Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (4): 1025-1034     CSTR: 32134.14.1005.4537.2024.302      DOI: 10.11902/1005.4537.2024.302
  研究报告 本期目录 | 过刊浏览 |
基于双电极电化学阻抗实现现场涂层老化状态的快速无损检测
熊启勇1, 蒋婉娟2, 曾美婷1, 徐金山1, 易勇刚1, 李岩岩2, 董泽华2()
1 新疆油田分公司工程技术研究院 克拉玛依 834000
2 华中科技大学化学与化工学院 武汉 430074
In situ Rapid Non-destructive Diagnosis on Degradation of Coatings Based on Dual-electrode Electrochemical Impedance Probe
XIONG Qiyong1, JIANG Wanjuan2, ZENG Meiting1, XU Jinshan1, YI Yonggang1, LI Yanyan2, DONG Zehua2()
1 Research Institute of Engineering Technology, PetroChina Xinjiang Oilfield Company, Karamay 834000, China
2 School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
引用本文:

熊启勇, 蒋婉娟, 曾美婷, 徐金山, 易勇刚, 李岩岩, 董泽华. 基于双电极电化学阻抗实现现场涂层老化状态的快速无损检测[J]. 中国腐蚀与防护学报, 2025, 45(4): 1025-1034.
Qiyong XIONG, Wanjuan JIANG, Meiting ZENG, Jinshan XU, Yonggang YI, Yanyan LI, Zehua DONG. In situ Rapid Non-destructive Diagnosis on Degradation of Coatings Based on Dual-electrode Electrochemical Impedance Probe[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(4): 1025-1034.

全文: PDF(9706 KB)   HTML
摘要: 

油气管道内外防腐主要依赖高耐蚀涂层,然而如何快速、无损测评现役涂层的防护性能仍存在较多困难。针对涂层老化的无损评价,本文设计了一种双电极电化学阻抗探头,于实验室测量了经不同盐雾时间的环氧和聚氨酯涂层的阻抗谱,发现采用双电解池测量的涂层阻抗与常规三电极电解池测量值具有较好一致性,且涂层低频阻抗|Z|0.01 Hz随盐雾时间延长均呈下降趋势。实验还发现,随着两电解池间距增大,低频阻抗模值呈现先增而后趋平稳的趋势。通过COMSOL静电场仿真,发现双电解池测量的涂层阻抗等于单电解池阻抗的2倍,但双电解池方法避免了现场寻找涂层基体露铁点的麻烦。本文还以双电极阻抗探头为原型,设计了一款可用于现场涂层无损监测的便携式阻抗监测仪,用于对涂层老化状态进行在线分级,为管道或大罐涂层的预防性维修周期和维修区域的确定提供指导。

关键词 环氧涂层涂层失效电化学阻抗无损监测电场仿真    
Abstract

The internal and external corrosion protection of oil and gas pipelines mainly depends on highly corrosion-resistant coatings. However, it remains a challenge to assess the protective performance of existing coatings non-destructively. In this work, a double-electrode electrochemical impedance probe was designed to estimate the degradation of coatings. The lab tests show that the EIS measured by the double-electrode probe agrees well with that by conventional three-electrode cells. In addition, the |Z|0.01 Hz increases first and then becomes stable with the increasing distance between the two electrodes. Through the simulation of COMSOL electrostatic field, it shows that the coating impedance measured by the double-electrode probe is twice that by a single-electrode probe. Although, the coating degradation state can be revealed using either probe, but the use of double-electrode probe can avoid the troubles of requiring to find out the iron-related leaking spot emerged on the coating during field tests. Eventually, a portable impedance meter for in situ non-destructive monitoring of coating is designed based on the double-electrode probe. Through online evaluation of coating degradation state, the impedance meter may provide guidance for the determination of preventive maintenance cycle and maintenance area of degraded coatings for pipeline or large tank.

Key wordsepoxy coating    coating degradation    electrochemical impedance    non-destructive monitoring    electric field simulation
收稿日期: 2024-09-18      32134.14.1005.4537.2024.302
ZTFLH:  TG174  
基金资助:中石化新疆油田重点科研项目(2023CDB292)
通讯作者: 董泽华,E-mail:zhdong@hust.edu.cn,研究方向为腐蚀与防护
Corresponding author: DONG Zehua, E-mail: zhdong@hust.edu.cn
作者简介: 熊启勇,男,1978年生,高级工程师蒋婉娟,女,1999年生,硕士生
熊启勇,男,1978年生,高级工程师蒋婉娟,女,1999年生,硕士生
图1  电解池电化学阻抗测试示意图
图2  环氧涂层阻抗随盐雾老化时间的变化曲线
图3  分别用于未老化涂层和老化涂层的EIS等效电路模型
图4  4种环氧涂层样品的涂层电阻Rc和涂层电容Cc随盐雾时间的变化曲线
图5  基于双电解池测量的未老化1#涂层在不同电解池间距下的阻抗谱随浸泡时间的变化曲线
图6  盐雾老化40 d后的1#涂层阻抗随双电解池间距及浸泡时间的变化曲线
图7  1#涂层样品的中频阻抗|Z|110 Hz随电解池间距和浸泡时间的变化曲线
图8  COMSOL Multiphysics二维仿真示意图
图9  双电极涂层阻抗探头实物的侧面和底视图
图10  基于双电极探头与双电解池测量的环氧富锌涂层的Bode图
图11  采用双电极探头测量3种户外钢结构的涂层阻抗
[1] Pang Z K, Yang J, Li G M, et al. Analysis method and detection technology of metal corrosion characteristics [J]. Environ. Technol., 2022, 40: 81
[1] (庞志开, 杨 杰, 李光茂 等. 金属腐蚀特性分析方法与检测技术 [J]. 环境技术, 2022, 40: 81)
[2] Bastidas D M. Corrosion and protection of metals [J]. Metals, 2020, 10: 458
[3] Blanchard F, Kadi M J, Bousser E, et al. Effect of thermal ageing on the optical properties and pore structure of thermal barrier coatings [J]. Surf. Coat. Technol., 2023, 452: 129080
[4] Ruan X, Zhang X M, Yang J, et al. Failure mode analysis and life prediction of organic coatings in marine environment [A]. 2018 National Academic Exchange Meeting on Corrosion Electrochemistry and Test methods [C]. Beijing, 2018: 272
[4] (阮 鑫, 张小明, 杨 健 等. 有机涂层防护体系在海洋环境下失效模式的分析及其寿命预测 [A]. 2018年全国腐蚀电化学及测试方法学术交流会论文集 [C]. 北京, 2018: 272)
[5] Che K Y, Lyu P, Wan F, et al. Investigations on aging behavior and mechanism of polyurea coating in marine atmosphere [J]. Materials, 2019, 12: 3636
[6] Li Z S, Zhao S W, Shao Z W, et al. Deterioration mechanism of vanadium dioxide smart coatings during natural aging: uncovering the role of water [J]. Chem. Eng. J., 2022, 447: 137556
[7] Nicholas J, Mohamed M, Dhaliwal G S, et al. Effects of accelerated environmental aging on glass fiber reinforced thermoset polyurethane composites [J]. Compos. Eng., 2016, 94B: 370
[8] Bierwagen G, Tallman D, Li J P, et al. EIS studies of coated metals in accelerated exposure [J]. Prog. Org. Coat., 2003, 46: 149
[9] Choi E Y, Shin J C, Lee J Y, et al. Accelerated life testing of thermoplastic polyurethane encapsulants used in underwater acoustic sensor [J]. Macromol. Res., 2020, 28: 510
[10] Ishida T, Richaud E, Gervais M, et al. Thermal aging of acrylic-urethane network: kinetic modeling and end-of-life criteria combined with mechanical properties [J]. Prog. Org. Coat., 2022, 163: 106654
[11] Dogan A, Atas C. Variation of the mechanical properties of E-glass/epoxy composites subjected to hygrothermal aging [J]. J. Compos. Mater., 2016, 50: 637
[12] Pang J, Liu X J, Liu N Z, et al. Galvanic corrosion of T2 Cu-alloy and Q235 steel in simulated beishan groundwater environment [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1435
[12] (庞 洁, 刘相局, 刘娜珍 等. T2铜合金和Q235钢在模拟北山地下水环境中的电偶腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1435)
[13] Wang P F, He X F, Zhang H, et al. Correlation between accelerated aging of coating and natural exposure test [J]. J. Beijing Univ. Aeronaut. Astronaut., 2022, 48: 27
[13] (汪鹏飞, 贺小帆, 张 涵 等. 涂层加速老化与自然曝晒试验的相关性分析 [J]. 北京航空航天大学学报, 2022, 48: 27)
[14] Chen Y L, Zhang C, Li Y W, et al. Deterioration processes of organic coatings under the low-frequency alternation of wetting and drying condition [J]. Equ. Environ. Eng., 2019, 16: 122
[14] (陈亚林, 张 丛, 李延伟 等. 低频率干湿交替环境中有机涂层失效过程 [J]. 装备环境工程, 2019, 16: 122)
[15] Diler E, Lédan F, LeBozec N, et al. Real-time monitoring of the degradation of metallic and organic coatings using electrical resistance sensors [J]. Mater. Corros., 2017, 68: 1365
[16] Sun X G, Wang R, Zhang Z Y, et al. On-line corrosion monitoring technology for high-speed train in dynamic service circumstance [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 441
[16] (孙晓光, 王 睿, 张志毅 等. 高速列车动态服役环境腐蚀在线监测技术研究 [J]. 中国腐蚀与防护学报, 2022, 42: 441)
doi: 10.11902/1005.4537.2021.239
[17] Lin B, Fu G Q, Shen X S, et al. Pipeline corrosion and coating durability monitoring under insulation of nuclear power plant [J]. Total Corros. Control, 2020, 34: 102
[17] (林 斌, 付国庆, 沈新生 等. 核电厂保温层下管道腐蚀与涂层耐久性监测 [J]. 全面腐蚀控制, 2020, 34: 102)
[18] Zhou W, Zhao Y G, Li W, et al. Degradation formula and working lifetime prediction for high-temperature coating [J]. Appl. Surf. Sci., 2006, 253: 2565
[19] Zhu Y P, Bousfield D, Gramlich W. Failure prediction of waterborne barrier coatings during folding [J]. J. Coat. Technol. Res., 2021, 18: 1117
[20] Zhang Z H, Wu J, Su T, et al. Life prediction for anticorrosive coatings on steel bridges [J]. Corrosion, 2020, 76: 773
[21] Fartash A H, Lyavoli H F, Poursaeidi E, et al. Interfacial delamination of porous thermal barrier coatings based on SEM image processing in finite element model [J]. Theor. Appl. Fract. Mec., 2023, 125: 103915
[22] Huang Y H, Wang J. Prediction of coating adhesion loss due to stretching [J]. Int. J. Adhes. Adhes., 2013, 40: 49
[23] Cao H L, Cao P S, Kang L P, et al. Failure analysis and damage development trend research of aero-engine high-pressure turbine blades [J]. J. Civil Aviat. Univ. China, 2017, 35: 13
[23] (曹惠玲, 曹鹏双, 康力平 等. 发动机HPT叶片失效分析及损伤发展趋势研究 [J]. 中国民航大学学报, 2017, 35: 13)
[24] Yu W J, Wang T C, Zhao D Y, et al. Lifetime prediction model for barrier-type corrosion-resistant coating [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1617
[24] (禹文娟, 王天丛, 赵东杨 等. 封闭型耐蚀涂层的寿命预测模型研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1617)
doi: 10.11902/1005.4537.2023.383
[25] Wang T C, Zhao D Y, Xiang X Y, et al. Degradation behavior of an epoxy corrosion-resistant coating in NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1361
[25] (王天丛, 赵东杨, 向雪云 等. 一种环氧耐蚀涂层在NaCl溶液中的劣化行为研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1361)
doi: 10.11902/1005.4537.2023.375
[26] Gao H D, Cui Y, Liu L, et al. Influence of simulated deep sea pressured-flowing seawater on failure behavior of epoxy glass flake coating [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 39
[26] (高浩东, 崔 宇, 刘 莉 等. 深海压力-流速耦合环境对环氧玻璃鳞片涂层失效行为的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 39)
doi: 10.11902/1005.4537.2021.034
[27] Wang T Y, Zhang Z G, Lu W Z, et al. Effect of alternating pressure on electrochemical behavior of solvent-free epoxy coating in simulated ultra-deep sea environment [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 929
[27] (王腾宇, 张正贵, 陆卫中 等. 交变压力对无溶剂环氧涂层在模拟超深海环境下的电化学行为 [J]. 中国腐蚀与防护学报, 2022, 42: 929)
doi: 10.11902/1005.4537.2022.133
[28] Li Z X, Cao Y H, Li C J, et al. Relationship between corrosion failure degree of organic coatings and mechanical properties for dissimilar metal assamblies [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 679
[28] (李卓玄, 曹艳辉, 李崇杰 等. 耦接件涂层失效程度与其力学损伤之间的关系 [J]. 中国腐蚀与防护学报, 2024, 44: 679)
doi: 10.11902/1005.4537.2023.370
[29] Cai G Y, Wang H W, Jiang D, et al. Impedance sensor for the early failure diagnosis of organic coatings [J]. J. Coat. Technol. Res., 2018, 15: 1259
[30] Shi W, Wang Z, Fan Y Y, et al. Design of the armament corrosion monitoring system based on CdS coating aging probe and MCU [J]. J. Naval Aviat. Univ., 2016, 31: 595
[30] (石 薇, 王 朕, 范源远 等. 基于单片机和CdS涂层老化探头的装备腐蚀监测系统设计 [J]. 海军航空工程学院学报, 2016, 31: 595)
[31] Xia D H, Deng C M, Macdonald D, et al. Electrochemical measurements used for assessment of corrosion and protection of metallic materials in the field: a critical review [J]. J. Mater. Sci. Technol., 2022, 112: 151
[32] Mills D J, Broster M, Razaq I. Continuing work to enable electrochemical methods to be used to monitor the performance of organic coatings in the field [J]. Prog. Org. Coat., 2008, 63: 267
[33] Larché J F, Bussière P O, Gardette J L. Characterisation of accelerated ageing devices for prediction of the service life of acrylic-melamine/urethane thermosets [J]. Polym. Degrad. Stab., 2011, 96: 1530
[34] Zhang X D, Zhao Y, Guo Y F, et al. Study on aging and service life prediction of FEVE coating [J]. Paint Coat. Ind., 2013, 43: 62
[34] (张晓东, 赵 钺, 郭燕芬 等. FEVE涂层的老化与服役寿命预测研究 [J]. 涂料工业, 2013, 43: 62)
[35] Khalifeh R, Lescop B, Gallée F, et al. Development of a radio frequency resonator for monitoring water diffusion in organic coatings [J]. Sens. Actuat. Phys., 2016, 247A: 30
[36] Zou F, Thierry D. Localized electrochemical impedance spectroscopy for studying the degradation of organic coatings [J]. Electrochim. Acta, 1997, 42: 3293
[37] Busso E P, Evans H E, Wright L, et al. A software tool for lifetime prediction of thermal barrier coating systems [J]. Mater. Corros., 2008, 59: 556
[38] Nazarov A, Thierry D. Application of scanning kelvin probe in the study of protective paints [J]. Front. Mater., 2019, 6: 192
[39] Sheikholeslami S, Williams G, McMurray H N, et al. Cut-edge corrosion behavior assessment of newly developed environmental-friendly coating systems using the Scanning Vibrating Electrode Technique (SVET) [J]. Corros. Sci., 2021, 192: 109813
[40] Bastos A C, Quevedo M C, Karavai O V, et al. Review—on the application of the Scanning Vibrating Electrode Technique (SVET) to corrosion research [J]. J. Electrochem. Soc., 2017, 164: C973
[41] Gnedenkov A S, Sinebryukhov S L, Mashtalyar D V, et al. Localized corrosion of the Mg alloys with inhibitor-containing coatings: SVET and SIET studies [J]. Corros. Sci., 2016, 102: 269
[42] Almond D P, Cox R L, Moghisi M, et al. Acoustic properties of plasma-sprayed coatings and their applications to non-destructive evaluation [J]. Thin Solid Films, 1981, 83: 311
[43] Gao J, Li C, Feng H X, et al. In situ and dynamic observation of coating failure behavior [J]. Prog. Org. Coat., 2020, 138: 105387
[44] Savill T, Jewell E. Design of a chipless RFID tag to monitor the performance of organic coatings on architectural cladding [J]. Sensors, 2022, 22: 3312
[45] Latif J, Khan Z A, Stokes K. Structural monitoring system for proactive detection of corrosion and coating failure [J]. Sens. Actuat. Phys., 2020, 301A: 111693
[1] 李丽, 李善文, 史洪微, 梁国平, 李春霖, 孙禹, 秦晋, 王伟, 韩恩厚. 高速列车用铝合金环氧底漆的腐蚀行为和湿热老化机理研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 757-764.
[2] 禹文娟, 王天丛, 赵东杨, 向雪云, 吴航, 王文. 封闭型耐蚀涂层的寿命预测模型研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1617-1624.
[3] 徐桂芝, 杜小泽, 胡晓, 宋洁. Pt涂层对TA4双极板在质子交换膜制氢电解池阳极环境中的电化学行为与界面导电性能研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1370-1376.
[4] 王天丛, 赵东杨, 向雪云, 吴航, 王文. 一种环氧耐蚀涂层在NaCl溶液中的劣化行为研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1361-1369.
[5] 吕晓明, 王震宇, 韩恩厚. 纳米改性环氧隔热涂层的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1234-1242.
[6] 刘喆, 邓成满, 魏军胜, 夏大海. 涂覆有机涂层的镀锡薄钢板耐蒸煮性能电化学快速检测技术研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 883-890.
[7] 傅江悦, 郭建喜, 杨延格, 冷哲, 王文. 单相流冲刷条件下一种低合金高强钢的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 585-600.
[8] 李卓玄, 曹艳辉, 李崇杰, 李辉, 张小明, 雍兴跃. 耦接件涂层失效程度与其力学损伤之间的关系[J]. 中国腐蚀与防护学报, 2024, 44(3): 679-690.
[9] 韩东晓, 纪文会, 王通, 王巍. 基于弛豫时间分布和有限元模拟的环氧涂层渗水行为研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 489-496.
[10] 赵国仙, 刘冉冉, 丁浪勇, 张思琦, 郭梦龙, 王映超. 温度对5Cr钢在模拟油田高温高压环境中CO2 腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 175-186.
[11] 李春霖, 史洪微, 梁国平, 李丽, 王浩, 王伟, 刘福春, 韩恩厚. 高速列车用聚氨酯面漆耐蚀性能和老化机制研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1383-1391.
[12] 陈肖寒, 白杨, 王志超, 陈从棕, 张勇, 崔显林, 左娟娟, 王同良. 低表面处理环氧防腐底漆的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1126-1132.
[13] 胡杰珍, 上官桔钰, 邓培昌, 冯绮蓝, 王贵, 王沛林. 基于阵列电极技术研究藤壶附着对Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1145-1150.
[14] 毛飞雄, 周羽婷, 姚文清, 沈翔, 肖龙, 李明辉. 基于PDM304不锈钢钝化膜生长动力学研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 911-921.
[15] 邓成满, 刘喆, 夏大海, 胡文彬. 5083-H111铝合金在模拟动态海水环境中的局部腐蚀机制[J]. 中国腐蚀与防护学报, 2023, 43(4): 683-692.