Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (3): 707-715     CSTR: 32134.14.1005.4537.2023.209      DOI: 10.11902/1005.4537.2023.209
  研究报告 本期目录 | 过刊浏览 |
油水交替环境中咪唑啉对CO2 腐蚀的抑制作用研究
欧阳嘉露1, 王茜茜1, 韩霞2, 王子明1()
1.厦门大学材料学院 海洋材料腐蚀防护研究中心 厦门 361005
2.中石化石油工程设计有限公司 东营 257026
Inhibition of Imidazolines on CO2 Induced Corrosion of Carbon Steel in Oil and Water Alternatively Wetting Conditions
OUYANG Jialu1, WANG Xixi1, HAN Xia2, WANG Ziming1()
1. Center for Marine Materials Corrosion and Protection, College of Materials, Xiamen University, Xiamen 361005, China
2. Sinopec Petroleum Engineering Design Co., Ltd., Dongying 257026, China
引用本文:

欧阳嘉露, 王茜茜, 韩霞, 王子明. 油水交替环境中咪唑啉对CO2 腐蚀的抑制作用研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 707-715.
Jialu OUYANG, Xixi WANG, Xia HAN, Ziming WANG. Inhibition of Imidazolines on CO2 Induced Corrosion of Carbon Steel in Oil and Water Alternatively Wetting Conditions[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(3): 707-715.

全文: PDF(8980 KB)   HTML
摘要: 

通过添加两类典型油溶性和水溶性咪唑啉缓蚀剂,检验了其在油水动态润湿环境中对碳钢CO2腐蚀的抑制效果。研究表明,水溶性咪唑啉的缓蚀效果优于油溶性咪唑啉,其缓蚀效果差异主要源于油水界面行为的改变。油溶性咪唑啉分子通过增强油相中自修复作用来提高缓蚀效果;水溶性咪唑啉分子可以有效抑制油水界面水滴的形成和长大等过程,减弱CO2对油膜的破坏作用,增强动态润湿缓蚀效果。

关键词 CO2腐蚀咪唑啉类缓蚀剂油水交替润湿    
Abstract

Corrosion inhibitor is the most commonly used for corrosion control in oil production, but the relevant inhibition mechanism in complex CO2 containing multiphase flow environment is still unclear. The effect of two typical oil-soluble and water-soluble imidazoline inhibitors on CO2 induced corrosion of carbon steel in oil and water alternatively wetting conditions was investigated. It was found that the corrosion inhibition effect of the water-soluble imidazoline was better than that of the oil-soluble imidazoline, and the difference was mainly attributed to the performance of interface oil/water. The oil-soluble imidazoline molecules can improve the inhibition effect by enhancing the self-repair on the oil phase side, while the water-soluble imidazoline molecules can effectively inhibit the generation and growth of water droplets at the interface oil/water, weaken the rupture of CO2 to the oil layer, and enhance the corrosion inhibition in dynamic wetting conditions.

Key wordsCO2 corrosion    imidazoline inhibitor    oil-water alternate wetting
收稿日期: 2023-07-01      32134.14.1005.4537.2023.209
ZTFLH:  TG174  
基金资助:国家自然科学基金(52271075)
通讯作者: 王子明,E-mail:zmwang@xmu.edu.cn,研究方向为多相流腐蚀、碳捕集、利用与封存(CCUS)腐蚀等
Corresponding author: WANG Ziming, E-mail: zmwang@xmu.edu.cn
作者简介: 欧阳嘉露,女,1998年生,硕士生
图1  油溶性和水溶性咪唑啉的红外光谱图
图2  不同缓蚀剂添加体系中覆油RCE表面油膜破裂时间统计分析
图3  油膜破裂后RCE的局部腐蚀形态
图4  不同转速下RCE分别在不含缓蚀剂以及含油溶性和水溶性咪唑啉的碳酸化溶液体系中交替循环润湿30周期的恒电位极化电流-时间曲线,以及3种CO2饱和溶液体系中经过油水交替循环测试得出的缓蚀率(DME)
图5  动态接触角测量示意图与统计结果及静态油包水接触角测试图与统计结果
SampleRaman shift / cm-1Molecular formulaFunctional groupVibration typeRef.
100# mineral oil2850—CH2C—Hvsym.a[25,26]
2869—CH3C—Hvsym.a[25]
2890—CHC—Hvsym.a[27]
2928—CH2C—Hvsym.a[27]
2959—CH3C—Hvasym.b[27]
0.1 mol/L NaCl solution3255 (peak1)H2OO—Hvasym.b[28]
3452 (peak2)H2OO—Hvc[28]
3603 (peak3)H2OO—Hvc[28]
表1  100#矿物油和0.1 mol/L NaCl 溶液的Raman光谱信息
图6  含有水溶性咪唑啉的碳酸化系统中主相和油水界面的Raman光谱分峰
图7  不同条件下水和油Raman子峰的相对面积比(I)
1 Wang Z M, Song G L, Zhang J. Corrosion control in CO2 enhanced oil recovery from a perspective of multiphase fluids [J]. Front. Mater., 2019, 6: 272
doi: 10.3389/fmats.2019.00272
2 Ding W G, Xu D J, Zheng G H, et al. Research progress on application of carbon dioxide in energy development [J]. Modern Chem. Ind., 2023, 43(3): 13
2 丁文刚, 许冬进, 郑光洪 等. 二氧化碳在能源开发应用中的研究进展 [J]. 现代化工, 2023, 43(3): 13
3 Zhang Z L, Lü G Z, Wang J. CCUS and its application in Shengli Oilfield [J]. Petrol. Reserv. Evaluat. Dev., 2021, 11: 812
3 张宗檩, 吕广忠, 王 杰. 胜利油田CCUS技术及应用 [J]. 油气藏评价与开发, 2021, 11: 812
4 Lei Y J. Suggesting to conduct large-scale CCUS demonstration and industrial cluster construction [J]. Environ. Econ., 2021, (16): 40
4 雷英杰. 中国二氧化碳捕集利用与封存(CCUS)年度报告(2021)发布 建议开展大规模CCUS示范与产业化集群建设 [J]. 环境经济, 2021, (16): 40
5 Su Y W, Ren G. Current situation of carbon dioxide recovery and utilization in China [J]. Resour. Economizat. Environ. Prot., 2010: 72
5 苏元伟, 任 刚. 我国二氧化碳回收和利用现状 [J]. 资源节约与环保, 2010: 72
6 Jia Q Y, Wang B, Wang Y, et al. Corrosion behavior of X65 pipeline steel at oil-water interface region in hyperbaric CO2 environment [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 230
6 贾巧燕, 王 贝, 王 赟 等. X65管线钢在油水两相界面处的CO2腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2020, 40: 230
doi: 10.11902/1005.4537.2019.056
7 Li K X, Song L F, Li X R. Effect of pH on electrochemical corrosion and stress corrosion behavior of X100 pipeline steel in CO2-3/HCO-3 solutions [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 779
7 李柯萱, 宋龙飞, 李晓荣. pH值对X100管线钢在CO2-3/HCO-3溶液中的电化学与应力腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 779
doi: 10.11902/1005.4537.2021.244
8 Chen Q G, Tang Q H, Qin Z J, et al. Corrosion behavior of hot-dip aluminum coating in “High temperature-salt deposited-CO2/O2” multi-degree coupling environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 569
8 陈庆国, 唐全宏, 秦振杰 等. “高温-结盐-CO2/O2”多因素耦合环境下热浸铝镀层腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 569
doi: 10.11902/1005.4537.2022.229
9 Chen C F, Lu M X, Zhao G X, et al. The EIS analysis of cathodic reactions during CO2 corrosion of N80 steel [J]. Acta Metall. Sin., 2003, 39: 94
9 陈长风, 路民旭, 赵国仙 等. N80油套管钢CO2腐蚀阴极过程电化学阻抗谱分析 [J]. 金属学报, 2003, 39: 94
10 Ma W L, Wang H X, Barker R, et al. Corrosion behaviour of X65 carbon steel under the intermittent oil/water wetting: A synergic effect of flow velocity and alternate immersion period [J]. Corros. Sci., 2021, 187: 109507
doi: 10.1016/j.corsci.2021.109507
11 Jasinski R J, Efird K D. Technical Note: Electrochemical corrosion measurements in crude oil [J]. Corrosion, 1987, 43: 476
doi: 10.5006/1.3583888
12 Wang Z M, Zhang J. Corrosion of multiphase flow pipelines: the impact of crude oil [J]. Corros. Rev., 2016, 34: 17
doi: 10.1515/corrrev-2015-0053
13 Seal S, Sapre K, Kale A, et al. Effect of multiphase flow on corrosion of C-steel in presence of inhibitor: a surface morphological and chemical study [J]. Corros. Sci., 2000, 42: 1623
doi: 10.1016/S0010-938X(00)00013-5
14 Wang Z M, Song G L, Wang J, et al. Fast evaluation of corrosion inhibitors used in oil/water mixed fluids [A]. Corrosion 2019 [C]. Nashville, 2019
15 Mazumder M A J, Al-Muallem H A, Ali S A. The effects of N-pendants and electron-rich amidine motifs in 2-(p-alkoxyphenyl)-2-imidazolines on mild steel corrosion in CO2-saturated 0.5 M NaCl [J]. Corros. Sci., 2015, 90: 54
doi: 10.1016/j.corsci.2014.09.014
16 Yoo S H, Kim Y W, Chung K, et al. Synthesis and corrosion inhibition behavior of imidazoline derivatives based on vegetable oil [J]. Corros. Sci., 2012, 59: 42
doi: 10.1016/j.corsci.2012.02.011
17 Zhang G F, Zhang W, Wang F S. Synthesis of tall oil-based hydroxyethyl imidazoline and study on its corrosion inhibition properties [J]. Mod. Chem. Ind., 2020, 40(6): 151
17 张高飞, 张 威, 王丰收. 妥尔油基羟乙基咪唑啉的合成及缓蚀性能研究 [J]. 现代化工, 2020, 40(6): 151
18 Foss M, Gulbrandsen E, Sjöblom J. Alteration of wettability of corroding carbon steel surface by carbon dioxide corrosion inhibitors—effect on carbon dioxide corrosion rate and contact angle [J]. Corrosion, 2008, 64: 905
doi: 10.5006/1.3294406
19 Zheng L X, Wang Z M, Song G L. Electrochemical characterization of an oil/water alternately wetted rotating cylinder electrode [J]. Corrosion, 2021, 77: 72
doi: 10.5006/3638
20 Ouyang J L, Wang X X, Wang Z M, et al. Molecular origin of the CO2-enhanced water wetting during corrosion of an oil layer-attached steel surface in water flows [J].Corrosion, 2023, 79(11): 1253
doi: 10.5006/4295
21 Yan J R. Synthesis of imidazoline inhibitor from vegetable oil and analysis of its inhibition performance [D]. Shaanxi University of Science & Technology, 2012
21 闫倩茹. 植物油制备咪唑啉类缓蚀剂及其缓蚀性能的分析研究 [D]. 西安: 陕西科技大学, 2012
22 Qi Z Y. Synthesis of oleic acid-imidazoline corrosion inhibitor and the effect of self-assembly method on its performance [D]. Beijing: China University of Petroleum, 2016
22 齐志远. 油酸基咪唑啉的合成及自组装方式对其缓蚀性能的影响 [D]. 北京: 中国石油大学, 2016
23 Chen G H. Study of the inhibition mechanism and synergistic effect of corrosion inhibitors in sweet system [D]. Beijing: Beijing University of Chemical Technology, 2012
23 陈国浩. 二氧化碳腐蚀体系缓蚀剂的缓蚀机理及缓蚀协同效应研究 [D]. 北京: 北京化工大学, 2012
24 Wang Z M, Lun Q Y, Wang J, et al. Corrosion mitigation behavior of an alternately wetted steel electrode in oil/water media [J]. Corros. Sci., 2019, 152: 140
doi: 10.1016/j.corsci.2019.03.008
25 Park C W, Lee I, Kwon S H, et al. Authentication of adulterated edible oil using coherent anti-Stokes Raman scattering spectroscopy [J]. J. Raman Spectrosc., 2017, 48: 1330
doi: 10.1002/jrs.v48.10
26 Larsson K, Rand R P. Detection of changes in the environment of hydrocarbon chains by Raman spectroscopy and its application to lipid-protein systems [J]. Biochim. Biophys. Acta, 1973, 326: 245
pmid: 4765102
27 Howell N K, Herman H, Li-Chan E C Y. Elucidation of protein-lipid interactions in a lysozyme-corn oil system by Fourier transform Raman spectroscopy [J]. J. Agric. Food Chem., 2001, 49: 1529
doi: 10.1021/jf001115p
28 Baumgartner M, Bakker R J. Raman spectroscopy of pure H2O and NaCl-H2O containing synthetic fluid inclusions in quartz—A study of polarization effects [J]. Mineral. Petrol., 2009, 95: 1
doi: 10.1007/s00710-008-0028-z
[1] 原玉, 向勇, 李晨, 赵雪会, 闫伟, 姚二冬. CCUS系统中CO2 注入井管材腐蚀研究进展[J]. 中国腐蚀与防护学报, 2024, 44(1): 15-26.
[2] 赵国仙, 刘冉冉, 丁浪勇, 张思琦, 郭梦龙, 王映超. 温度对5Cr钢在模拟油田高温高压环境中CO2 腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 175-186.
[3] 朱烨森, 蔡锟, 胡葆文, 夏云秋, 胡涛勇, 黄一. 海底管道CO2 腐蚀特性及预测模型研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1225-1236.
[4] 赵国仙, 王映超, 张思琦, 宋洋. H2S/CO2对J55钢腐蚀的影响机制[J]. 中国腐蚀与防护学报, 2022, 42(5): 785-790.
[5] 潘鑫, 任泽, 连景宝, 何川, 郑平, 陈旭. 热处理工艺对超级13Cr不锈钢在饱和CO2油田地层水中腐蚀行为影响[J]. 中国腐蚀与防护学报, 2022, 42(5): 752-758.
[6] 明男希, 王岐山, 何川, 郑平, 陈旭. 温度对X70钢在含CO2地层水中腐蚀行为影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 233-240.
[7] 白海涛, 杨敏, 董小卫, 马云, 王瑞. CO2腐蚀产物膜的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(4): 295-301.
[8] 贾巧燕, 王贝, 王赟, 张雷, 王清, 姚海元, 李清平, 路民旭. X65管线钢在油水两相界面处的CO2腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[9] 伊红伟, 胡慧慧, 陈长风, 贾小兰, 胡丽华. CO2环境下油酸咪唑啉对X65钢异种金属焊缝电偶腐蚀的抑制作用研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 96-104.
[10] 刘建国,高歌,徐亚洲,李自力,季菀然. 咪唑啉类衍生物缓蚀性能研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 523-532.
[11] 韩帅豪,岑宏宇,陈振宇,邱于兵,郭兴蓬. 原油与高压CO2共存条件下咪唑啉缓蚀剂的作用行为研究[J]. 中国腐蚀与防护学报, 2017, 37(3): 221-226.
[12] 赵桐, 赵景茂, 姜瑞景. 流速和碳链长度对咪唑啉衍生物在高压CO2环境中缓蚀性能的影响[J]. 中国腐蚀与防护学报, 2015, 35(2): 163-168.
[13] 赵景茂 陈国浩. 咪唑啉与硫脲在CO2腐蚀体系中的
缓蚀协同作用机理
[J]. 中国腐蚀与防护学报, 2013, 33(3): 226-230.
[14] 刘玉,李焰. 天然气管线钢CO2腐蚀研究进展[J]. 中国腐蚀与防护学报, 2013, 33(1): 1-9.
[15] 赵景茂,李俊. 含羟基双子表面活性剂在CO2饱和盐水溶液中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2012, 32(4): 349-352.