|
|
|
| 基于多尺度图像特征融合的有机涂层寿命预测研究 |
李婕1, 孟凡帝1( ), 孙学思1, 李佳妮2, 陈思涵2, 李则蓝2, 迟剑宁2, 亓海霞3( ), 王福会1, 刘莉1 |
1 东北大学腐蚀与防护中心 沈阳 110819 2 东北大学机器人科学与工程学院 沈阳 110819 3 中国船舶集团有限公司第七二五研究所海洋腐蚀与防护全国重点实验室 厦门 361100 |
|
| Lifetime Prediction for Organic Coatings via Feature Integration of Multi-Scale Images |
LI Jie1, MENG Fandi1( ), SUN Xuesi1, LI Jiani2, CHEN Sihan2, LI Zelan2, CHI Jianning2, QI Haixia3( ), WANG Fuhui1, LIU Li1 |
1 Center for Corrosion and Protection, Northeastern University, Shenyang 110819, China 2 Faculty of Robot Science and Engineering, Northeastern University, Shenyang 110819, China 3 National Key Laboratory of Marine Corrosion and Protection, 725th Research Institute of China State Shipbuilding Corporation, Xiamen 361100, China |
引用本文:
李婕, 孟凡帝, 孙学思, 李佳妮, 陈思涵, 李则蓝, 迟剑宁, 亓海霞, 王福会, 刘莉. 基于多尺度图像特征融合的有机涂层寿命预测研究[J]. 中国腐蚀与防护学报, 2025, 45(5): 1205-1218.
Jie LI,
Fandi MENG,
Xuesi SUN,
Jiani LI,
Sihan CHEN,
Zelan LI,
Jianning CHI,
Haixia QI,
Fuhui WANG,
Li LIU.
Lifetime Prediction for Organic Coatings via Feature Integration of Multi-Scale Images[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(5): 1205-1218.
| [1] |
Zimmermann N, Wang P H. A review of failure modes and fracture analysis of aircraft composite materials [J]. Eng. Fail. Anal., 2020, 115: 104692
|
| [2] |
Bakhshan H, Afrouzian A, Ahmadi H, et al. Progressive failure analysis of fiber-reinforced laminated composites containing a hole[J]. Int. J. Damage Mech., 2018, 27: 963
|
| [3] |
An D Y, Chen J Y, Liu Z, et al. A method of coating life prediction based on high temperature thermal shock life test and three-dimensional heat transfer analysis [J]. Sci. Rep., 2025, 15: 3029
|
| [4] |
Zhang C Z, Fu X Q. Applications and potentials of machine learning in optoelectronic materials research: An overview and perspectives [J]. Chin. Phys. B, 2023, 32: 126103
|
| [5] |
Chan C H, Sun M Z, Huang B L. Application of machine learning for advanced material prediction and design [J]. Ecomat, 2022, 4(4): 16
|
| [6] |
Xie W B, Zheng H, Li M Y, et al. Membership function-dependent local controller design for t-s fuzzy systems [J]. IEEE. Trans. Syst. Man. Cybern. Syst., 2022, 52(2): 814
|
| [7] |
Yoo Y, Baek J G. A novel image feature for the remaining useful lifetime prediction of bearings based on continuous wavelet transform and convolutional neural network [J]. Appl. Sci-Basel., 2018, 8: 1102
|
| [8] |
Du J W, Wu F, Yin J C, et al. Polyline simplification based on the artificial neural network with constraints of generalization knowledge [J]. Cartogr. Geogr. Inf. Sci., 2022, 49(4): 313
|
| [9] |
Ma H, Liu R, Cui Y, et al. Effect of hydrostatic pressure on corrosion behavior of Cr/GLC laminated coatings [J]. J. Chin. Corros. Prot., 2025, 45: 103
|
| [9] |
马宏宇, 刘 叡, 崔 宇 等. 静水压力对Cr/GLC叠层涂层腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2025, 45: 103
doi: 10.11902/1005.4537.2024.153
|
| [10] |
Liu H, Zhang Y F. Image-driven structural steel damage condition assessment method using deep learning algorithm [J]. Measurement, 2019, 133: 168
|
| [11] |
Zhang X, Yao J Y, Wu Y L, et al. A method for predicting the creep rupture life of small-sample materials based on parametric models and machine learning models [J]. Materials, 2023, 16: 6804
|
| [12] |
Chen Y F, Meng F D, Liu L, et al. Life prediction of organic coatings based on grey system theory in coupled deep-sea pressure-flow velocity environment [J]. Equip. Environ. Eng., 2023, 20(2):64
|
| [12] |
陈宇凡, 孟凡帝, 刘 莉 等. 深海压力-流速耦合环境下基于灰色系统理论的有机涂层寿命预测研究 [J]. 装备环境工程, 2023, 20(2): 64
|
| [13] |
Geng G Q, Lin J, Liu L J, et al. Prediction method for life of anti-corrosion coating for steel bridge [J]. Natur. Sci. Ed., 2006, (5): 43
|
| [13] |
耿刚强, 林 杰, 刘来君 等. 钢桥防腐蚀涂层寿命的预测方法 [J]. 长安大学学报(自然科学版), 2006, (5): 43
|
| [14] |
Choudhary K, Decost B, Chen C, et al. Recent advances and applications of deep learning methods in materials science [J]. NPJ Comput. Mater., 2022, 8(1): 548
|
| [15] |
Zarkevich N A. Theoretical and computational methods for accelerated materials discovery [J]. Mod. Phys. Lett. B, 2021, 35(12): 213
|
| [16] |
Zhai H, Zhai Y J. Optimization design of ferry material performance test system based on artificial intelligence [J]. J. Nanomater., 2022, 2022: 1155
|
| [17] |
Yu W J, Wang T C, Zhao D Y, et al. Research on life prediction model of closed corrosion-resistant coatings [J]. J.Chin.Soc.Corros.Prot., 2024, 44: 1617
|
| [17] |
禹文娟, 王天丛, 赵东杨 等. 封闭型耐蚀涂层的寿命预测模型研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1617
doi: 10.11902/1005.4537.2023.383
|
| [18] |
Lopes C F, Machado G S D, Mendes P S N, et al. Analysis of copper and zinc alloy surface by exposure to alcohol aqueous solutions and sugarcane liquor [J]. J. Mater. Res. Technol., 2020, 9(2): 2545
|
| [19] |
Da Silva P C, Junior C F L, Huguenin J a O, et al. Investigation of copper and zinc alloy surface exposed to corrosion environment by digital image processing [J]. J. Mater. Res. Technol., 2023, 24: 9743
|
| [20] |
Yao Y, Yang Y, Wang Y P, et al. Artificial intelligence-based hull structural plate corrosion damage detection and recognition using convolutional neural network [J]. Appl. Oce. Res., 2019, 90: 101823
|
| [21] |
Pan J, Liu F, Feng J, et al. Accurate recognition of micromorphology images of epoxy coatings for deep-sea environments based on a deep learning super-resolution method [J]. Corros. Commun., 2025, 19: 14
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|