Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (4): 1014-1024     CSTR: 32134.14.1005.4537.2024.324      DOI: 10.11902/1005.4537.2024.324
  研究报告 本期目录 | 过刊浏览 |
乙二醇冷却液的劣化检测及增材制造AlSi10Mg铝合金在其中的腐蚀行为
雷涛1, 陈绍高2, 刘秀利1, 范金龙3, 郑兴文2,3()
1 中国电子科技集团公司第十研究所 成都 610036
2 四川轻化工大学化学与环境工程学院 自贡 643000
3 材料腐蚀与防护四川省重点实验室 自贡 643000
Corrosion Behavior of Laser Additive Manufacturing AlSi10Mg Al-alloy in Ethylene Glycol Coolant and Detection of Coolant Degradation
LEI Tao1, CHEN Shaogao2, LIU Xiuli1, FAN Jinlong3, ZHENG Xingwen2,3()
1 The 10th Research Institute of China Electronics Technology Group Corporation, Chengdu 610036, China
2 School of Chemistry and Environmental Engineering, Sichuan University of Scinece and Engineering, Zigong 643000, China
3 Material Corrosion and Protection Key Laboratory of Sichuan Province, Zigong 643000, China
引用本文:

雷涛, 陈绍高, 刘秀利, 范金龙, 郑兴文. 乙二醇冷却液的劣化检测及增材制造AlSi10Mg铝合金在其中的腐蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(4): 1014-1024.
Tao LEI, Shaogao CHEN, Xiuli LIU, Jinlong FAN, Xingwen ZHENG. Corrosion Behavior of Laser Additive Manufacturing AlSi10Mg Al-alloy in Ethylene Glycol Coolant and Detection of Coolant Degradation[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(4): 1014-1024.

全文: PDF(16798 KB)   HTML
摘要: 

针对乙二醇冷却液的劣化问题和铝合金在其中的腐蚀问题,通过恒温油浴和热循环模拟实验探讨增材制造铝合金及其冷板在商用乙二醇冷却液中的长期腐蚀行为以及冷却液的劣化规律。结果表明,冷却液的pH值、储备碱度均随实验时间的增加而减小,冷却液中铝离子、机械杂质和乙二醇酸性氧化产物的含量升高,其中乙醛酸是主要的酸性氧化产物。冷却液劣化监测指标参数在恒温油浴实验和热循环实验中呈现不同的变化趋势,在热循环实验中存在一个明显的时间转折点,且热循环实验中铝合金的腐蚀速率均显著高于恒温油浴实验。铝合金试样表面的腐蚀产物由Al2O3、Al-乙二醇、Al-乙二醇氧化产物以及缓蚀组分沉淀物组成。

关键词 冷却液增材制造铝合金乙二醇劣化腐蚀    
Abstract

The long-term corrosion behavior of test pieces and cooling plate of laser additive manufactured AlSi10Mg Al-alloy in commercial ethylene glycol coolant was assessed via isothermal test at 88 ℃ and thermal cyclic test, meanwhile the degradation of ethylene glycol coolant was examined along with the corrosion process. The results showed that the pH value and reserve alkalinity of the coolant decreased with the increasing time, while the content of Al ions, mechanical impurities, and acidic oxidation products of ethylene glycol in the coolant increased, and glyoxylic acid was the main acidic oxidation product of ethylene glycol. The monitoring parameters of coolant degradation displayed different trends in thermal cycling test and constant temperature test, with a clear time turning point in thermal cycling test, and the corrosion rate of aluminum alloy in thermal cycling test was significantly higher than that in isothermal test. The corrosion products on the surface of Al-alloy were composed of Al2O3, Al-ethylene glycol, Al-ethylene glycol oxidation products, and precipitates of corrosion inhibiting components.

Key wordscoolant    laser additive manufacturing Al-alloy    ethylene glycol    degradation    corrosion
收稿日期: 2024-10-08      32134.14.1005.4537.2024.324
ZTFLH:  TG178  
基金资助:四川省科技厅应用基础重点项目(2017JY0153)
通讯作者: 郑兴文,E-mail:zxwasd@126.com,研究方向为应用电化学
Corresponding author: ZHENG Xingwen, E-mail: zxwasd@126.com
作者简介: 雷 涛,男,1991年生,硕士
图1  热循环实验铝合金冷板及取样部位示意图
图2  恒温油浴和热循环实验下冷却液pH值的变化曲线
图3  恒温油浴和热循环实验下冷却液储备碱度的变化曲线
图4  恒温油浴和热循环实验不同时间后冷却液中乙二醇氧化产物的分析结果
图5  乙二醇氧化路线图
图6  恒温油浴和热循环实验不同时间后冷却液中乙二醇氧化产物的生成速率
图7  恒温油浴和热循环实验不同时间后冷却液中铝离子的浓度
图8  恒温油浴实验铝合金试样在清除腐蚀产物前后的失重和腐蚀速率
图9  恒温油浴实验前和实验180 d后铝合金试样照片和金相图
图10  铝合金试样经恒温油浴实验不同时间后表面SEM图
图11  热循环实验后液冷冷板不同取样部位流道的数码照片
图12  热循环实验后铝合金冷板不同取样部位流道的SEM图
Elements0 d30 d60 d90 d120 d150 d180 d
C--21.6616.4719.4437.9362.60
O32.6633.2923.6629.1627.9019.4413.71
Na---0.250.290.220.21
Al55.9557.2548.4746.7345.7537.1820.56
Si11.398.395.736.175.644.352.30
P-1.070.480.750.670.480.36
Ca---0.460.310.400.27
表1  铝合金试样在恒温油浴实验不同时间后的能谱分析结果
图13  恒温油浴实验后铝合金试样表面的XPS图
ElementsDifferent sampling locations
LeftBentBottomRight
C46.2531.6838.7034.44
O9.596.8612.1010.39
Na0.090.070.060.24
Al38.5354.2242.1147.21
Si4.716.876.156.20
P0.210.060.420.22
Ca0.32-0.190.42
Fe0.300.220.260.88
表2  热循环实验后铝合金冷板不同取样部位流道的能谱分析结果
图14  铝合金冷板“弯”部位流道元素面扫描图
[1] Zhan D D, Wang C, Qian J Y, et al. Effect of trace Cl- and Cu2+ ions on corrosion behavior of 3A21 Al-alloy in ethylene glycol coolant [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 383
[1] (战栋栋, 王 成, 钱吉裕 等. 痕量Cl-和Cu2+对3A21铝合金在乙二醇冷却液中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 383)
doi: 10.11902/1005.4537.2020.082
[2] Zuo H Y, Gong M, Zheng X W, et al. Corrosion behavior of 3A21 aluminum alloy in ethylene glycol solution under different atmospheres [J]. Mater. Res. Express, 2020, 7: 026523
[3] Zhang X, Feng C, Yan H Z, et al. Experimental analysis on corrosiveness of ethylene glycol antifreeze to ship RF cooling pipe network system [J]. Ship Ocean Eng., 2020, 49(6): 95
[3] (张 轩, 冯 超, 阎瀚章 等. 乙二醇型防冻液对舰船射频冷却管网系统的腐蚀性实验分析 [J]. 船海工程, 2020, 49(6): 95)
[4] Santambrogio M, Perrucci G, Trueba M, et al. Effect of major degradation products of ethylene glycol aqueous solutions on steel corrosion [J]. Electrochim. Acta, 2016, 203: 439
[5] Zhang D Q, Zhou L X, Rao C Y, et al. Effect of pH and glycolic acid on corrosion of AA6061 alloy in ethylene glycol-water solution [J]. Mater. Corros., 2014, 65: 31
[6] Chen S G, Fan J L, Lei T, et al. Effect of oxalic acid on the corrosion of 6063 aluminum alloy in ethylene glycol-water solution in presence of ammonium alcohol polyvinyl phosphate [J]. Int. J. Electrochem. Sci., 2024, 19: 100540
[7] Coelho L B, Lukaczynska-Anderson M, Clerick S, et al. Corrosion inhibition of AA6060 by silicate and phosphate in automotive organic additive technology coolants [J]. Corros. Sci., 2022, 199: 110188
[8] He J X, Zhang Y T, Guan X D, et al. Research on metal 3D printing process for micro-channel cold plate of antenna [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 993
[8] (何佳璇, 张羽彤, 管旭东 等. 铝合金微通道换热器的腐蚀防护现状与进展 [J]. 中国腐蚀与防护学报, 2024, 44: 993)
doi: 10.11902/1005.4537.2023.243
[9] Wu H L, Chen Y Q, Huang L, et al. Corrosion behavior of welded partitions of 3003 Al-alloy used for radiators of high-speed train [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1081
[9] (巫海亮, 陈宇强, 黄 亮 等. 高铁散热器用3003铝合金焊接隔板的腐蚀机理研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1081)
doi: 10.11902/1005.4537.2023.268
[10] Zuo H Y, Fan J L, Liu F, et al. Corrosion behavior of 3A21 aluminum alloy in water-ethylene glycol coolant under simulated engine working conditions [J]. Int. J. Electrochem. Sci., 2021, 16: 21062
[11] Zhang X G, Liu X, Dong W P, et al. Corrosion behaviors of 5A06 aluminum alloy in ethylene glycol [J]. Int. J. Electrochem. Sci., 2018, 13: 10470
[12] Chen X, Tian W M, Li S M, et al. Effect of temperature on corrosion behavior of 3003 aluminum alloy in ethylene glycol-water solution [J]. Chin. J. Aeronaut., 2016, 29: 1142
[13] Zaharieva J, Milanova M, Mitov M, et al. Corrosion of aluminium and aluminium alloy in ethylene glycol-water mixtures [J]. J. Alloy. Compd., 2009, 470: 397
[14] You L Z, Heng S Q, Lu J M, et al. Effect of foreign ions on corrosion resistance of AA5052 aluminum alloy in the simulated coolant [J]. Mater. Prot., 2022, 55(7): 96
[14] (尤良洲, 衡世权, 陆佳敏 等. 杂质离子对AA5052铝合金在模拟冷却液中耐蚀性能的影响 [J]. 材料保护, 2022, 55(7): 96)
[15] Wang H, Jiang B, Zhao T T, et al. Electrocatalysis of ethylene glycol oxidation on bare and Bi-modified Pd concave nanocubes in alkaline solution: an interfacial infrared spectroscopic investigation [J]. ACS Catal., 2017, 7: 2033
[16] Qi J, An Z Y, Li C, et al. Electrocatalytic selective oxidation of ethylene glycol: A concise review of catalyst development and reaction mechanism with comparison to thermocatalytic oxidation process [J]. Curr. Opin. Electrochem., 2022, 32: 100929
[17] Xin L, Zhang Z Y, Qi J, et al. Electrocatalytic oxidation of ethylene glycol (EG) on supported Pt and Au catalysts in alkaline media: reaction pathway investigation in three-electrode cell and fuel cell reactors [J]. Appl. Catal., 2012, 125B: 85
[18] Wang Y, Zheng M, Sun H, et al. Catalytic Ru containing Pt3Mn nanocrystals enclosed with high-indexed facets: surface alloyed Ru makes Pt more active than Ru particles for ethylene glycol oxidation [J]. Appl. Catal., 2019, 253B: 11
[19] Pech-Rodríguez W J, Calles-Arriaga C, Gonzalez-Quijano D, et al. Electrocatalysis of the ethylene glycol oxidation reaction and in situ Fourier-transform infared study on PtMo/C electrocatalysts in alkaline and acid media [J]. J. Power Sour., 2018, 375: 335
[20] Leon A, Aghion E. Effect of surface roughness on corrosion fatigue performance of AlSi10Mg alloy produced by Selective Laser Melting (SLM) [J]. Mater. Charact., 2017, 131: 188
[21] Cabrini M, Lorenzi S, Pastore T, et al. Evaluation of corrosion resistance of Al-10Si-Mg alloy obtained by means of direct metal laser sintering [J]. J. Mater. Process. Technol., 2016, 231: 326
[22] Linder C, Mehta B, Sainis S, et al. Corrosion resistance of additively manufactured aluminium alloys for marine applications [J]. npj Mater. Degrad., 2024, 8: 46
[23] Liu Y X. Engine coolant corrosion inhibition stabilizer and preparing method of coolant [P]. Chin Pat, 201711011450.0, 2017
[23] (刘雨修. 一种发动机冷却液缓蚀稳定剂及冷却液制备方法 [P]. 中国专利, 201711011450.0, 2017)
[24] Xing C L, Xu Y Y, Zheng G Y, et al. Anti-freezing fluid for locomotive [P]. Chin. Pat., 202211382565.1, 2022
[24] (邢存良, 徐映岳, 郑贵宇 等. 机车防冻液 [P]. 中国专利, 202211382565.1, 2022)
[25] Wang Y C, Huang G L, Huang H L, et al. High temperature corrosion behavior of ADC12 aluminum alloy in oxalic acid solution [J]. Corros. Sci., 2024, 232: 112028
[26] Li K. Micro arc oxidation (MAO) processing of Al-Si alloys and the investigation of the influence of silicon on their MAO layers [D]. Guangzhou: South China University of Technology, 2016
[26] (李 康. 铝硅合金微弧氧化工艺及硅的影响机制研究 [D]. 广州: 华南理工大学, 2016)
[27] Fan L, Zhang J T, Wang H, et al. Effects of trace Cl-, Cu2+ and Fe3+ ions on the corrosion behaviour of AA6063 in ethylene glycol and water solutions [J]. Acta Metall. Sin. (Eng. Lett.), 2022, 35: 285
[1] 丁智超, 张树国, 肖晓春, 汪迪, 李文杰, 姜丽红. 半固态7075铝合金搅拌摩擦焊接头晶间腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 1089-1097.
[2] 李顺平, 党莹, 洪晓峰, 宁方强. 水化学对690镍基合金高温高压水腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 1035-1040.
[3] 柳森, 胡家元, 温小涵, 朱仁政, 李延伟, 杨小佳. 典型沿海地区五种电网材料在大气环境下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 1107-1116.
[4] 张雄斌, 党恩, 于晓婧, 汤玉斐, 赵康. 油气田用马氏体不锈钢腐蚀性能研究现状与进展[J]. 中国腐蚀与防护学报, 2025, 45(4): 837-848.
[5] 麻衡, 王中学, 逄昆, 张庆普, 崔中雨. 低合金钢中腐蚀活性夹杂物诱发局部腐蚀萌生行为研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 1005-1013.
[6] 段敬民, 董勇, 缪东美, 杨玉婧, 毛凌波, 章争荣. 热处理工艺对Al0.5CoCrFeNi高熵合金在不同介质下腐蚀行为及力学性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 983-994.
[7] 张珊珊, 刘元才, 徐铁伟, 杨发展. 成型方向及热处理对选区激光熔化Ti6Al4V合金腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 995-1004.
[8] 冉仁豪, 单慧琳, 张鹏杰, 汪冬梅, 斯佳佳, 徐光青, 吕珺. 表层镁合金化NdFeB磁体的制备及其耐腐蚀性能[J]. 中国腐蚀与防护学报, 2025, 45(4): 1117-1126.
[9] 李茂, 邓轲, 陈衍祥, 刘中豪, 李尚, 郭宇婷, 董选普, 曹华堂. N2 流量和靶基距对多弧离子镀沉积AlSiN纳米复合涂层的微观组织及耐腐蚀性能影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 1041-1050.
[10] 岳锐, 刘咏咏, 杨丽景, 朱兴隆, 陈权昕, 阿那尔, 张青科, 宋振纶. 激光重熔对生物可降解Zn-0.4Mn合金微观结构和性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 1127-1134.
[11] 黄诗雨, 刘士琛, 杨淞普, 刘家兵, 李刚, 郭娜, 刘涛. FH40船用钢在模拟极地海水环境中的腐蚀与磨蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(4): 859-868.
[12] 方焕杰, 周鹏, 郁健浩, 王永欣, 于波, 蒲吉斌. Ti80合金与船用金属的电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 905-915.
[13] 张国庆, 余直霞, 王岳松, 王智, 金正宇, 刘宏伟. 海上超临界二氧化碳环境中含水率和温度对A106钢腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 1061-1069.
[14] 李秋博, 苏一喆, 吴伟, 张俊喜. 自源性磁场对Cu大气腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 956-964.
[15] 胡娜, 彭文山, 郭为民, 刘天楠, 段体岗, 刘少通. 高强铝合金焊接接头力学-电化学腐蚀行为与退化规律研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 965-974.