Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (4): 1005-1013     CSTR: 32134.14.1005.4537.2024.261      DOI: 10.11902/1005.4537.2024.261
  研究报告 本期目录 | 过刊浏览 |
低合金钢中腐蚀活性夹杂物诱发局部腐蚀萌生行为研究
麻衡1, 王中学1, 逄昆2(), 张庆普1, 崔中雨2
1 山东钢铁股份有限公司 济南 271104
2 中国海洋大学材料科学与工程学院 青岛 266100
Localized Corrosion Behavior Induced by Corrosion-active Inclusion in Low Alloy Steel
MA Heng1, WANG Zhongxue1, PANG Kun2(), ZHANG Qingpu1, CUI Zhongyu2
1 Shandong Iron and Steel Co., Ltd., Jinan 271104, China
2 School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
引用本文:

麻衡, 王中学, 逄昆, 张庆普, 崔中雨. 低合金钢中腐蚀活性夹杂物诱发局部腐蚀萌生行为研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 1005-1013.
Heng MA, Zhongxue WANG, Kun PANG, Qingpu ZHANG, Zhongyu CUI. Localized Corrosion Behavior Induced by Corrosion-active Inclusion in Low Alloy Steel[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(4): 1005-1013.

全文: PDF(26610 KB)   HTML
摘要: 

选择690 MPa级低合金钢为研究对象,模拟酸性含Cl-环境,对低合金钢中典型夹杂物诱发的局部腐蚀行为进行了系统研究。采用了显微组织表征、三维形貌观察等方法,探究了夹杂物对腐蚀萌生行为的影响机制。研究表明EH690钢中的夹杂物形态大致相似,主要为球状或椭球状,尺寸在1~4 μm。不同尺寸的钢板中夹杂物类型基本一致,主要分为(Mn, Ca)S-MgO·Al2O3、(Mn,Ca)S-MgO·Al2O3-TiN和(Mn, Ca)S 3类。腐蚀活性夹杂物分析表明,厚板表面位置的腐蚀活性夹杂物密度相对较高。腐蚀活性夹杂物的溶解首先发生在夹杂物与基体的界面处,同时造成基体的腐蚀。但在相同的介质条件和浸泡周期内,这些夹杂物展现了不同的腐蚀活性,这是由于侵蚀性粒子在蚀坑中的扩散能力不同及蚀坑内可能存在的微电偶腐蚀所致。

关键词 低合金钢夹杂物局部腐蚀腐蚀萌生    
Abstract

The localized corrosion behavior of EH690, a 690 MPa grade low alloy steel in an artificial chloride containing acidic seawater was assessed via immersion test, optical microscope, laser confocal microscope, and scanning electron microscope with energy dispersive spectroscope, in terms of the effect active inclusions on the localized corrosion of the steel. It is found that the inclusions in EH690 steel are similar in shape, mainly spherical or ellipsoidal, with a diameter of 1-4 μm. The types of inclusions in steel plates of different thickness are basically the same, which may be divided into three categories: (Mn,Ca)S-MgO·Al2O3, (Mn,Ca)S-MgO·Al2O3-TiN, and (Mn,Ca)S. The density of the corrosion-active inclusion is higher on the surface area of the thick plate. The dissolution of corrosion-active inclusions first occurs at the interface between the inclusion and the matrix, meanwhile causes corrosion of matrix. However, in case when immersion in the same medium for the same period, these inclusions exhibit different corrosion activities, which may be due to the different diffusion capabilities of aggressive particles in the pits and the micro-galvanic corrosion within the pits.

Key wordslow alloy steel    inclusion    localized corrosion    corrosion initiation
收稿日期: 2024-08-20      32134.14.1005.4537.2024.261
ZTFLH:  TG174  
基金资助:国家重点研发计划(2023YFB3710300);泰山产业领军人才工程专项
通讯作者: 逄昆,E-mail:pangkun@ouc.edu.cn,研究方向为海洋环境腐蚀与防护
Corresponding author: PANG Kun, E-mail: pangkun@ouc.edu.cn
作者简介: 麻 衡,男,1985年生,正高级工程师
图1  EH690海工钢金相组织照片
图2  EH690海工钢原始夹杂物SEM形貌
图3  EH690 海工钢非金属夹杂物EDS谱图
图4  复合夹杂物形成示意图
图5  EH690钢浸泡不同时间后的金相显微照片
图6  EH690钢不同位置处活性夹杂物密度
图7  EH690海工钢浸泡后夹杂物诱发局部腐蚀
图8  EH690钢浸泡后夹杂物SEM形貌
图9  EH690海工钢浸泡后夹杂物EDS元素分布
图10  夹杂物诱发点蚀形成不同形貌蚀坑的机理图
[1] Wang Y X, Zhu A H, Wang L W, et al. Comparative study on corrosion behavior of two novel Ni-Cr-Mo-V steels in simulated seawater environment [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 918
[1] (王玉雪, 朱澳鸿, 王力伟 等. 两种新型Ni-Cr-Mo-V钢在模拟海水环境中的腐蚀行为对比研究 [J]. 中国腐蚀与防护学报, 2024, 44: 918)
doi: 10.11902/1005.4537.2024.032
[2] Liu Q, Yang S F, Zhao M J, et al. Pitting corrosion of steel induced by Al2O3 inclusions [J]. Metals, 2017, 7: 347
[3] Zhao Y G, Zhao X H, Xia F, et al. Unraveling the effect of sulfide-oxide complex inclusions on the localized corrosion mechanism for carbon steel [J]. Corros. Sci., 2023, 224: 111555
[4] Liu C, Chen T Q, Li X G. Research progress on initiation mechanism of local corrosion induced by inclusions in low alloy steel [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 746
[4] (刘 超, 陈天奇, 李晓刚. 低合金钢中夹杂物诱发局部腐蚀萌生机制的研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 746)
[5] Bai X F, Sun Y H, Chen R M, et al. Formation and thermodynamics of CaS-bearing inclusions during Ca treatment in oil casting steels [J]. Int. J. Miner., Metall., Mater., 2019, 26: 573
[6] Guo J, Cheng S S, Cheng Z J, et al. Thermodynamics for precipitation of CaS bearing inclusion and their deformation during rolling process for Al-killed Ca-treated steel [J]. Steel Res. Int., 2013, 84: 545
[7] Guo J, Cheng S S, Guo H J, et al. Novel mechanism for the modification of Al2O3-based inclusions in ultra-low carbon Al-killed steel considering the effects of magnesium and calcium [J]. Int. J. Miner., Metall., Mater., 2018, 25: 280
[8] Nishimoto M, Muto I, Sugawara Y, et al. Cerium addition to CaS inclusions in stainless steel: insolubilizing water-soluble inclusions and improving pitting corrosion resistance [J]. Corros. Sci., 2021, 180: 109222
[9] Liu P, Zhang Q H, Li X R, et al. Insight into the triggering effect of (Al, Mg, Ca, Mn)-oxy-sulfide inclusions on localized corrosion of weathering steel [J]. J. Mater. Sci. Technol., 2021, 64: 99
doi: 10.1016/j.jmst.2020.06.031
[10] Brooksbank D, Andrews K W. Stress fields around inclusions and their relation to mechanical properties [J]. J. Iron. Steel. Inst., 1972, 210: 246
[11] Denisova T V, Vyboishchik M A, Tetyueva T V, et al. Changes in the structure and properties of low-carbon low-alloy pipe steels upon inoculation with REM [J]. Met. Sci. Heat Treat., 2013, 54: 530
[12] Wang Y, Sridhar S, Valdez M. Formation of CaS on Al2O3-CaO inclusions during solidification of steels [J]. Metall. Mater. Trans., 2002, 33B: 625
[13] Liu C, Revilla R I, Zhang D W, et al. Role of Al2O3 inclusions on the localized corrosion of Q460NH weathering steel in marine environment [J]. Corros. Sci., 2018, 138: 96
[14] Zhu C Y, Huang L Y, Luo X Y, et al. Effect of calcium treatment on characteristics of inclusions in finished non-oriented silicon steel [J]. J. Iron Steel Res., 2020, 32: 117
[14] (朱诚意, 黄罗翼, 罗小燕 等. 钙处理对成品无取向硅钢夹杂物特性的影响 [J]. 钢铁研究学报, 2020, 32: 117)
doi: 10.13228/j.boyuan.issn1001-0963.20190141
[15] Shin J H, Park J H. Formation mechanism of oxide-sulfide complex inclusions in high-sulfur-containing steel melts [J]. Metall. Mater. Trans., 2018, 49B: 311
[16] Gutman E M, Solovioff G, Eliezer D. The mechanochemical behavior of type 316L stainless steel [J]. Corros. Sci., 1996, 38: 1141
[17] Li W, Li D Y. Variations of work function and corrosion behaviors of deformed copper surfaces [J]. Appl. Surf. Sci., 2005, 240: 388
[18] Mao Y C, Zhu Y, Sun S K, et al. Localized corrosion of 5083 Al-alloy in simulated marine splash zone [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 47
[18] (毛英畅, 祝 钰, 孙圣凯 等. 5083铝合金在模拟海洋浪花飞溅区的局部腐蚀行为 [J]. 中国腐蚀与防护学报, 2023, 43: 47)
doi: 10.11902/1005.4537.2022.162
[19] Han Y L, Li J, Guo L Y, et al. Localized corrosion behavior induced by MnS inclusions in HRB400E rebar steel [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1255
[19] (韩宇龙, 李 健, 郭丽雅 等. 螺纹钢中MnS夹杂物诱发的局部腐蚀行为 [J]. 中国腐蚀与防护学报, 2024, 44: 1255)
doi: 10.11902/1005.4537.2023.337
[1] 张国庆, 余直霞, 王岳松, 王智, 金正宇, 刘宏伟. 海上超临界二氧化碳环境中含水率和温度对A106钢腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 1061-1069.
[2] 韩宇龙, 李健, 郭丽雅, 杨边疆, 陆恒昌, 韦习成, 董瀚. 螺纹钢中MnS夹杂物诱发的局部腐蚀行为[J]. 中国腐蚀与防护学报, 2024, 44(5): 1255-1262.
[3] 杨成, 杨广明, 王建军, 苗学良, 张译, 孙宝壮, 刘智勇. 温度对核电站用42CrMoE低合金钢在硼酸模拟液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(5): 1345-1352.
[4] 吴洋, 安易强, 王力伟, 崔中雨. 镁铝合金在模拟低温条件下大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1001-1010.
[5] 王玉雪, 朱澳鸿, 王力伟, 崔中雨. 两种新型Ni-Cr-Mo-V钢在模拟海水环境中的腐蚀行为对比研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 918-926.
[6] 刘超, 代文贺, 王克俊, 陈增耀, 安雁军, 刘智勇. Cu含量对Q420钢在货油舱内底板环境下腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(4): 927-938.
[7] 麻衡, 田会云, 刘宇茜, 王月香, 何康, 崔中雨, 崔洪芝. S420海工钢在不同海洋区带环境下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 635-644.
[8] 任万凯, 连洲洋, 周康, 罗正维, 魏无际, 张雪英. 氨法脱硫液成分对304不锈钢局部腐蚀发展阶段影响探究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1392-1398.
[9] 顾玉慧, 董亮, 宋沁峰. 微型金属氧化物pH电极的制备及腐蚀防护应用进展[J]. 中国腐蚀与防护学报, 2023, 43(5): 971-982.
[10] 邓成满, 刘喆, 夏大海, 胡文彬. 5083-H111铝合金在模拟动态海水环境中的局部腐蚀机制[J]. 中国腐蚀与防护学报, 2023, 43(4): 683-692.
[11] 刘超, 陈天奇, 李晓刚. 低合金钢中夹杂物诱发局部腐蚀萌生机制的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(4): 746-754.
[12] 李强, 路程, 唐颖浩, 唐建峰, 刘炳成. 湿气管道积液区X70CO2 局部腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 837-846.
[13] 彭浩, 程晓英, 李晓亮, 王兆丰, 蔡贞祥. 高强度低合金钢中V和Nb对氢陷阱的影响[J]. 中国腐蚀与防护学报, 2023, 43(2): 415-420.
[14] 黄家和, 袁曦, 陈文, 闫文静, 金正宇, 柳海宪, 刘宏芳, 刘宏伟. 温度对CO2饱和页岩气压裂液环境中N80和TP125V钢腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 251-260.
[15] 毛英畅, 祝钰, 孙圣凯, 秦真波, 夏大海, 胡文彬. 5083铝合金在模拟海洋浪花飞溅区的局部腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(1): 47-54.