Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (4): 1070-1080     CSTR: 32134.14.1005.4537.2024.320      DOI: 10.11902/1005.4537.2024.320
  研究报告 本期目录 | 过刊浏览 |
氢扩散模型对临氢结构裂尖氢浓度计算影响
诸滔1, 孙浩翔1, 周亚洪1, 赵宇航2, 王艳飞2()
1 江苏省特种设备安全监督检验研究院 南京 210036
2 中国矿业大学化工学院 徐州 221116
Effect of Hydrogen Diffusion Model on Hydrogen Concentration Calculation Around a Crack Tip in Hydrogen-exposed Structures
ZHU Tao1, SUN Haoxiang1, ZHOU Yahong1, ZHAO Yuhang2, WANG Yanfei2()
1 Special Equipment Safety Supervision Inspection Institute of Jiangsu Province, Nanjing 210036, China
2 School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou 221116, China
引用本文:

诸滔, 孙浩翔, 周亚洪, 赵宇航, 王艳飞. 氢扩散模型对临氢结构裂尖氢浓度计算影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 1070-1080.
Tao ZHU, Haoxiang SUN, Yahong ZHOU, Yuhang ZHAO, Yanfei WANG. Effect of Hydrogen Diffusion Model on Hydrogen Concentration Calculation Around a Crack Tip in Hydrogen-exposed Structures[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(4): 1070-1080.

全文: PDF(4730 KB)   HTML
摘要: 

含裂纹临氢结构如储氢容器和输氢管道存在氢致开裂失效风险。对氢致开裂的预测或评定需要准确获知裂纹尖端的氢浓度。由于氢原子难以检测,一般通过数值分析方法研究氢的扩散和浓度分布,但所采用的氢扩散本构模型对氢浓度的计算存在影响。本文分别对氢扩散与陷阱耦合模型和只考虑静水应力诱导的氢扩散模型开发Abaqus子程序,以研究I型裂纹尖端前方在加载和保载过程中的氢扩散,分析了两种氢扩散模型在不同条件下氢浓度演化上的区别,为合理选择氢扩散模型去分析和预测氢致开裂提供参考。研究发现随着扩散速度变慢和材料强度的降低,加载时有氢陷阱模型与无氢陷阱的模型在可扩散氢分布的差别更明显;在较快扩散速度下,如果仅需可扩散氢分布,则两种扩散模型均可使用;低强度钢的稳态浓度分布强烈依赖于氢陷阱,而高强度钢的稳态浓度分布则随初始氢浓度升高而逐渐由静水应力控制,因此低强度钢需要考虑氢陷阱的影响,而高强度钢可使用无氢陷阱模型;氢陷阱对稳态氢浓度分布的影响随陷阱结合能增加而显著提升,氢陷阱结合能较低时可使用无氢陷阱模型;当考虑氢致软化时采用有氢陷阱的模型更合适。

关键词 氢扩散氢致开裂氢脆氢陷阱静水应力氢致软化    
Abstract

Hydrogen vessels and pipelines with cracks are at risk of hydrogen-induced cracking (HIC) failure. Predicting or assessing HIC requires accurate knowledge of hydrogen concentration at the crack tip. Due to the difficulty related with directly detecting hydrogen atoms, numerical methods are commonly used to acquire the hydrogen diffusion and concentration distribution. However, the chosen diffusion constitutive model can significantly influence the calculation results of hydrogen concentration. Herein, for two selected hydrogen diffusion models, namely a model of hydrogen diffusion coupled with hydrogen trapping and another model of considering only the hydrostatic stress-induced hydrogen diffusion, an Abaqus subroutine was proposed to calculate the hydrogen diffusion around a mode I crack tip during loading and load-holding periods. The differences in hydrogen concentration evolution between the two models were evaluated under various conditions. The results showed that differences in diffusible hydrogen concentration evolution between the two models during loading became more pronounced when the diffusion rate was slower or the material had lower strength. If only the diffusible concentration is needed and the diffusion rate is fast, both diffusion models are applicable. The steady-state hydrogen concentration distribution in low-strength steels was strongly influenced by hydrogen trapping, whereas in high-strength steels, stress effects gradually dominated as the initial hydrogen concentration increased. Therefore, for low-strength steels, the hydrogen trapping effect must be considered, whereas for high-strength steels, it can be neglected. The effect of hydrogen trapping on steady-state hydrogen concentration distribution increased significantly with higher trap binding energy. When the trap binding energy was relatively low, the two models produced comparable results, allowing the use of the trapping-free diffusion model. However, the model with hydrogen trapping was more appropriate when hydrogen-induced softening was also considered. These results provide a valuable reference for selecting a diffusion model when analyzing the HIC behavior of metals.

Key wordshydrogen diffusion    hydrogen-induced cracking    hydrogen embrittlement    hydrogen trapping    hydrostatic stress    hydrogen-induced softening
收稿日期: 2024-10-02      32134.14.1005.4537.2024.320
ZTFLH:  TG142  
基金资助:国家自然科学基金(22208369);高等教育科学研究规划课题重点项目(23SYS0201);中国矿业大学安全学科群“双一流”省补创新项目(AQQ-SYLSB2003-0X);江苏省特种设备安全监督检验研究院科技项目(KJ(Y)2023049);江苏省特种设备安全监督检验研究院科技项目(KJ(Y)2023012)
通讯作者: 王艳飞,E-mail:wyf_hg@cumt.edu.cn,研究方向为金属材料氢脆及其防护
Corresponding author: WANG Yanfei, E-mail: wyf_hg@cumt.edu.cn
作者简介: 诸 滔,女,1968年生,高级工程师
Heat conductionDiffusion
Governing equationρUt=kTGoverning equationCt=DCL
Internal energyU=cpTTotal concentrationC=CL+CT
Heat fluxq=-kTMass fluxJ=-DCL
TemperatureTLattice concentrationCL
Heat conductivitykLattice diffusion coefficientDL
Heat capacitycp-DL/Dapp
Densityρ-1
表1  热传导和扩散的类比
图1  应用于Abaqus的氢扩散子程序调用关系图
图2  模型的初始条件和边界条件及网格划分
SymbolValueSymbolValue
E207 GPa[18]NL8.46 × 1019 sites·mm-3 [18]
v0.3[18]VH2.0 × 103 mm3·mol-1 [18]
n0.2[18]DL1.27 × 10-2 mm2·s-1 [18]
β1[18]v/VA0.2826[4]
α6[18]a2.8665 × 10-7 mm[13]
表2  主要的材料常数
图3  低强度钢裂尖附近静水应力、塑性变形和氢浓度随加载时间的变化
图4  高强钢在130 s时NILS氢浓度以及静水应力分布
图5  裂尖附近的总氢浓度分布和氢覆盖率分布
图6  不同氢陷阱结合能下的裂尖附近总氢浓度和氢陷阱占据率分布
图7  纯铁屈服应力变化与总氢浓度的关系
图8  纯铁位错密度与等效塑性应变的关系
图9  裂尖附近氢致膨胀和静水应力及软化系数的分布
图10  裂尖附近氢浓度分布和不同分析类型下裂尖张开位移与塑性变形的比较
[1] Díaz A, Alegre J M, Cuesta I I. A review on diffusion modelling in hydrogen related failures of metals [J]. Eng. Fail. Anal., 2016, 66: 577
[2] Zhang L, Li Z Y, Zheng J Y, et al. Dependence of hydrogen embrittlement on hydrogen in the surface layer in type 304 stainless steel [J]. Int. J. Hydrog. Energy, 2014, 39: 20578
[3] Yan Y J, Yu Y, He Y, et al. Hydrogen-induced cracking mechanism of precipitation strengthened austenitic stainless steel weldment [J]. Int. J. Hydrog. Energy, 2015, 40: 2404
[4] Taha A, Sofronis P. A micromechanics approach to the study of hydrogen transport and embrittlement [J]. Eng. Fract. Mech., 2001, 68: 803
[5] Anand L. A thermo-mechanically-coupled theory accounting for hydrogen diffusion and large elastic-viscoplastic deformations of metals [J]. Int. J. Solids Struct., 2011, 48: 962
[6] Toribio J, Kharin V. A generalised model of hydrogen diffusion in metals with multiple trap types [J]. Philos. Mag., 2015, 95: 3429
[7] Robertson I M, Sofronis P, Nagao A, et al. Hydrogen embrittlement understood [J]. Metall. Mater. Trans., 2015, 46B: 1085
[8] Barrera O, Tarleton E, Tang H W, et al. Modelling the coupling between hydrogen diffusion and the mechanical behaviour of metals [J]. Comput. Mater. Sci., 2016, 122: 219
[9] Aslan O. Numerical modeling of hydrogen diffusion in metals accounting for large deformations [J]. Int. J. Hydrog. Energy, 2015, 40: 15227
[10] Miresmaeili R, Ogino M, Nakagawa T, et al. A coupled elastoplastic-transient hydrogen diffusion analysis to simulate the onset of necking in tension by using the finite element method [J]. Int. J. Hydrog. Energy, 2010, 35: 1506
[11] Toribio J, Kharin V. Fractographic and numerical study of hydrogen-plasticity interactions near a crack tip [J]. J. Mater. Sci., 2006, 41: 6015
[12] Birnbaum H K, Sofronis P. Hydrogen-enhanced localized plasticity—A mechanism for hydrogen-related fracture [J]. Mater. Sci. Eng., 1994, 176A: 191
[13] Dadfarnia M, Sofronis P, Somerday B P, et al. On the small scale character of the stress and hydrogen concentration fields at the tip of an axial crack in steel pipeline: effect of hydrogen-induced softening on void growth [J]. Int. J. Mater. Res., 2008, 99: 557
[14] Darken L S, Smith R P. Behavior of hydrogen in steel during and after immersion in acid [J]. Corrosion, 1949, 5: 1
[15] Dadfarnia M, Sofronis P, Neeraj T. Hydrogen interaction with multiple traps: Can it be used to mitigate embrittlement? [J]. Int. J. Hydrogen Energy, 2011, 36: 10141
[16] McNabb A, Foster P K. A new analysis of the diffusion of hydrogen in iron and ferritic steels [J]. Trans. Met. Sco. AIME, 1963, 227: 618
[17] Oriani R A. The diffusion and trapping of hydrogen in steel [J]. Acta Metall., 1970, 18: 147
[18] Sofronis P, McMeeking R M. Numerical analysis of hydrogen transport near a blunting crack tip [J]. J. Mech. Phys. Solids, 1989, 37: 317
[19] Krom A H M, Koers R W J, Bakker A. Hydrogen transport near a blunting crack tip [J]. J. Mech. Phys. Solids, 1999, 47: 971
[20] Wu S D, Chen L, Liu M Z. Distribution of hydrogen concentration near notch tip under mode I loading [J]. Acta Metall. Sin., 1990, 26(2): 10
[20] (吴世丁, 陈 廉, 刘民治. I型载荷下缺口前端氢浓度分布的研究 [J]. 金属学报, 1990, 26(2): 10)
[21] Mao S X, Li M. Mechanics and thermodynamics on the stress and hydrogen interaction in crack tip stress corrosion: experiment and theory [J]. J. Mech. Phys. Solids, 1998, 46: 1125
[22] Sun S M, Shiozawa K, Gu J L, et al. Investigation of deformation field and hydrogen partition around crack tip in fcc single crystal [J]. Metall. Mater. Trans., 1995, 26A: 731
[23] Pressouyre G M, Bernstein I M. An example of the effect of hydrogen trapping on hydrogen embrittlement [J]. Metall. Trans., 1981, 12A: 835
[24] Li D M, Gangloff R P, Scully J R. Hydrogen trap states in ultrahigh-strength AERMET 100 steel [J]. Metall. Mater. Trans., 2004, 35A: 849
[25] Novak P, Yuan R, Somerday B P, et al. A statistical, physical-based, micro-mechanical model of hydrogen-induced intergranular fracture in steel [J]. J. Mech. Phys. Solids, 2010, 58: 206
[26] Doshida T, Takai K. Dependence of hydrogen-induced lattice defects and hydrogen embrittlement of cold-drawn pearlitic steels on hydrogen trap state, temperature, strain rate and hydrogen content [J]. Acta Mater., 2014, 79: 93
[27] Serebrinsky S, Carter E A, Ortiz M. A quantum-mechanically informed continuum model of hydrogen embrittlement [J]. J. Mech. Phys. Solids, 2004, 52: 2403
[28] Olden V, Thaulow C, Johnsen R, et al. Influence of hydrogen from cathodic protection on the fracture susceptibility of 25%Cr duplex stainless steel-Constant load SENT testing and FE-modelling using hydrogen influenced cohesive zone elements [J]. Eng. Fract. Mech., 2009, 76: 827
[29] Wang Y F, Gong J M, Jiang W C, et al. Numerical simulation of hydrogen induced delayed fracture of AISI4135 high strength steel using cohesive zone modeling [J]. Acta Metall. Sin., 2011, 47: 594
[29] (王艳飞, 巩建鸣, 蒋文春 等. 基于内聚力模型的AISI4135高强钢氢致滞后断裂数值模拟 [J]. 金属学报, 2011, 47: 594)
doi: 10.3724/SP.J.1037.2010.00711
[30] Wang M Q, Akiyama E, Tsuzaki K. Determination of the critical hydrogen concentration for delayed fracture of high strength steel by constant load test and numerical calculation [J]. Corros. Sci., 2006, 48: 2189
[31] Kumnick A J, Johnson H H. Deep trapping states for hydrogen in deformed iron [J]. Acta Metall., 1980, 28: 33
[32] Jemblie L, Olden V, Akselsen O M. A coupled diffusion and cohesive zone modelling approach for numerically assessing hydrogen embrittlement of steel structures [J]. Int. J. Hydrog. Energy, 2017, 42: 11980
[33] Díaz A, Alegre J M, Cuesta I I. Coupled hydrogen diffusion simulation using a heat transfer analogy [J]. Int. J. Mech. Sci., 2016, 115-116: 360
[34] Peisl H. Lattice strains due to hydrogen in metals [A]. AlefeldG, VölklJ. Hydrogen in Metals I [C]. Berlin: Springer, 1978: 53
[35] Sofronis P, Liang Y, Aravas N. Hydrogen induced shear localization of the plastic flow in metals and alloys [J]. Eur. J. Mech. A/Solids, 2001, 20: 857
[36] Kim S K, Lee C S, Kim M H, et al. Numerical analysis of hydrogen transport using a hydrogen-enhanced localized plasticity mechanism [J]. Int. Scholarly Sci. Res. Innovation, 2012, 6: 53
[37] Oh C S, Kim Y J, Yoon K B. Coupled analysis of hydrogen transport using ABAQUS [J]. J. Solid Mech. Mater. Eng., 2010, 4: 908
[38] SIMULIA. Abaqus 6. 10-User Subroutines Reference Manual [M]. RI, USA: Dassault Systemes Simulia Corp., 2010
[39] Charles Y, Mougenot J, Gaspérini M. Effect of transient trapping on hydrogen transport near a blunting crack tip [J]. Int. J. Hydrog. Energy, 2021, 46: 10995
[40] Depover T, Wallaert E, Verbeken K. On the synergy of diffusible hydrogen content and hydrogen diffusivity in the mechanical degradation of laboratory cast Fe-C alloys [J]. Mater. Sci. Eng., 2016, 664A: 195
[41] Hirth J P. Effects of hydrogen on the properties of iron and steel [J]. Metall. Trans., 1980, 11A: 861
[42] Taketomi S, Matsumoto R, Miyazaki N. Atomistic study of hydrogen distribution and diffusion around a {112}<111> edge dislocation in alpha iron [J]. Acta Mater., 2008, 56: 3761
[43] Pressouyre G M. A classification of hydrogen traps in steel [J]. Metall. Trans., 1979, 10A: 1571
[44] Kirchheim R. Solid solution softening and hardening by mobile solute atoms with special focus on hydrogen [J]. Scr. Mater., 2012, 67: 767
[45] Wang S, Hashimoto N, Wang Y M, et al. Activation volume and density of mobile dislocations in hydrogen-charged iron [J]. Acta Mater., 2013, 61: 4734
[1] 张慧云, 郑留伟, 梁伟. 退火工艺对304奥氏体不锈钢的组织演变及氢脆行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(2): 438-448.
[2] 陈锴, 杜一帆, 徐浩昀, 吕良, 党桂铭, 王玉金, 郑树启. X80管线钢氢渗透行为及氢脆敏感性研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 388-396.
[3] 李新城, 李兆南, 王海锋, 徐云泽, 王明昱, 甄兴伟. DH36海洋工程钢焊接结构的氢脆敏感性研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 416-422.
[4] 崔博伦, 赵杰, 吕冉, 李敬法, 宇波, 闫东雷. 掺氢天然气输送管材氢脆与腐蚀复合防护技术研究进展[J]. 中国腐蚀与防护学报, 2025, 45(2): 327-337.
[5] 刘天乐, 韦博鑫, 付安庆, 苏航, 陈廷枢, 王超明, 王邃. 掺氢环境下X80管线钢气相氢损伤研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 423-430.
[6] 白云龙, 冷冰, 韦博鑫, 董立谨, 于长坤, 许进, 孙成. 掺氢天然气管材及焊缝的氢损伤行为研究进展[J]. 中国腐蚀与防护学报, 2025, 45(2): 283-295.
[7] 张倩茹, 孙擎擎. 氢促进局部塑性变形理论的发展趋势[J]. 中国腐蚀与防护学报, 2025, 45(2): 271-282.
[8] 王明洋, 夏大海. 高强铝合金氢脆机理研究进展[J]. 中国腐蚀与防护学报, 2025, 45(2): 261-270.
[9] 万红江, 明洪亮, 王俭秋, 韩恩厚. H2O2CO掺杂对X52管线钢氢脆敏感性影响研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 371-380.
[10] 程凯源, 彭杨, 黄峰, 程向龙, 徐云峰, 彭志贤, 刘静. 典型无缝钢管钢掺氢天然气环境适应性及氢致损伤机理[J]. 中国腐蚀与防护学报, 2025, 45(2): 397-406.
[11] 李鑫, 韦博鑫, 鲁仰辉, 孙晨, 于文涛, 徐猛, 刘伟. 临氢环境下管线钢氢损伤机理研究进展[J]. 中国腐蚀与防护学报, 2024, 44(5): 1125-1133.
[12] 徐云峰, 王少峰, 何龙, 刘冬, 黄峰, 刘静. EPS处理对QStE700TM钢氢脆敏感性影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 691-699.
[13] 王艳飞, 李耀州, 黄玉婷, 谢宏琳, 吴炜杰. 晶粒尺寸对304L奥氏体不锈钢氢脆的影响[J]. 中国腐蚀与防护学报, 2023, 43(3): 494-506.
[14] 彭浩, 程晓英, 李晓亮, 王兆丰, 蔡贞祥. 高强度低合金钢中V和Nb对氢陷阱的影响[J]. 中国腐蚀与防护学报, 2023, 43(2): 415-420.
[15] 马成, 崔彦发, 张青, 赵林林, 王立辉, 熊自柳. 中锰TRIP钢氢致开裂性能研究现状与进展[J]. 中国腐蚀与防护学报, 2022, 42(6): 885-893.