Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (3): 548-562     CSTR: 32134.14.1005.4537.2024.110      DOI: 10.11902/1005.4537.2024.110
  综合评述 本期目录 | 过刊浏览 |
锌离子电池的锌金属负极和电解液的研究进展
郑微, 曲冬阳, 孙中辉(), 牛利()
广州大学分析科学技术研究中心 广州 510006
Research Progress of Zinc Ion Batteries in Zinc Metal Electrodes and Electrolytes
ZHENG Wei, QU Dongyang, SUN Zhonghui(), NIU Li()
Center for Advanced Analytical Science, Guangzhou University, Guangzhou 510006, China
引用本文:

郑微, 曲冬阳, 孙中辉, 牛利. 锌离子电池的锌金属负极和电解液的研究进展[J]. 中国腐蚀与防护学报, 2025, 45(3): 548-562.
Wei ZHENG, Dongyang QU, Zhonghui SUN, Li NIU. Research Progress of Zinc Ion Batteries in Zinc Metal Electrodes and Electrolytes[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(3): 548-562.

全文: PDF(19971 KB)   HTML
摘要: 

水系锌离子电池作为一种二次电池,具有安全性好、成本低和能量密度高等优点,有望成为下一代能量存储系统的替代者。作为一种有前景的能量存储装置,水系锌离子电池在众多研究领域都取得了重大进展。但是,锌金属负极的腐蚀问题仍是阻碍其发展的关键因素,这严重削弱了锌离子电池在实际应用中的稳定性和使用寿命。因此,研究如何防止锌金属负极的腐蚀具有极大的应用价值。本文系统总结了水系锌离子电池关于锌金属负极腐蚀防护和电解液优化方面的研究进展,并对其未来进一步的应用前景进行了展望。

关键词 锌离子电池锌金属负极电解液腐蚀防护    
Abstract

As a secondary battery, aqueous zinc-ion battery has advantages of good safety, low cost and high energy density, and is expected to become a substitute candidate for the next generation of energy storage systems. As a promising energy storage device, aqueous zinc-ion batteries have made major breakthroughs in many research fields. However, the corrosion of zinc metal anode is still a key factor hindering its development, which seriously weakens the stability and service life of zinc-ion batteries in practical applications. Therefore, it is of great application value to study how to prevent the corrosion of zinc metal anode. In this paper, the corrosion protection strategies and research progress for zinc metal anode and electrolyte in aqueous zinc-ion batteries are systematically summarized, and the further application prospect is prospected.

Key wordszinc-ion battery    zinc metal anodes    electrolyte    corrosion protection
收稿日期: 2024-04-02      32134.14.1005.4537.2024.110
ZTFLH:  TG174  
基金资助:国家自然科学基金(22204028);全国大学生创新创业训练项目(202411078017)
通讯作者: 孙中辉,E-mail:cczhsun@gzhu.edu.cn,研究方向为金属腐蚀与防护; 牛利,E-mail:lniu@gzhu.edu.cn,研究方向为材料电化学
Corresponding author: SUN Zhonghui, E-mail: cczhsun@gzhu.edu.cn; NIU Li, E-mail: lniu@gzhu.edu.cn
作者简介: 郑 微,女,2003年生,本科生
图1  裸Zn和Cu@Zn电极的锌沉积过程示意图[20]
图2  Zn在ZnIn电极上的沉积行为示意图[21]
图3  负极的原理图:Tar-Zn的合成过程以及裸Zn和Tar-Zn在电解质中的行为[24]
图4  裸Zn和Ti4O7@Zn上Zn2+还原过程以及Ti4O7和Ti9O17的合成工艺与Ti4O7@Zn电极制备示意图, 模拟计算的裸Zn和Ti4O7@Zn上不同时间的浓度和电流密度分布[25]
图5  FG@Zn和裸Zn在水溶液中的静止和循环过程示意图[26]
图6  裸Zn和涂覆Zn的示意图,表明PA层在抑制副反应中的作用[28]
图7  502胶保护层制备及其抑制锌枝晶机理的示意图[29]
图8  超声波喷雾以及裸Zn和Nafion/BM@Zn上锌沉积过程的示意图[35]
MaterialCycle lifeCEReference
Cu4000 h (2 mA·cm-2)99.87% (1500 cycles of 5 mAh·cm-2)[20]
Zn(H2PO4)21000 h (1 mA·cm-2)-[22]
SEP-OH800 h (5 mA·cm-2)99.2% (100 cycles of 5 mAh·cm-2)[23]
Tar-Zn1300 h (2 mA·cm-2)-[24]
Ti4O72600 h (1 mA·cm-2)99% (500 cycles of 1 mAh·cm-2)[25]
FG1400 h (10 mA·cm-2)-[26]
502 glue800 h (0.5 mA·cm-2)-[29]
NFSS1500 h (1 mA·cm-2)-[31]
Aluminone780 h (3 mA·cm-2)-[33]
BTO/PVT3000 h (1 mA·cm-2)99.6% (950 cycles of 0.5 mAh·cm-2)[34]
Nafion/BM4200 h (5 mA·cm-2)99.91% (2800 cycles of 1 mAh·cm-2)[35]
表1  各种涂层材料性能总结
图9  含与不含Et2O添加剂的温和水溶液中锌负极剥离-施镀循环过程中形貌演变示意图[54]
图10  添加0、0.5%、1.0%、5.0% (质量分数) Cit的2 mol/L ZnSO4电解质的FTIR光谱以及Cit/ZnSO4电解质的MD模拟快照和水合Zn2+的局部溶剂化结构[57]
图11  柔性的ZIBs可以在各种动态变形下为LED灯供电,包括挤压、折叠、弯曲、锤击和扭曲[58]
[1] Ma L, Schroeder M A, Borodin O, et al. Realizing high zinc reversibility in rechargeable batteries [J]. Nat. Energy, 2020, 5: 743
[2] Blanc L E, Kundu D, Nazar L F. Scientific challenges for the implementation of Zn-ion batteries [J]. Joule, 2020, 4: 771
[3] Liang Y L, Dong H, Aurbach D, et al. Current status and future directions of multivalent metal-ion batteries [J]. Nat. Energy, 2020, 5: 646
[4] Yue X Y, Yao Y X, Zhang J, et al. Unblocked electron channels enable efficient contact prelithiation for lithium‐ion batteries [J]. Adv. Mater., 2022, 34: 2110337
[5] Zhao C X, Liu J N, Yao N, et al. Can aqueous zinc-air batteries work at sub‐zero temperatures? [J]. Angew. Chem. Int. Ed., 2021, 60: 15281
[6] Yu P, Zeng Y X, Zhang H Z, et al. Flexible Zn‐ion batteries: recent progresses and challenges [J]. Small, 2019, 15: 1804760
[7] Wu F F, Gao X B, Xu X L, et al. MnO2 nanosheet‐assembled hollow polyhedron grown on carbon cloth for flexible aqueous zinc‐ion batteries [J]. ChemSusChem, 2020, 13: 1537
[8] Song Y, Ruan P C, Mao C W, et al. Metal-organic frameworks functionalized separators for robust aqueous zinc-ion batteries [J]. Nano-Micro Lett., 2022, 14: 218
doi: 10.1007/s40820-022-00960-z pmid: 36352159
[9] Li C P, Xie X S, Liu H, et al. Integrated ‘all-in-one’ strategy to stabilize zinc anodes for high-performance zinc-ion batteries [J]. Natl. Sci. Rev., 2022, 9: nwab177
[10] Nie W, Cheng H W, Sun Q C, et al. Design strategies toward high-performance Zn metal anode [J]. Small Methods, 2024, 8: 2201572
[11] Ming J, Guo J, Xia C, et al. Zinc-ion batteries: materials, mechanisms, and applications [J]. Mat. Sci. Eng., 2019, 135R: 58
[12] Huang J H, Guo Z W, Ma Y Y, et al. Recent progress of rechargeable batteries using mild aqueous electrolytes [J]. Small Methods, 2019, 3: 1800272
[13] Zhou J, Shan L T, Wu Z X, et al. Investigation of V2O5 as a low-cost rechargeable aqueous zinc ion battery cathode [J]. Chem. Commun., 2018, 54: 4457
[14] Hu P, Yan M Y, Zhu T, et al. Zn/V2O5 aqueous hybrid-ion battery with high voltage platform and long cycle life [J]. ACS Appl. Mater. Interfaces, 2017, 9: 42717
[15] Pan H L, Shao Y Y, Yan P F, et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions [J]. Nat. Energy, 2016, 1: 1
[16] Fang G Z, Zhou J, Pan A Q, et al. Recent advances in aqueous zinc-ion batteries [J]. ACS Energy Lett., 2018, 3: 2480
[17] Winter M, Brodd R J. What are batteries, fuel cells, and supercapacitors? [J]. Chem. Rev., 2004, 104: 4245
pmid: 15669155
[18] Qu L T, Liu Y, Baek J B, et al. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells [J]. ACS Nano, 2010, 4: 1321
doi: 10.1021/nn901850u pmid: 20155972
[19] Huang X Y, Wang D, Yuan Z Y, et al. A fully biodegradable battery for self‐powered transient implants [J]. Small, 2018, 14: 1800994
[20] Liu S S, Liang Y R, Chen W L, et al. Ultrathin surface coating of Cu enabling long-life Zn metal anodes [J]. Rare Met., 2024, 43: 2125
[21] Wang T, Xi Q, Yao K, et al. Surface patterning of metal zinc electrode with an in-region zincophilic interface for high-rate and long-cycle-life zinc metal anode [J]. Nano-Micro Lett., 2024, 16: 112
doi: 10.1007/s40820-024-01327-2 pmid: 38334816
[22] Zeng X H, Mao J F, Hao J N, et al. Electrolyte design for in situ construction of highly Zn2+‐conductive solid electrolyte interphase to enable high‐performance aqueous Zn‐ion batteries under practical conditions [J]. Adv. Mater., 2021, 33: 2007416
[23] Wang Y P, Lin X G, Wang L, et al. Tailoring the crystal‐chemical states of water molecules in sepiolite for superior coating layers of Zn metal anodes [J]. Adv. Funct. Mater., 2023, 33: 2211088
[24] Wen Q, Fu H, Huang Y D, et al. Constructing defect-free zincophilic organic layer via ultrasonic coating for anticorrosive and dendrite-free zinc anode [J]. Nano Energy, 2023, 117: 108810
[25] Song Y, Liu Y D, Luo S J, et al. Blocking the dendrite‐growth of Zn anode by constructing Ti4O7 interfacial layer in aqueous zinc‐ion batteries [J]. Adv. Funct. Mater., 2024, 34: 2316070
[26] Wang L Q, Zhang L, Meng Y H, et al. Fluorinated hybrid interphases enable anti-corrosion and uniform zinc deposition for aqueous zinc metal batteries [J]. Sci. China Mater., 2023, 66: 4595
[27] Li Y, Guo Y F, Li Z X, et al. Carbon-based nanomaterials for stabilizing zinc metal anodes towards high-performance aqueous zinc-ion batteries [J]. Energy Storage Mater., 2024, 67: 103300
[28] Zhao Z M, Zhao J W, Hu Z L, et al. Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase [J]. Energy Environ. Sci., 2019, 12: 1938
[29] Cao Z Y, Zhu X D, Xu D X, et al. Eliminating Zn dendrites by commercial cyanoacrylate adhesive for zinc ion battery [J]. Energy Storage Mater., 2021, 36: 132
[30] Chen P, Yuan X H, Xia Y B, et al. An artificial polyacrylonitrile coating layer confining zinc dendrite growth for highly reversible aqueous zinc-based batteries [J]. Adv. Sci., 2021, 8: 2100309
[31] Duan J W, Dong J M, Cao R R, et al. Regulated Zn plating and stripping by a multifunctional polymer‐alloy interphase layer for stable Zn metal anode [J]. Adv. Sci., 2023, 10: 2303343
[32] Liu M Q, Yang L Y, Liu H, et al. Artificial solid-electrolyte interface facilitating dendrite-free zinc metal anodes via nanowetting effect [J]. ACS Appl. Mater. Interfaces, 2019, 11: 32046
[33] He H B, Liu J. Suppressing Zn dendrite growth by molecular layer deposition to enable long-life and deeply rechargeable aqueous Zn anodes [J]. J. Mater. Chem., 2020, 8A: 22100
[34] Zong Q, Lv B, Liu C F, et al. Dendrite-free and highly stable Zn metal anode with BaTiO3/P(VDF-TrFE) coating [J]. ACS Energy Lett., 2023, 8: 2886
[35] Zhou C C, Shan L T, Nan Q, et al. Construction of robust organic-inorganic interface layer for dendrite-free and durable zinc metal anode [J]. Adv. Funct. Mater., 2024, 34: 2312696
[36] Chen J J, Xiong J M, Ye M H, et al. Suppression of hydrogen evolution reaction by modulating the surface redox potential toward long-life zinc metal anodes [J]. Adv. Funct. Mater., 2024, 34: 2312564
[37] Zhang R C, Feng Y, Ni Y X, et al. Bifunctional interphase with target‐distributed desolvation sites and directionally depositional ion flux for sustainable zinc anode [J]. Angew. Chem. Int. Ed., 2023, 62: e202304503
[38] Zhang G H, Zhang X N, Liu H Z, et al. 3D‐printed multi‐channel metal lattices enabling localized electric-field redistribution for dendrite-free aqueous Zn ion batteries [J]. Adv. Energy Mater., 2021, 11: 2003927
[39] Zhang M, Yu P F, Xiong K R, et al. Construction of mixed ionic-electronic conducting scaffolds in Zn powder: a scalable route to dendrite-free and flexible Zn anodes [J]. Adv. Mater., 2022, 34: 2200860
[40] Zhou J H, Wu F, Mei Y, et al. Establishing thermal infusion method for stable zinc metal anodes in aqueous zinc-ion batteries [J]. Adv. Mater., 2022, 34: 2200782
[41] Zheng Y Y, Wang D, Kaushik S, et al. Ionic liquid electrolytes for next-generation electrochemical energy devices [J]. EnergyChem, 2022, 4: 100075
[42] Li H F, Liu Z X, Liang G J, et al. Waterproof and tailorable elastic rechargeable yarn zinc ion batteries by a cross-linked polyacrylamide electrolyte [J]. ACS Nano, 2018, 12: 3140
doi: 10.1021/acsnano.7b09003 pmid: 29589438
[43] Huang S W, Hou L, Li T Y, et al. Antifreezing hydrogel electrolyte with ternary hydrogen bonding for high-performance zinc-ion batteries [J]. Adv. Mater., 2022, 34: 2110140
[44] Quan Y H, Zhou W J, Wu T, et al. Sorbitol-modified cellulose hydrogel electrolyte derived from wheat straws towards high-performance environmentally adaptive flexible zinc-ion batteries [J]. Chem. Eng. J., 2022, 446: 137056
[45] He Q, Chang Z, Zhong Y, et al. Highly entangled hydrogel enables stable zinc metal batteries via interfacial confinement effect [J]. ACS Energy Lett., 2023, 8: 5253
[46] Wu Q, Huang J, Zhang J L, et al. Multifunctional cellulose nanocrystals electrolyte additive enable ultrahigh‐rate and dendrite‐free Zn anodes for rechargeable aqueous zinc batteries [J]. Angew. Chem., 2024, 136: e202319051
[47] Zhang Q, Luan J Y, Fu L, et al. The three‐dimensional dendrite‐free zinc anode on a copper mesh with a zinc‐oriented polyacrylamide electrolyte additive [J]. Angew. Chem. Int. Ed., 2019, 58: 15841
doi: 10.1002/anie.201907830 pmid: 31437348
[48] Cao L S, Li D, Hu E Y, et al. Solvation structure design for aqueous Zn metal batteries [J]. J. Am. Chem. Soc., 2020, 142: 21404
doi: 10.1021/jacs.0c09794 pmid: 33290658
[49] Liu S L, Mao J F, Pang W K, et al. Tuning the electrolyte solvation structure to suppress cathode dissolution, water reactivity, and Zn dendrite growth in zinc-ion batteries [J]. Adv. Funct. Mater., 2021, 31: 2104281
[50] Sun P, Ma L, Zhou W H, et al. Simultaneous regulation on solvation shell and electrode interface for dendrite‐free Zn ion batteries achieved by a low‐cost glucose additive [J]. Angew. Chem., 2021, 133: 18395
[51] Sui Y M, Ji X L. Anticatalytic strategies to suppress water electrolysis in aqueous batteries [J]. Chem. Rev., 2021, 121: 6654
[52] Bi H B, Wang X S, Liu H L, et al. A universal approach to aqueous energy storage via ultralow‐cost electrolyte with super-concentrated sugar as hydrogen‐bond‐regulated solute [J]. Adv. Mater., 2020, 32: 2000074
[53] Liu C, Li Q, Lin Y L, et al. Functional group differentiation of isomeric solvents enables distinct zinc anode chemistry [J]. Nano Res. Energy, 2023, 2: e9120064
[54] Xu W N, Zhao K N, Huo W C, et al. Diethyl ether as self-healing electrolyte additive enabled long-life rechargeable aqueous zinc ion batteries [J]. Nano Energy, 2019, 62: 275
[55] Qu Z, Ma J C, Huang Y, et al. A photolithographable electrolyte for deeply rechargeable Zn microbatteries in on-chip devices [J]. Adv. Mater., 2024, 36: 2310667
[56] Weng J Q, Zhu W Q, Yu K, et al. Enhancing Zn‐metal anode stability: key effects of electrolyte additives on ion‐shield‐like electrical double layer and stable solid electrolyte interphase [J]. Adv. Funct. Mater., 2024, 34: 2314347
[57] Chen J Z, Liu N, Dong W J, et al. Simultaneous regulation of coordination environment and electrode interface for highly stable zinc anode using a bifunctional citrulline additive [J]. Adv. Funct. Mater., 2024, 34: 2313925
[58] Liu Y Q, Gao A M, Hao J N, et al. Soaking-free and self-healing hydrogel for wearable zinc-ion batteries [J]. Chem. Eng. J., 2023, 452: 139605
[59] Han C, Li W J, Liu H K, et al. Principals and strategies for constructing a highly reversible zinc metal anode in aqueous batteries [J]. Nano Energy, 2020, 74: 104880
[1] 李晗晔, 张志超, 王群昌, 古岩, 陈泽浩, 杨莎莎, 梅飞强. 钛合金表面碱洗及水洗留痕形成机制与腐蚀过程控制[J]. 中国腐蚀与防护学报, 2025, 45(1): 244-248.
[2] 吴浩天, 张天遂, 李广芳, 刘宏芳. 中性水系锌离子电池负极缓蚀剂研究进展[J]. 中国腐蚀与防护学报, 2024, 44(5): 1089-1099.
[3] 司伟婷, 张吉昊, 高荣杰. AZ31B镁合金超双疏表面的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 381-388.
[4] 李丹鸿, 杨腾逊, 孙天翔, 李兴霖冒, 马程成, 张玥, 陈守刚. 改性SiO2 气凝胶聚氨酯复合涂层的制备及耐蚀性能研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 167-174.
[5] 董红梅, 李宝毅, 冉博元, 王琦, 牛宇岚, 丁莉峰, 强玉杰. 一种环保型缓蚀剂利拉利汀对紫铜在硫酸中的缓蚀机理研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1031-1040.
[6] 顾玉慧, 董亮, 宋沁峰. 微型金属氧化物pH电极的制备及腐蚀防护应用进展[J]. 中国腐蚀与防护学报, 2023, 43(5): 971-982.
[7] 吴嘉豪, 吴量, 姚文辉, 袁媛, 谢治辉, 王敬丰, 潘复生. Mg-Gd-Y-Zn-Mn合金不同微弧氧化表面MgAlLa层状双羟基金属氧化物复合涂层的性能研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 693-703.
[8] 倪雨朦, 于英杰, 严慧, 王嵬, 李瑛. 铜铝/镍石墨可磨耗封严涂层相选择性溶解机制有限元研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 855-861.
[9] 鲍晨宇, 李建民, 叶梦颖, 高荣杰. 复合电解液中TiO2纳米管阵列的制备及光生阴极保护性能[J]. 中国腐蚀与防护学报, 2022, 42(5): 759-764.
[10] 文家新, 张欣, 刘云霞, 周永福, 刘克建. 掺杂pH敏感性智能纳米容器BTA@MSNs-SO3H-PDDA碳钢智能防腐涂层的制备及性能研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 309-316.
[11] 李光泉, 李广芳, 王俊强, 张天遂, 张斐, 蒋习民, 刘宏芳. 临海管道微生物腐蚀损伤机制与防护[J]. 中国腐蚀与防护学报, 2021, 41(4): 429-438.
[12] 何静, 杨纯田, 李中. 建筑行业微生物腐蚀与防护研究进展[J]. 中国腐蚀与防护学报, 2021, 41(2): 151-160.
[13] 陈琳, 钟福荣, 昝金龙. 复合电解液中AZ31B镁合金的放电特性及电压滞后[J]. 中国腐蚀与防护学报, 2018, 38(2): 197-202.
[14] 钱超,云虹,张志国,徐群杰. 纳米ZnS增强聚苯胺复合涂层的性能研究[J]. 中国腐蚀与防护学报, 2016, 36(3): 273-280.
[15] 黄燕滨,宋高伟,刘学斌,丁华东,闫永贵,邵新海. Al-Zn-In-Mg-Ga-Mn牺牲阳极腐蚀防护行为研究[J]. 中国腐蚀与防护学报, 2012, 32(1): 44-47.