|
|
油水交替环境中咪唑啉对CO2 腐蚀的抑制作用研究 |
欧阳嘉露1, 王茜茜1, 韩霞2, 王子明1( ) |
1.厦门大学材料学院 海洋材料腐蚀防护研究中心 厦门 361005 2.中石化石油工程设计有限公司 东营 257026 |
|
Inhibition of Imidazolines on CO2 Induced Corrosion of Carbon Steel in Oil and Water Alternatively Wetting Conditions |
OUYANG Jialu1, WANG Xixi1, HAN Xia2, WANG Ziming1( ) |
1. Center for Marine Materials Corrosion and Protection, College of Materials, Xiamen University, Xiamen 361005, China 2. Sinopec Petroleum Engineering Design Co., Ltd., Dongying 257026, China |
引用本文:
欧阳嘉露, 王茜茜, 韩霞, 王子明. 油水交替环境中咪唑啉对CO2 腐蚀的抑制作用研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 707-715.
Jialu OUYANG,
Xixi WANG,
Xia HAN,
Ziming WANG.
Inhibition of Imidazolines on CO2 Induced Corrosion of Carbon Steel in Oil and Water Alternatively Wetting Conditions[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(3): 707-715.
1 |
Wang Z M, Song G L, Zhang J. Corrosion control in CO2 enhanced oil recovery from a perspective of multiphase fluids [J]. Front. Mater., 2019, 6: 272
doi: 10.3389/fmats.2019.00272
|
2 |
Ding W G, Xu D J, Zheng G H, et al. Research progress on application of carbon dioxide in energy development [J]. Modern Chem. Ind., 2023, 43(3): 13
|
2 |
丁文刚, 许冬进, 郑光洪 等. 二氧化碳在能源开发应用中的研究进展 [J]. 现代化工, 2023, 43(3): 13
|
3 |
Zhang Z L, Lü G Z, Wang J. CCUS and its application in Shengli Oilfield [J]. Petrol. Reserv. Evaluat. Dev., 2021, 11: 812
|
3 |
张宗檩, 吕广忠, 王 杰. 胜利油田CCUS技术及应用 [J]. 油气藏评价与开发, 2021, 11: 812
|
4 |
Lei Y J. Suggesting to conduct large-scale CCUS demonstration and industrial cluster construction [J]. Environ. Econ., 2021, (16): 40
|
4 |
雷英杰. 中国二氧化碳捕集利用与封存(CCUS)年度报告(2021)发布 建议开展大规模CCUS示范与产业化集群建设 [J]. 环境经济, 2021, (16): 40
|
5 |
Su Y W, Ren G. Current situation of carbon dioxide recovery and utilization in China [J]. Resour. Economizat. Environ. Prot., 2010: 72
|
5 |
苏元伟, 任 刚. 我国二氧化碳回收和利用现状 [J]. 资源节约与环保, 2010: 72
|
6 |
Jia Q Y, Wang B, Wang Y, et al. Corrosion behavior of X65 pipeline steel at oil-water interface region in hyperbaric CO2 environment [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 230
|
6 |
贾巧燕, 王 贝, 王 赟 等. X65管线钢在油水两相界面处的CO2腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2020, 40: 230
doi: 10.11902/1005.4537.2019.056
|
7 |
Li K X, Song L F, Li X R. Effect of pH on electrochemical corrosion and stress corrosion behavior of X100 pipeline steel in CO2-3/HCO-3 solutions [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 779
|
7 |
李柯萱, 宋龙飞, 李晓荣. pH值对X100管线钢在CO2-3/HCO-3溶液中的电化学与应力腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 779
doi: 10.11902/1005.4537.2021.244
|
8 |
Chen Q G, Tang Q H, Qin Z J, et al. Corrosion behavior of hot-dip aluminum coating in “High temperature-salt deposited-CO2/O2” multi-degree coupling environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 569
|
8 |
陈庆国, 唐全宏, 秦振杰 等. “高温-结盐-CO2/O2”多因素耦合环境下热浸铝镀层腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 569
doi: 10.11902/1005.4537.2022.229
|
9 |
Chen C F, Lu M X, Zhao G X, et al. The EIS analysis of cathodic reactions during CO2 corrosion of N80 steel [J]. Acta Metall. Sin., 2003, 39: 94
|
9 |
陈长风, 路民旭, 赵国仙 等. N80油套管钢CO2腐蚀阴极过程电化学阻抗谱分析 [J]. 金属学报, 2003, 39: 94
|
10 |
Ma W L, Wang H X, Barker R, et al. Corrosion behaviour of X65 carbon steel under the intermittent oil/water wetting: A synergic effect of flow velocity and alternate immersion period [J]. Corros. Sci., 2021, 187: 109507
doi: 10.1016/j.corsci.2021.109507
|
11 |
Jasinski R J, Efird K D. Technical Note: Electrochemical corrosion measurements in crude oil [J]. Corrosion, 1987, 43: 476
doi: 10.5006/1.3583888
|
12 |
Wang Z M, Zhang J. Corrosion of multiphase flow pipelines: the impact of crude oil [J]. Corros. Rev., 2016, 34: 17
doi: 10.1515/corrrev-2015-0053
|
13 |
Seal S, Sapre K, Kale A, et al. Effect of multiphase flow on corrosion of C-steel in presence of inhibitor: a surface morphological and chemical study [J]. Corros. Sci., 2000, 42: 1623
doi: 10.1016/S0010-938X(00)00013-5
|
14 |
Wang Z M, Song G L, Wang J, et al. Fast evaluation of corrosion inhibitors used in oil/water mixed fluids [A]. Corrosion 2019 [C]. Nashville, 2019
|
15 |
Mazumder M A J, Al-Muallem H A, Ali S A. The effects of N-pendants and electron-rich amidine motifs in 2-(p-alkoxyphenyl)-2-imidazolines on mild steel corrosion in CO2-saturated 0.5 M NaCl [J]. Corros. Sci., 2015, 90: 54
doi: 10.1016/j.corsci.2014.09.014
|
16 |
Yoo S H, Kim Y W, Chung K, et al. Synthesis and corrosion inhibition behavior of imidazoline derivatives based on vegetable oil [J]. Corros. Sci., 2012, 59: 42
doi: 10.1016/j.corsci.2012.02.011
|
17 |
Zhang G F, Zhang W, Wang F S. Synthesis of tall oil-based hydroxyethyl imidazoline and study on its corrosion inhibition properties [J]. Mod. Chem. Ind., 2020, 40(6): 151
|
17 |
张高飞, 张 威, 王丰收. 妥尔油基羟乙基咪唑啉的合成及缓蚀性能研究 [J]. 现代化工, 2020, 40(6): 151
|
18 |
Foss M, Gulbrandsen E, Sjöblom J. Alteration of wettability of corroding carbon steel surface by carbon dioxide corrosion inhibitors—effect on carbon dioxide corrosion rate and contact angle [J]. Corrosion, 2008, 64: 905
doi: 10.5006/1.3294406
|
19 |
Zheng L X, Wang Z M, Song G L. Electrochemical characterization of an oil/water alternately wetted rotating cylinder electrode [J]. Corrosion, 2021, 77: 72
doi: 10.5006/3638
|
20 |
Ouyang J L, Wang X X, Wang Z M, et al. Molecular origin of the CO2-enhanced water wetting during corrosion of an oil layer-attached steel surface in water flows [J].Corrosion, 2023, 79(11): 1253
doi: 10.5006/4295
|
21 |
Yan J R. Synthesis of imidazoline inhibitor from vegetable oil and analysis of its inhibition performance [D]. Shaanxi University of Science & Technology, 2012
|
21 |
闫倩茹. 植物油制备咪唑啉类缓蚀剂及其缓蚀性能的分析研究 [D]. 西安: 陕西科技大学, 2012
|
22 |
Qi Z Y. Synthesis of oleic acid-imidazoline corrosion inhibitor and the effect of self-assembly method on its performance [D]. Beijing: China University of Petroleum, 2016
|
22 |
齐志远. 油酸基咪唑啉的合成及自组装方式对其缓蚀性能的影响 [D]. 北京: 中国石油大学, 2016
|
23 |
Chen G H. Study of the inhibition mechanism and synergistic effect of corrosion inhibitors in sweet system [D]. Beijing: Beijing University of Chemical Technology, 2012
|
23 |
陈国浩. 二氧化碳腐蚀体系缓蚀剂的缓蚀机理及缓蚀协同效应研究 [D]. 北京: 北京化工大学, 2012
|
24 |
Wang Z M, Lun Q Y, Wang J, et al. Corrosion mitigation behavior of an alternately wetted steel electrode in oil/water media [J]. Corros. Sci., 2019, 152: 140
doi: 10.1016/j.corsci.2019.03.008
|
25 |
Park C W, Lee I, Kwon S H, et al. Authentication of adulterated edible oil using coherent anti-Stokes Raman scattering spectroscopy [J]. J. Raman Spectrosc., 2017, 48: 1330
doi: 10.1002/jrs.v48.10
|
26 |
Larsson K, Rand R P. Detection of changes in the environment of hydrocarbon chains by Raman spectroscopy and its application to lipid-protein systems [J]. Biochim. Biophys. Acta, 1973, 326: 245
pmid: 4765102
|
27 |
Howell N K, Herman H, Li-Chan E C Y. Elucidation of protein-lipid interactions in a lysozyme-corn oil system by Fourier transform Raman spectroscopy [J]. J. Agric. Food Chem., 2001, 49: 1529
doi: 10.1021/jf001115p
|
28 |
Baumgartner M, Bakker R J. Raman spectroscopy of pure H2O and NaCl-H2O containing synthetic fluid inclusions in quartz—A study of polarization effects [J]. Mineral. Petrol., 2009, 95: 1
doi: 10.1007/s00710-008-0028-z
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|