. Electrochemical-impedance study of the corrosion of Ni and FeAl intermetallic alloy in molten (0.62Li, 0.38K)2CO3 at 650 oC [J]. Oxid. Met., 2000, 53: 289
|
| [25] |
Palacios A, Navarro M E, Jiang Z, et al. High-temperature corrosion behaviour of metal alloys in commercial molten salts [J]. Sol. Energy, 2020, 201: 437
|
| [26] |
Audigié P, Encinas-Sánchez V, Juez-Lorenzo M, et al. High temperature molten salt corrosion behavior of aluminide and nickel-aluminide coatings for heat storage in concentrated solar power plants [J]. Surf. Coat. Technol., 2018, 349: 1148
|
| [27] |
Guruswamy S, Park S M, Hirth J P, et al. Internal oxidation of Ag-in alloys: Stress relief and the influence of imposed strain [J]. Oxid. Met., 1986, 26: 77
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|