Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (4): 1117-1126     CSTR: 32134.14.1005.4537.2024.288      DOI: 10.11902/1005.4537.2024.288
  研究报告 本期目录 | 过刊浏览 |
表层镁合金化NdFeB磁体的制备及其耐腐蚀性能
冉仁豪1, 单慧琳1, 张鹏杰2, 汪冬梅1,3, 斯佳佳1,3, 徐光青1,3(), 吕珺1,3
1 合肥工业大学材料科学与工程学院 合肥 230009
2 北矿磁材科技有限公司 北京 102600
3 先进功能材料与器件安徽省重点实验室 高性能铜合金材料及成形加工教育部工程研究中心 有色金属与加工技术国家地方联合工程研究中心 合肥 230009
Preparation and Corrosion Resistance of Surface Mg-alloying NdFeB Magnets
RAN Renhao1, SHAN Huilin1, ZHANG Pengjie2, WANG Dongmei1,3, SI Jiajia1,3, XU Guangqing1,3(), LV Jun1,3
1 School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
2 BGRIMM Magnetic Materials and Technology Co., Ltd., Beijing 102600, China
3 Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Engineering Research Center of High Performance Copper Alloy Materials and Processing, Ministry of Education, National-Local Joint Engineering Research Center of Nonferrous Metals and Processing Technology, Hefei 230009, China
引用本文:

冉仁豪, 单慧琳, 张鹏杰, 汪冬梅, 斯佳佳, 徐光青, 吕珺. 表层镁合金化NdFeB磁体的制备及其耐腐蚀性能[J]. 中国腐蚀与防护学报, 2025, 45(4): 1117-1126.
Renhao RAN, Huilin SHAN, Pengjie ZHANG, Dongmei WANG, Jiajia SI, Guangqing XU, Jun LV. Preparation and Corrosion Resistance of Surface Mg-alloying NdFeB Magnets[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(4): 1117-1126.

全文: PDF(19704 KB)   HTML
摘要: 

针对NdFeB磁体耐腐蚀性能较差的问题,通过磁控溅射结合热扩散实现NdFeB磁体表层镁合金化,提高磁体的耐腐蚀性能,并探讨其耐腐蚀机理。采用X射线衍射仪、X射线光电子能谱仪、扫描电子显微镜和透射电子显微镜对镁合金化NdFeB磁体表层的成分、相结构、形貌及元素分布进行表征。通过静态全浸腐蚀实验、腐蚀电化学实验、加速老化实验研究了表层镁合金化磁体的耐腐蚀性能,优化表层合金化的制备工艺参数。通过原子力显微镜测试磁体相间电势差并结合腐蚀过程进行表层镁合金化磁体耐腐蚀机理的研究。结果表明:在扩散温度为550 ℃扩散105 min时磁体的耐腐蚀性能达到最佳,其Ecorr为-0.684 V,Icorr为1.055 × 10-6 A·cm-2,相较于原始磁体的6.896 × 10-5 A·cm-2,降低了一个数量级。Mg扩散进入到磁体的晶间相,稳定晶界富Nd相,降低了主相与晶间相的电势差,从而减小NdFeB磁体的自腐蚀倾向。

关键词 NdFeBMg表层合金化磁控溅射晶界扩散耐腐蚀性能    
Abstract

NdFeB magnets of poor corrosion resistance was subjected to surface Mg-alloying via magnetron sputtering technique and followed by thermal diffusion treatment, so that to improve the corrosion resistance of the magnets. The corrosion resistance of the surface Mg alloying NdFeB magnets in 3.5%NaCl solution is investigated by static immersion test corrosion electrochemical measurements and accelerated aging tests to optimize the preparation parameters of the surface Mg alloying. The surface Mg alloying NdFeB magnets before and afer corrosion test are characterized by X-ray diffractometer, X-ray photoelectron spectrometer and scanning electron microscope, as well as by atomic force microscope for determining the potential difference between the phases within the magnets during corrosion process. Results show that the magnets subjected to Mg-sputtering and then diffusion treated at 550 ℃ for 105 min shows the best corrosion resistance, with Ecorr of -0.684 V and Icorr of 1.055 × 10-6 A·cm-2, which is an order of magnitude lower than that of the bare magnets (6.896 × 10-5 A·cm-2). The mechanism related with the enhancement of corrosion resistance may be that the Mg atoms diffuse into the intergranular of the magnets, stabilizing the Nd-rich phase in grain boundaries and relieving the potential difference between the matrix and the intergranular, thus reducing the free-corrosion tendency of NdFeB magnets.

Key wordsNdFeB    surface Mg alloying    magnetron sputtering    grain boundary diffusion    corrosion resistance
收稿日期: 2024-09-05      32134.14.1005.4537.2024.288
ZTFLH:  TG174  
基金资助:国家重点研发计划(2022YFB3504800)
通讯作者: 徐光青,E-mail:gqxu1979@hfut.edu.cn,研究方向为稀土永磁材料表面防护
Corresponding author: XU Guangqing, E-mail: gqxu1979@hfut.edu.cn
作者简介: 冉仁豪,男,1999年生,硕士
图1  NdFeB和经不同条件扩散的NdFeB(Mg)及表面打磨后的NdFeB(Mg)-550-105样品的XRD图谱
图2  NdFeB、Mg/NdFeB、NdFeB(Mg)-550-105及NdFeB(Mg)-550-105-m样品的XPS总谱以及相应的Mg 1s的精细谱
图3  Mg/NdFeB及经不同条件扩散的NdFeB(Mg)样品的SEM截面形貌及EDS能谱分析
图4  NdFeB(Mg)-550-105样品的TEM形貌、元素分布图及选区电子衍射花样
图5  NdFeB及经不同条件扩散的NdFeB(Mg)样品静态全浸腐蚀实验不同时间后的光学照片
图6  NdFeB及经不同条件扩散的NdFeB(Mg)样品的动电位极化曲线和阻抗图谱
SpecimensEcorr / VIcorr / A·cm-2Rs / Ω·cm2Rct / Ω·cm2
NdFeB-0.9146.896 × 10-57.768836
NdFeB(Mg)-500-105-0.8012.342 × 10-57.5656840
NdFeB(Mg)-550-105-0.6841.055 × 10-67.82318335
NdFeB(Mg)-600-105-0.7637.068 × 10-67.86810558
NdFeB(Mg)-550-90-0.7539.661 × 10-67.6588550.8
NdFeB(Mg)-550-120-0.7194.032 × 10-68.00811670
NdFeB(Mg)-550-105-m-0.7682.513 × 10-57.9215254
表1  NdFeB及经不同参数获得的NdFeB(Mg)样品的Ecorr、Icorr、Rs和Rct值
图7  NdFeB及经不同条件扩散的NdFeB(Mg)样品在500 h加速老化实验后的腐蚀增重
SpecimensMG / mg·cm-2VG / mg·cm-2·h-1
NdFeB0.601.20 × 10-3
NdFeB(Mg)-500-1050.511.02 × 10-3
NdFeB(Mg)-550-1050.340.68 × 10-3
NdFeB(Mg)-600-1050.450.9 × 10-3
NdFeB(Mg)-550-900.440.88 × 10-3
NdFeB(Mg)-550-1200.390.78 × 10-3
表2  NdFeB及经不同条件扩散的NdFeB(Mg)样品的增重MG和增重速率VG
图8  NdFeB及NdFeB(Mg)-550-105腐蚀前后XPS能谱
图9  NdFeB和NdFeB(Mg)-550-105的AFM表面电势图
[1] Junne T, Wulff N, Breyer C, et al. Critical materials in global low-carbon energy scenarios: the case for neodymium, dysprosium, lithium, and cobalt [J]. Energy, 2020, 211: 118532
[2] Coey J M D. Permanent magnet applications [J]. J. Magn. Magn. Mater., 2002, 248: 441
[3] Ni J J, Zhou S T, Jia Z F, et al. Improvement of corrosion resistance in Nd-Fe-B sintered magnets by intergranular additions of Sn [J]. J. Alloy. Compd., 2014, 588: 558
[4] Assis O B G, Sinka V, Ferrante M, et al. Electrochemical aspects of corrosion in sintered and hot-deformed Nd-Fe-B magnets [J]. J. Alloy. Compd., 1995, 218: 263
[5] Liu W Q, Yue M, Zhang D T, et al. Electrochemical corrosion behavior of Nd-Fe-B permanent magnets with modified microstructure [J]. J. Appl. Phys., 2009, 105: 07A709
[6] Liu W Q, Yue M, Zhang J X, et al. Intrinsic corrosion characteristic of sintered NdFeB permanent magnets [J]. Powder Metall. Technol., 2006, 24: 195
[6] (刘卫强, 岳 明, 张久兴 等. 烧结NdFeB永磁合金本征腐蚀特性研究进展 [J]. 粉末冶金技术, 2006, 24: 195)
[7] Li Z J, Wang X E, Li J Y, et al. Effects of Mg nanopowders intergranular addition on the magnetic properties and corrosion resistance of sintered Nd-Fe-B [J]. J. Magn. Magn. Mater., 2017, 442: 62
[8] Cui X G, Yan M, Ma T Y, et al. Effects of Cu nanopowders addition on magnetic properties and corrosion resistance of sintered Nd-Fe-B magnets [J]. Physica, 2008, 403B: 4182
[9] Nakamura H, Hirota K, Shimao M, et al. Magnetic properties of extremely small Nd-Fe-B sintered magnets [J]. IEEE Trans. Magn., 2005, 41: 3844
[10] Zhang P, Ma T Y, Liang L P, et al. Improvement of corrosion resistance of Cu and Nb co-added Nd-Fe-B sintered magnets [J]. Mater. Chem. Phys., 2014, 147: 982
[11] Kim A S, Camp F E, Dulis E J. Effect of oxygen, carbon, and nitrogen contents on the corrosion resistance of Nd-Fe-B magnets [J]. IEEE Trans. Magn., 1990, 26: 1936
[12] Ni J J, Ma T Y, Cui X G, et al. Improvement of corrosion resistance and magnetic properties of Nd-Fe-B sintered magnets by Al85Cu15 intergranular addition [J]. J. Alloy. Compd., 2010, 502: 346
[13] Zhang P, Ma T Y, Liang L P, et al. Improved corrosion resistance of low rare-earth Nd-Fe-B sintered magnets by Nd6Co13Cu grain boundary restructuring [J]. J. Magn. Magn. Mater., 2015, 379: 186
[14] Zhou Q, Liu Z W, Zhong X C, et al. Properties improvement and structural optimization of sintered NdFeB magnets by non-rare earth compound grain boundary diffusion [J]. Mater. Des., 2015, 86: 114
[15] Wang E H, Xiao C H, He J Y, et al. Grain boundary modification and properties enhancement of sintered Nd-Fe-B magnets by ZnO solid diffusion [J]. Appl. Surf. Sci., 2021, 565: 150545
[16] Li M J, Sun X F, Guan H R, et al. High temperature hot-corrosion behavior of (Ni, Pd)Al coating [J]. Acta Metall. Sin., 2004, 40: 773
[16] (李猛进, 孙晓峰, 管恒荣 等. (Ni, Pd)Al涂层的高温热腐蚀 [J]. 金属学报, 2004, 40: 773)
[17] Qu Z J, Wu Q, Zhang M K, et al. Facile preparation of bonded NdFeB/SmFeN hybrid magnets with flexibility, anisotropy and high energy density [J]. J. Magn. Magn. Mater., 2023, 584: 171084
[18] Yates K, West R H. Monochromatized Ag Lα X‐rays as a source for higher energy XPS [J]. Surf. Interf. Anal., 1983, 5: 133
[19] Seyama H, Soma M. X-ray photoelectron spectroscopic study of montmorillonite containing exchangeable divalent cations [J]. J. Chem. Soc. Faraday Trans. 1: Phys. Chem. Condens. Phases, 1984, 80: 237
[20] Wagner C D. Studies of the charging of insulators in ESCA [J]. J. Electron. Spectrosc. Relat. Phenom., 1980, 18: 345
[21] Dai J L, Yang Z X, Liu Q. Rare earth cerium increases the corrosion resistance of NdFeB magnets [J]. Materials, 2020, 13: 4360
[1] 李茂, 邓轲, 陈衍祥, 刘中豪, 李尚, 郭宇婷, 董选普, 曹华堂. N2 流量和靶基距对多弧离子镀沉积AlSiN纳米复合涂层的微观组织及耐腐蚀性能影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 1041-1050.
[2] 赵立佳, 崔新宇, 王吉强, 熊天英. 冷喷涂B4C/Al复合涂层在硼酸溶液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(1): 164-172.
[3] 林一, 刘涛, 郭彦兵, 阮晴, 郭章伟, 董丽华. 船用低温钢焊接材料的研发与腐蚀方法评价[J]. 中国腐蚀与防护学报, 2024, 44(4): 957-964.
[4] 耿真真, 张钰柱, 杜小将, 吴汉辉. S2-Cl-316L奥氏体不锈钢的腐蚀钝化行为的协同作用[J]. 中国腐蚀与防护学报, 2024, 44(3): 797-806.
[5] 丁立, 邹文杰, 张雪姣, 陈均. ADC12铝合金表面硅锆复合转化膜的研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 903-910.
[6] 杨依凡, 孙文瑶, 陈明辉, 王金龙, 王福会. 镍基单晶高温合金N5及其纳米晶涂层在900 ℃下O2和O2+20%H2O气氛中的氧化行为[J]. 中国腐蚀与防护学报, 2023, 43(1): 55-61.
[7] 胡雄鑫, 张弦, 刘静, 吴开明, 林安. 无取向电工钢用磷酸盐系绝缘环保涂层的研制及性能研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 805-812.
[8] 裴书博, 万冬阳, 周萍, 曹国钦, 胡俊华. 高熵涂层的制备工艺、组织结构和抗氧化腐蚀研究进展[J]. 中国腐蚀与防护学报, 2022, 42(5): 873-878.
[9] 张赪栋, 刘斌, 石泽耀, 刘岩, 曹青敏, 蹇冬辉. 镍铝青铜合金海水腐蚀行为研究进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 25-33.
[10] 冯彦朋, 张弦, 吴开明, 杨淼. 热处理工艺对超细贝氏体钢显微组织及耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 602-608.
[11] 王晓鸽, 高克玮, 颜鲁春, 杨会生, 庞晓露. Ce对镁合金表面ZnAlCe-LDHs薄膜耐腐蚀性能的影响机理研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 335-340.
[12] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[13] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[14] 骆鸿,高书君,肖葵,董超芳,李晓刚. 磁控溅射工艺对CrN薄膜及其腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(5): 423-430.
[15] 欧阳跃军,胡婷,王佳音,谢治辉. 镁合金表面层状双氢氧化物的电化学沉积和表征[J]. 中国腐蚀与防护学报, 2019, 39(5): 453-457.