|
|
海上超临界二氧化碳环境中含水率和温度对A106钢腐蚀行为影响研究 |
张国庆1, 余直霞1, 王岳松2, 王智1, 金正宇2, 刘宏伟2( ) |
1 海洋石油工程股份有限公司 天津 300461 2 中山大学化学工程与技术学院 珠海 519082 |
|
Corrosion Behavior of Steel Materials in Marine Supercritical Carbon Dioxide Environment |
ZHANG Guoqing1, YU Zhixia1, WANG Yuesong2, WANG Zhi1, JIN Zhengyu2, LIU Hongwei2( ) |
1 Offshore Oil Engineering Co., Ltd., Tianjin 300461, China 2 School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China |
引用本文:
张国庆, 余直霞, 王岳松, 王智, 金正宇, 刘宏伟. 海上超临界二氧化碳环境中含水率和温度对A106钢腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 1061-1069.
Guoqing ZHANG,
Zhixia YU,
Yuesong WANG,
Zhi WANG,
Zhengyu JIN,
Hongwei LIU.
Corrosion Behavior of Steel Materials in Marine Supercritical Carbon Dioxide Environment[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(4): 1061-1069.
[1] |
Wang S H, Zhang Y G, Ju W M, et al. Recent global decline of CO2 fertilization effects on vegetation photosynthesis [J]. Science, 2020, 370: 1295
|
[2] |
Rehman A, Alam M M, Ozturk I, et al. Globalization and renewable energy use: how are they contributing to upsurge the CO2 emissions? A global perspective [J]. Environ. Sci. Pollut. Res., 2023, 30: 9699
|
[3] |
Al-Ghussain L. Global warming: review on driving forces and mitigation [J]. Environ. Prog. Sustain., 2019, 38: 13
|
[4] |
Hasan M M F, First E L, Boukouvala F, et al. A multi-scale framework for CO2 capture, utilization, and sequestration: CCUS and CCU [J]. Comput. Chem. Eng., 2015, 81: 2
|
[5] |
Gao Y X, Pan J, Li Y, et al. Research progress on the corrosion of the inner surface of pipeline used for transporting supercritical carbon dioxide [J]. Mater. Rep., 2024, 38: 180
|
[5] |
(高怡萱, 潘 杰, 李 焰 等. 超临界二氧化碳输送管道内腐蚀研究进展 [J]. 材料导报, 2024, 38: 180)
|
[6] |
Cui G, Yang Z Q, Liu J G, et al. A comprehensive review of metal corrosion in a supercritical CO2 environment [J]. Int. J. Greenh. Gas Con., 2019, 90: 102814
|
[7] |
Hu L H, Yi H L, Yang W J, et al. Effect of water content on corrosion behavior of X65 pipeline steel in supercritical CO2 fluids [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 576
|
[7] |
(胡丽华, 衣华磊, 杨维健 等. 水含量对超临界CO2输送管道腐蚀的影响 [J]. 中国腐蚀与防护学报, 2024, 44: 576)
|
[8] |
Xiang Y, Li C, Hesitao W, et al. Understanding the pitting corrosion mechanism of pipeline steel in an impure supercritical CO2 environment [J]. J. Supercrit. Fluid., 2018, 138: 132
|
[9] |
Liu A Q, Bian C, Wang Z M, et al. Flow dependence of steel corrosion in supercritical CO2 environments with different water concentrations [J]. Corros. Sci., 2018, 134: 149
|
[10] |
Wei L, Pang X L, Gao K W. Effect of small amount of H2S on the corrosion behavior of carbon steel in the dynamic supercritical CO2 environments [J]. Corros. Sci., 2016, 103: 132
|
[11] |
Hua Y, Barker R, Charpentier T, et al. Relating iron carbonate morphology to corrosion characteristics for water-saturated supercritical CO2 systems [J]. J. Supercrit. Fluid., 2015, 98: 183
|
[12] |
Zhang Y C, Qu S P, Pang X L, et al. Review on corrosion behaviors of steels under supercritical CO2 condition [J]. Corros. Prot., 2011, 32: 854
|
[12] |
(张玉成, 屈少鹏, 庞晓露 等. 超临界CO2条件下钢的腐蚀行为研究进展 [J]. 腐蚀与防护, 2011, 32: 854)
|
[13] |
Hua Y, Xu S S, Wang Y, et al. The formation of FeCO3 and Fe3O4 on carbon steel and their protective capabilities against CO2 corrosion at elevated temperature and pressure [J]. Corros. Sci., 2019, 157: 392
|
[14] |
Wang C L, Hua Y, Nadimi S, et al. Anti-corrosion characteristics of FeCO3 and Fe x Ca y Mg z CO3 scales on carbon steel in high-PT CO2 environments [J]. Chem. Eng. J., 2022, 431: 133484
|
[15] |
Sun C, Ding T C, Sun J B, et al. Insights into the effect of H2S on the corrosion behavior of N80 steel in supercritical CO2 environment [J]. J. Mater. Res. Technol., 2023, 26: 5462
|
[16] |
Tang S, Zhu C Y, Cui G, et al. Analysis of internal corrosion of supercritical CO2 pipeline [J]. Corros. Rev., 2021, 39: 219
doi: 10.1515/corrrev-2020-0041
|
[17] |
Ren X D, Wang H, Wei Q, et al. Electrochemical behaviour of N80 steel in CO2 environment at high temperature and pressure conditions [J]. Corros. Sci., 2021, 189: 109619
|
[18] |
Li C, Xiang Y, Wang R T, et al. Exploring the influence of flue gas impurities on the electrochemical corrosion mechanism of X80 steel in a supercritical CO2-saturated aqueous environment [J]. Corros. Sci., 2023, 211: 110899
|
[19] |
Arzaghi E, Chia B H, Abaei M M, et al. Pitting corrosion modelling of X80 steel utilized in offshore petroleum pipelines [J]. Process Saf. Environ. Prot., 2020, 141: 135
|
[20] |
El Amine Ben Seghier M, Keshtegar B, Tee K F, et al. Prediction of maximum pitting corrosion depth in oil and gas pipelines [J]. Eng. Fail. Anal., 2020, 112: 104505
|
[21] |
Hua Y, Barker R, Neville A. Effect of temperature on the critical water content for general and localised corrosion of X65 carbon steel in the transport of supercritical CO2 [J]. Int. J. Greenh. Gas Con., 2014, 31: 48
|
[22] |
Jiang C Y, Wu J F, Sun Z J, et al. Solubility of water in supercritical CO2 [J]. Chem. Eng. (China), 2014, 42: 42
|
[22] |
(蒋春跃, 吴建峰, 孙志娟 等. 水在超临界二氧化碳中的溶解度 [J]. 化学工程, 2014, 42: 42)
|
[23] |
Li K J, Sun L, Cao W K, et al. Pitting corrosion of 304 stainless steel in secondary water supply system [J]. Corros. Commun., 2022, 7: 43
|
[24] |
Araneda A A B, Kappes M A, Rodríguez M A, et al. Pitting corrosion of Ni-Cr-Fe alloys at open circuit potential in chloride plus thiosulfate solutions [J]. Corros. Sci., 2022, 198: 110121
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|