Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (4): 1061-1069     CSTR: 32134.14.1005.4537.2024.325      DOI: 10.11902/1005.4537.2024.325
  研究报告 本期目录 | 过刊浏览 |
海上超临界二氧化碳环境中含水率和温度对A106钢腐蚀行为影响研究
张国庆1, 余直霞1, 王岳松2, 王智1, 金正宇2, 刘宏伟2()
1 海洋石油工程股份有限公司 天津 300461
2 中山大学化学工程与技术学院 珠海 519082
Corrosion Behavior of Steel Materials in Marine Supercritical Carbon Dioxide Environment
ZHANG Guoqing1, YU Zhixia1, WANG Yuesong2, WANG Zhi1, JIN Zhengyu2, LIU Hongwei2()
1 Offshore Oil Engineering Co., Ltd., Tianjin 300461, China
2 School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
引用本文:

张国庆, 余直霞, 王岳松, 王智, 金正宇, 刘宏伟. 海上超临界二氧化碳环境中含水率和温度对A106钢腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 1061-1069.
Guoqing ZHANG, Zhixia YU, Yuesong WANG, Zhi WANG, Zhengyu JIN, Hongwei LIU. Corrosion Behavior of Steel Materials in Marine Supercritical Carbon Dioxide Environment[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(4): 1061-1069.

全文: PDF(10324 KB)   HTML
摘要: 

海上碳捕集、利用与封存技术是解决当前CO2过量排放问题的有效途径之一,然而在CO2输运过程中管道面临严重的腐蚀问题。本文针对海上超临界CO2腐蚀问题,以A106钢为研究对象,通过失重、扫描电子显微镜、X射线衍射仪、3D超景深立体显微镜等研究了超临界CO2微水环境中,A106钢在不同含水量及不同温度条件下的腐蚀行为。研究结果表明,在10 MPa和35 ℃条件下的CO2环境中,A106钢腐蚀速率随着含水量的增加而增加,含水量超过2000 μL/L时,腐蚀速率迅速增加,在含水量为3000 μL/L时,最大腐蚀速率为0.16 mm/a。然而当含水量在200 μL/L时,A106钢的局部腐蚀速率最大,为0.73 mm/a。在10 MPa的CO2环境中,A106钢腐蚀速率随着温度的增加先降低后增加,在60 ℃时,腐蚀速率为极小值,即0.025 mm/a。因此,温度和含水量是影响超临界CO2环境中钢铁材料腐蚀的关键因素。

关键词 超临界CO2A106钢CO2腐蚀局部腐蚀    
Abstract

Maine Carbon Capture, Utilization and Storage (CCUS) is one of the effective methods to solve the problems caused by the excess emission of CO2. However, the pipelines face serious corrosion problems in the process of CO2 transport. Aiming at marine corrosion problems under supercritical CO2 conditions, this work investigated the corrosion behavior of A106 carbon steel with different water contents and temperature by mass loss, scanning electron microscope (SEM), X-ray diffractometer (XRD) and three-dimensional stereoscopic microscope. Results indicate that the corrosion rate of A106 steel increased with the increase of water content in CO2 environment at 10 MPa and 35 ℃. When the water content exceeded 2000 μL/L, the corrosion rate was significantly accelerated. A106 steel reached the maximum corrosion rate, i.e., 0.16 mm/a at the water content of 3000 μL/L. However, the localized corrosion rate of A106 steel was the highest with the value of 0.73 mm/a at the water content of 2000 μL/L. In the CO2 environment at 10 MPa, the corrosion rate of A106 steel decreased from 25 to 60 ℃ and then increased with the increase of temperature. At 60 ℃, the corrosion rate reached a minimum value, i.e., 0.025 mm/a. Therefore, temperature and water content are the key factors affecting the corrosion of steel materials in supercritical CO2 environment.

Key wordssupercritical CO2    A106 carbon steel    CO2 corrosion    localized corrosion
收稿日期: 2024-10-08      32134.14.1005.4537.2024.325
ZTFLH:  TG174  
通讯作者: 刘宏伟,E-mail:liuhw35@mail.sysu.edu.cn,研究方向为海洋腐蚀与防护、先进功能材料
Corresponding author: LIU Hongwei, E-mail: liuhw35@mail.sysu.edu.cn
作者简介: 张国庆,男,1975年生,高级工程师
图1  腐蚀实验装置示意图
图2  不同含水量条件下A106钢在35 ℃下超临界CO2环境中暴露5 d的腐蚀速率
图3  A106钢在35 ℃不同含水量的超临界CO2环境中暴露5 d后的SEM表面腐蚀产物形貌和EDS分析
图4  A106钢在35 ℃不同含水量的超临界CO2环境中暴露5 d后表面腐蚀产物XRD分析结果
图5  A106钢在35 ℃不同含水量的超临界CO2环境中暴露5 d且去除表面腐蚀产物后的局部形貌图
图6  A106钢在不同温度下超临界CO2环境中暴露5 d的腐蚀速率
图7  A106钢在不同温度下超临界CO2环境中暴露5 d后腐蚀产物膜形貌和成分分析
图8  A106钢在不同温度下超临界CO2环境中暴露5 d后的表面XRD分析
图9  A106钢在不同温度下超临界CO2环境中暴露5 d后并去除腐蚀产后的二维和三维表面形貌图以及对应的腐蚀坑深度变化曲线图
[1] Wang S H, Zhang Y G, Ju W M, et al. Recent global decline of CO2 fertilization effects on vegetation photosynthesis [J]. Science, 2020, 370: 1295
[2] Rehman A, Alam M M, Ozturk I, et al. Globalization and renewable energy use: how are they contributing to upsurge the CO2 emissions? A global perspective [J]. Environ. Sci. Pollut. Res., 2023, 30: 9699
[3] Al-Ghussain L. Global warming: review on driving forces and mitigation [J]. Environ. Prog. Sustain., 2019, 38: 13
[4] Hasan M M F, First E L, Boukouvala F, et al. A multi-scale framework for CO2 capture, utilization, and sequestration: CCUS and CCU [J]. Comput. Chem. Eng., 2015, 81: 2
[5] Gao Y X, Pan J, Li Y, et al. Research progress on the corrosion of the inner surface of pipeline used for transporting supercritical carbon dioxide [J]. Mater. Rep., 2024, 38: 180
[5] (高怡萱, 潘 杰, 李 焰 等. 超临界二氧化碳输送管道内腐蚀研究进展 [J]. 材料导报, 2024, 38: 180)
[6] Cui G, Yang Z Q, Liu J G, et al. A comprehensive review of metal corrosion in a supercritical CO2 environment [J]. Int. J. Greenh. Gas Con., 2019, 90: 102814
[7] Hu L H, Yi H L, Yang W J, et al. Effect of water content on corrosion behavior of X65 pipeline steel in supercritical CO2 fluids [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 576
[7] (胡丽华, 衣华磊, 杨维健 等. 水含量对超临界CO2输送管道腐蚀的影响 [J]. 中国腐蚀与防护学报, 2024, 44: 576)
[8] Xiang Y, Li C, Hesitao W, et al. Understanding the pitting corrosion mechanism of pipeline steel in an impure supercritical CO2 environment [J]. J. Supercrit. Fluid., 2018, 138: 132
[9] Liu A Q, Bian C, Wang Z M, et al. Flow dependence of steel corrosion in supercritical CO2 environments with different water concentrations [J]. Corros. Sci., 2018, 134: 149
[10] Wei L, Pang X L, Gao K W. Effect of small amount of H2S on the corrosion behavior of carbon steel in the dynamic supercritical CO2 environments [J]. Corros. Sci., 2016, 103: 132
[11] Hua Y, Barker R, Charpentier T, et al. Relating iron carbonate morphology to corrosion characteristics for water-saturated supercritical CO2 systems [J]. J. Supercrit. Fluid., 2015, 98: 183
[12] Zhang Y C, Qu S P, Pang X L, et al. Review on corrosion behaviors of steels under supercritical CO2 condition [J]. Corros. Prot., 2011, 32: 854
[12] (张玉成, 屈少鹏, 庞晓露 等. 超临界CO2条件下钢的腐蚀行为研究进展 [J]. 腐蚀与防护, 2011, 32: 854)
[13] Hua Y, Xu S S, Wang Y, et al. The formation of FeCO3 and Fe3O4 on carbon steel and their protective capabilities against CO2 corrosion at elevated temperature and pressure [J]. Corros. Sci., 2019, 157: 392
[14] Wang C L, Hua Y, Nadimi S, et al. Anti-corrosion characteristics of FeCO3 and Fe x Ca y Mg z CO3 scales on carbon steel in high-PT CO2 environments [J]. Chem. Eng. J., 2022, 431: 133484
[15] Sun C, Ding T C, Sun J B, et al. Insights into the effect of H2S on the corrosion behavior of N80 steel in supercritical CO2 environment [J]. J. Mater. Res. Technol., 2023, 26: 5462
[16] Tang S, Zhu C Y, Cui G, et al. Analysis of internal corrosion of supercritical CO2 pipeline [J]. Corros. Rev., 2021, 39: 219
doi: 10.1515/corrrev-2020-0041
[17] Ren X D, Wang H, Wei Q, et al. Electrochemical behaviour of N80 steel in CO2 environment at high temperature and pressure conditions [J]. Corros. Sci., 2021, 189: 109619
[18] Li C, Xiang Y, Wang R T, et al. Exploring the influence of flue gas impurities on the electrochemical corrosion mechanism of X80 steel in a supercritical CO2-saturated aqueous environment [J]. Corros. Sci., 2023, 211: 110899
[19] Arzaghi E, Chia B H, Abaei M M, et al. Pitting corrosion modelling of X80 steel utilized in offshore petroleum pipelines [J]. Process Saf. Environ. Prot., 2020, 141: 135
[20] El Amine Ben Seghier M, Keshtegar B, Tee K F, et al. Prediction of maximum pitting corrosion depth in oil and gas pipelines [J]. Eng. Fail. Anal., 2020, 112: 104505
[21] Hua Y, Barker R, Neville A. Effect of temperature on the critical water content for general and localised corrosion of X65 carbon steel in the transport of supercritical CO2 [J]. Int. J. Greenh. Gas Con., 2014, 31: 48
[22] Jiang C Y, Wu J F, Sun Z J, et al. Solubility of water in supercritical CO2 [J]. Chem. Eng. (China), 2014, 42: 42
[22] (蒋春跃, 吴建峰, 孙志娟 等. 水在超临界二氧化碳中的溶解度 [J]. 化学工程, 2014, 42: 42)
[23] Li K J, Sun L, Cao W K, et al. Pitting corrosion of 304 stainless steel in secondary water supply system [J]. Corros. Commun., 2022, 7: 43
[24] Araneda A A B, Kappes M A, Rodríguez M A, et al. Pitting corrosion of Ni-Cr-Fe alloys at open circuit potential in chloride plus thiosulfate solutions [J]. Corros. Sci., 2022, 198: 110121
[1] 麻衡, 王中学, 逄昆, 张庆普, 崔中雨. 低合金钢中腐蚀活性夹杂物诱发局部腐蚀萌生行为研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 1005-1013.
[2] 李开洋, 吴悠, 张冠霖, 张乃强. 高温超临界CO2 结构材料环境致裂研究进展[J]. 中国腐蚀与防护学报, 2025, 45(1): 61-68.
[3] 韩宇龙, 李健, 郭丽雅, 杨边疆, 陆恒昌, 韦习成, 董瀚. 螺纹钢中MnS夹杂物诱发的局部腐蚀行为[J]. 中国腐蚀与防护学报, 2024, 44(5): 1255-1262.
[4] 杨涛, 许磊, 王建春, 张明程, 姚彦博, 高国刚, 许文忠, 历长云. 油套管CO2 腐蚀和防护研究进展[J]. 中国腐蚀与防护学报, 2024, 44(5): 1134-1144.
[5] 刘广胜, 王卫军, 周佩, 谭金颢, 丁宏鑫, 张伟, 向勇. 含杂CO2 封存条件下13CrN80套管钢腐蚀规律研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1200-1212.
[6] 吴洋, 安易强, 王力伟, 崔中雨. 镁铝合金在模拟低温条件下大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1001-1010.
[7] 欧阳嘉露, 王茜茜, 韩霞, 王子明. 油水交替环境中咪唑啉对CO2 腐蚀的抑制作用研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 707-715.
[8] 胡丽华, 衣华磊, 杨维健, 孙冲, 孙建波. 水含量对超临界CO2 输送管道腐蚀的影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 576-584.
[9] 原玉, 向勇, 李晨, 赵雪会, 闫伟, 姚二冬. CCUS系统中CO2 注入井管材腐蚀研究进展[J]. 中国腐蚀与防护学报, 2024, 44(1): 15-26.
[10] 赵国仙, 刘冉冉, 丁浪勇, 张思琦, 郭梦龙, 王映超. 温度对5Cr钢在模拟油田高温高压环境中CO2 腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 175-186.
[11] 朱烨森, 蔡锟, 胡葆文, 夏云秋, 胡涛勇, 黄一. 海底管道CO2 腐蚀特性及预测模型研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1225-1236.
[12] 任万凯, 连洲洋, 周康, 罗正维, 魏无际, 张雪英. 氨法脱硫液成分对304不锈钢局部腐蚀发展阶段影响探究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1392-1398.
[13] 顾玉慧, 董亮, 宋沁峰. 微型金属氧化物pH电极的制备及腐蚀防护应用进展[J]. 中国腐蚀与防护学报, 2023, 43(5): 971-982.
[14] 刘超, 陈天奇, 李晓刚. 低合金钢中夹杂物诱发局部腐蚀萌生机制的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(4): 746-754.
[15] 李强, 路程, 唐颖浩, 唐建峰, 刘炳成. 湿气管道积液区X70CO2 局部腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 837-846.