|
|
氢扩散模型对临氢结构裂尖氢浓度计算影响 |
诸滔1, 孙浩翔1, 周亚洪1, 赵宇航2, 王艳飞2( ) |
1 江苏省特种设备安全监督检验研究院 南京 210036 2 中国矿业大学化工学院 徐州 221116 |
|
Effect of Hydrogen Diffusion Model on Hydrogen Concentration Calculation Around a Crack Tip in Hydrogen-exposed Structures |
ZHU Tao1, SUN Haoxiang1, ZHOU Yahong1, ZHAO Yuhang2, WANG Yanfei2( ) |
1 Special Equipment Safety Supervision Inspection Institute of Jiangsu Province, Nanjing 210036, China 2 School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou 221116, China |
引用本文:
诸滔, 孙浩翔, 周亚洪, 赵宇航, 王艳飞. 氢扩散模型对临氢结构裂尖氢浓度计算影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 1070-1080.
Tao ZHU,
Haoxiang SUN,
Yahong ZHOU,
Yuhang ZHAO,
Yanfei WANG.
Effect of Hydrogen Diffusion Model on Hydrogen Concentration Calculation Around a Crack Tip in Hydrogen-exposed Structures[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(4): 1070-1080.
[1] |
Díaz A, Alegre J M, Cuesta I I. A review on diffusion modelling in hydrogen related failures of metals [J]. Eng. Fail. Anal., 2016, 66: 577
|
[2] |
Zhang L, Li Z Y, Zheng J Y, et al. Dependence of hydrogen embrittlement on hydrogen in the surface layer in type 304 stainless steel [J]. Int. J. Hydrog. Energy, 2014, 39: 20578
|
[3] |
Yan Y J, Yu Y, He Y, et al. Hydrogen-induced cracking mechanism of precipitation strengthened austenitic stainless steel weldment [J]. Int. J. Hydrog. Energy, 2015, 40: 2404
|
[4] |
Taha A, Sofronis P. A micromechanics approach to the study of hydrogen transport and embrittlement [J]. Eng. Fract. Mech., 2001, 68: 803
|
[5] |
Anand L. A thermo-mechanically-coupled theory accounting for hydrogen diffusion and large elastic-viscoplastic deformations of metals [J]. Int. J. Solids Struct., 2011, 48: 962
|
[6] |
Toribio J, Kharin V. A generalised model of hydrogen diffusion in metals with multiple trap types [J]. Philos. Mag., 2015, 95: 3429
|
[7] |
Robertson I M, Sofronis P, Nagao A, et al. Hydrogen embrittlement understood [J]. Metall. Mater. Trans., 2015, 46B: 1085
|
[8] |
Barrera O, Tarleton E, Tang H W, et al. Modelling the coupling between hydrogen diffusion and the mechanical behaviour of metals [J]. Comput. Mater. Sci., 2016, 122: 219
|
[9] |
Aslan O. Numerical modeling of hydrogen diffusion in metals accounting for large deformations [J]. Int. J. Hydrog. Energy, 2015, 40: 15227
|
[10] |
Miresmaeili R, Ogino M, Nakagawa T, et al. A coupled elastoplastic-transient hydrogen diffusion analysis to simulate the onset of necking in tension by using the finite element method [J]. Int. J. Hydrog. Energy, 2010, 35: 1506
|
[11] |
Toribio J, Kharin V. Fractographic and numerical study of hydrogen-plasticity interactions near a crack tip [J]. J. Mater. Sci., 2006, 41: 6015
|
[12] |
Birnbaum H K, Sofronis P. Hydrogen-enhanced localized plasticity—A mechanism for hydrogen-related fracture [J]. Mater. Sci. Eng., 1994, 176A: 191
|
[13] |
Dadfarnia M, Sofronis P, Somerday B P, et al. On the small scale character of the stress and hydrogen concentration fields at the tip of an axial crack in steel pipeline: effect of hydrogen-induced softening on void growth [J]. Int. J. Mater. Res., 2008, 99: 557
|
[14] |
Darken L S, Smith R P. Behavior of hydrogen in steel during and after immersion in acid [J]. Corrosion, 1949, 5: 1
|
[15] |
Dadfarnia M, Sofronis P, Neeraj T. Hydrogen interaction with multiple traps: Can it be used to mitigate embrittlement? [J]. Int. J. Hydrogen Energy, 2011, 36: 10141
|
[16] |
McNabb A, Foster P K. A new analysis of the diffusion of hydrogen in iron and ferritic steels [J]. Trans. Met. Sco. AIME, 1963, 227: 618
|
[17] |
Oriani R A. The diffusion and trapping of hydrogen in steel [J]. Acta Metall., 1970, 18: 147
|
[18] |
Sofronis P, McMeeking R M. Numerical analysis of hydrogen transport near a blunting crack tip [J]. J. Mech. Phys. Solids, 1989, 37: 317
|
[19] |
Krom A H M, Koers R W J, Bakker A. Hydrogen transport near a blunting crack tip [J]. J. Mech. Phys. Solids, 1999, 47: 971
|
[20] |
Wu S D, Chen L, Liu M Z. Distribution of hydrogen concentration near notch tip under mode I loading [J]. Acta Metall. Sin., 1990, 26(2): 10
|
[20] |
(吴世丁, 陈 廉, 刘民治. I型载荷下缺口前端氢浓度分布的研究 [J]. 金属学报, 1990, 26(2): 10)
|
[21] |
Mao S X, Li M. Mechanics and thermodynamics on the stress and hydrogen interaction in crack tip stress corrosion: experiment and theory [J]. J. Mech. Phys. Solids, 1998, 46: 1125
|
[22] |
Sun S M, Shiozawa K, Gu J L, et al. Investigation of deformation field and hydrogen partition around crack tip in fcc single crystal [J]. Metall. Mater. Trans., 1995, 26A: 731
|
[23] |
Pressouyre G M, Bernstein I M. An example of the effect of hydrogen trapping on hydrogen embrittlement [J]. Metall. Trans., 1981, 12A: 835
|
[24] |
Li D M, Gangloff R P, Scully J R. Hydrogen trap states in ultrahigh-strength AERMET 100 steel [J]. Metall. Mater. Trans., 2004, 35A: 849
|
[25] |
Novak P, Yuan R, Somerday B P, et al. A statistical, physical-based, micro-mechanical model of hydrogen-induced intergranular fracture in steel [J]. J. Mech. Phys. Solids, 2010, 58: 206
|
[26] |
Doshida T, Takai K. Dependence of hydrogen-induced lattice defects and hydrogen embrittlement of cold-drawn pearlitic steels on hydrogen trap state, temperature, strain rate and hydrogen content [J]. Acta Mater., 2014, 79: 93
|
[27] |
Serebrinsky S, Carter E A, Ortiz M. A quantum-mechanically informed continuum model of hydrogen embrittlement [J]. J. Mech. Phys. Solids, 2004, 52: 2403
|
[28] |
Olden V, Thaulow C, Johnsen R, et al. Influence of hydrogen from cathodic protection on the fracture susceptibility of 25%Cr duplex stainless steel-Constant load SENT testing and FE-modelling using hydrogen influenced cohesive zone elements [J]. Eng. Fract. Mech., 2009, 76: 827
|
[29] |
Wang Y F, Gong J M, Jiang W C, et al. Numerical simulation of hydrogen induced delayed fracture of AISI4135 high strength steel using cohesive zone modeling [J]. Acta Metall. Sin., 2011, 47: 594
|
[29] |
(王艳飞, 巩建鸣, 蒋文春 等. 基于内聚力模型的AISI4135高强钢氢致滞后断裂数值模拟 [J]. 金属学报, 2011, 47: 594)
doi: 10.3724/SP.J.1037.2010.00711
|
[30] |
Wang M Q, Akiyama E, Tsuzaki K. Determination of the critical hydrogen concentration for delayed fracture of high strength steel by constant load test and numerical calculation [J]. Corros. Sci., 2006, 48: 2189
|
[31] |
Kumnick A J, Johnson H H. Deep trapping states for hydrogen in deformed iron [J]. Acta Metall., 1980, 28: 33
|
[32] |
Jemblie L, Olden V, Akselsen O M. A coupled diffusion and cohesive zone modelling approach for numerically assessing hydrogen embrittlement of steel structures [J]. Int. J. Hydrog. Energy, 2017, 42: 11980
|
[33] |
Díaz A, Alegre J M, Cuesta I I. Coupled hydrogen diffusion simulation using a heat transfer analogy [J]. Int. J. Mech. Sci., 2016, 115-116: 360
|
[34] |
Peisl H. Lattice strains due to hydrogen in metals [A]. AlefeldG, VölklJ. Hydrogen in Metals I [C]. Berlin: Springer, 1978: 53
|
[35] |
Sofronis P, Liang Y, Aravas N. Hydrogen induced shear localization of the plastic flow in metals and alloys [J]. Eur. J. Mech. A/Solids, 2001, 20: 857
|
[36] |
Kim S K, Lee C S, Kim M H, et al. Numerical analysis of hydrogen transport using a hydrogen-enhanced localized plasticity mechanism [J]. Int. Scholarly Sci. Res. Innovation, 2012, 6: 53
|
[37] |
Oh C S, Kim Y J, Yoon K B. Coupled analysis of hydrogen transport using ABAQUS [J]. J. Solid Mech. Mater. Eng., 2010, 4: 908
|
[38] |
SIMULIA. Abaqus 6. 10-User Subroutines Reference Manual [M]. RI, USA: Dassault Systemes Simulia Corp., 2010
|
[39] |
Charles Y, Mougenot J, Gaspérini M. Effect of transient trapping on hydrogen transport near a blunting crack tip [J]. Int. J. Hydrog. Energy, 2021, 46: 10995
|
[40] |
Depover T, Wallaert E, Verbeken K. On the synergy of diffusible hydrogen content and hydrogen diffusivity in the mechanical degradation of laboratory cast Fe-C alloys [J]. Mater. Sci. Eng., 2016, 664A: 195
|
[41] |
Hirth J P. Effects of hydrogen on the properties of iron and steel [J]. Metall. Trans., 1980, 11A: 861
|
[42] |
Taketomi S, Matsumoto R, Miyazaki N. Atomistic study of hydrogen distribution and diffusion around a {112}<111> edge dislocation in alpha iron [J]. Acta Mater., 2008, 56: 3761
|
[43] |
Pressouyre G M. A classification of hydrogen traps in steel [J]. Metall. Trans., 1979, 10A: 1571
|
[44] |
Kirchheim R. Solid solution softening and hardening by mobile solute atoms with special focus on hydrogen [J]. Scr. Mater., 2012, 67: 767
|
[45] |
Wang S, Hashimoto N, Wang Y M, et al. Activation volume and density of mobile dislocations in hydrogen-charged iron [J]. Acta Mater., 2013, 61: 4734
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|