|
|
锌离子电池的锌金属负极和电解液的研究进展 |
郑微, 曲冬阳, 孙中辉( ), 牛利( ) |
广州大学分析科学技术研究中心 广州 510006 |
|
Research Progress of Zinc Ion Batteries in Zinc Metal Electrodes and Electrolytes |
ZHENG Wei, QU Dongyang, SUN Zhonghui( ), NIU Li( ) |
Center for Advanced Analytical Science, Guangzhou University, Guangzhou 510006, China |
引用本文:
郑微, 曲冬阳, 孙中辉, 牛利. 锌离子电池的锌金属负极和电解液的研究进展[J]. 中国腐蚀与防护学报, 2025, 45(3): 548-562.
Wei ZHENG,
Dongyang QU,
Zhonghui SUN,
Li NIU.
Research Progress of Zinc Ion Batteries in Zinc Metal Electrodes and Electrolytes[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(3): 548-562.
[1] |
Ma L, Schroeder M A, Borodin O, et al. Realizing high zinc reversibility in rechargeable batteries [J]. Nat. Energy, 2020, 5: 743
|
[2] |
Blanc L E, Kundu D, Nazar L F. Scientific challenges for the implementation of Zn-ion batteries [J]. Joule, 2020, 4: 771
|
[3] |
Liang Y L, Dong H, Aurbach D, et al. Current status and future directions of multivalent metal-ion batteries [J]. Nat. Energy, 2020, 5: 646
|
[4] |
Yue X Y, Yao Y X, Zhang J, et al. Unblocked electron channels enable efficient contact prelithiation for lithium‐ion batteries [J]. Adv. Mater., 2022, 34: 2110337
|
[5] |
Zhao C X, Liu J N, Yao N, et al. Can aqueous zinc-air batteries work at sub‐zero temperatures? [J]. Angew. Chem. Int. Ed., 2021, 60: 15281
|
[6] |
Yu P, Zeng Y X, Zhang H Z, et al. Flexible Zn‐ion batteries: recent progresses and challenges [J]. Small, 2019, 15: 1804760
|
[7] |
Wu F F, Gao X B, Xu X L, et al. MnO2 nanosheet‐assembled hollow polyhedron grown on carbon cloth for flexible aqueous zinc‐ion batteries [J]. ChemSusChem, 2020, 13: 1537
|
[8] |
Song Y, Ruan P C, Mao C W, et al. Metal-organic frameworks functionalized separators for robust aqueous zinc-ion batteries [J]. Nano-Micro Lett., 2022, 14: 218
doi: 10.1007/s40820-022-00960-z
pmid: 36352159
|
[9] |
Li C P, Xie X S, Liu H, et al. Integrated ‘all-in-one’ strategy to stabilize zinc anodes for high-performance zinc-ion batteries [J]. Natl. Sci. Rev., 2022, 9: nwab177
|
[10] |
Nie W, Cheng H W, Sun Q C, et al. Design strategies toward high-performance Zn metal anode [J]. Small Methods, 2024, 8: 2201572
|
[11] |
Ming J, Guo J, Xia C, et al. Zinc-ion batteries: materials, mechanisms, and applications [J]. Mat. Sci. Eng., 2019, 135R: 58
|
[12] |
Huang J H, Guo Z W, Ma Y Y, et al. Recent progress of rechargeable batteries using mild aqueous electrolytes [J]. Small Methods, 2019, 3: 1800272
|
[13] |
Zhou J, Shan L T, Wu Z X, et al. Investigation of V2O5 as a low-cost rechargeable aqueous zinc ion battery cathode [J]. Chem. Commun., 2018, 54: 4457
|
[14] |
Hu P, Yan M Y, Zhu T, et al. Zn/V2O5 aqueous hybrid-ion battery with high voltage platform and long cycle life [J]. ACS Appl. Mater. Interfaces, 2017, 9: 42717
|
[15] |
Pan H L, Shao Y Y, Yan P F, et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions [J]. Nat. Energy, 2016, 1: 1
|
[16] |
Fang G Z, Zhou J, Pan A Q, et al. Recent advances in aqueous zinc-ion batteries [J]. ACS Energy Lett., 2018, 3: 2480
|
[17] |
Winter M, Brodd R J. What are batteries, fuel cells, and supercapacitors? [J]. Chem. Rev., 2004, 104: 4245
pmid: 15669155
|
[18] |
Qu L T, Liu Y, Baek J B, et al. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells [J]. ACS Nano, 2010, 4: 1321
doi: 10.1021/nn901850u
pmid: 20155972
|
[19] |
Huang X Y, Wang D, Yuan Z Y, et al. A fully biodegradable battery for self‐powered transient implants [J]. Small, 2018, 14: 1800994
|
[20] |
Liu S S, Liang Y R, Chen W L, et al. Ultrathin surface coating of Cu enabling long-life Zn metal anodes [J]. Rare Met., 2024, 43: 2125
|
[21] |
Wang T, Xi Q, Yao K, et al. Surface patterning of metal zinc electrode with an in-region zincophilic interface for high-rate and long-cycle-life zinc metal anode [J]. Nano-Micro Lett., 2024, 16: 112
doi: 10.1007/s40820-024-01327-2
pmid: 38334816
|
[22] |
Zeng X H, Mao J F, Hao J N, et al. Electrolyte design for in situ construction of highly Zn2+‐conductive solid electrolyte interphase to enable high‐performance aqueous Zn‐ion batteries under practical conditions [J]. Adv. Mater., 2021, 33: 2007416
|
[23] |
Wang Y P, Lin X G, Wang L, et al. Tailoring the crystal‐chemical states of water molecules in sepiolite for superior coating layers of Zn metal anodes [J]. Adv. Funct. Mater., 2023, 33: 2211088
|
[24] |
Wen Q, Fu H, Huang Y D, et al. Constructing defect-free zincophilic organic layer via ultrasonic coating for anticorrosive and dendrite-free zinc anode [J]. Nano Energy, 2023, 117: 108810
|
[25] |
Song Y, Liu Y D, Luo S J, et al. Blocking the dendrite‐growth of Zn anode by constructing Ti4O7 interfacial layer in aqueous zinc‐ion batteries [J]. Adv. Funct. Mater., 2024, 34: 2316070
|
[26] |
Wang L Q, Zhang L, Meng Y H, et al. Fluorinated hybrid interphases enable anti-corrosion and uniform zinc deposition for aqueous zinc metal batteries [J]. Sci. China Mater., 2023, 66: 4595
|
[27] |
Li Y, Guo Y F, Li Z X, et al. Carbon-based nanomaterials for stabilizing zinc metal anodes towards high-performance aqueous zinc-ion batteries [J]. Energy Storage Mater., 2024, 67: 103300
|
[28] |
Zhao Z M, Zhao J W, Hu Z L, et al. Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase [J]. Energy Environ. Sci., 2019, 12: 1938
|
[29] |
Cao Z Y, Zhu X D, Xu D X, et al. Eliminating Zn dendrites by commercial cyanoacrylate adhesive for zinc ion battery [J]. Energy Storage Mater., 2021, 36: 132
|
[30] |
Chen P, Yuan X H, Xia Y B, et al. An artificial polyacrylonitrile coating layer confining zinc dendrite growth for highly reversible aqueous zinc-based batteries [J]. Adv. Sci., 2021, 8: 2100309
|
[31] |
Duan J W, Dong J M, Cao R R, et al. Regulated Zn plating and stripping by a multifunctional polymer‐alloy interphase layer for stable Zn metal anode [J]. Adv. Sci., 2023, 10: 2303343
|
[32] |
Liu M Q, Yang L Y, Liu H, et al. Artificial solid-electrolyte interface facilitating dendrite-free zinc metal anodes via nanowetting effect [J]. ACS Appl. Mater. Interfaces, 2019, 11: 32046
|
[33] |
He H B, Liu J. Suppressing Zn dendrite growth by molecular layer deposition to enable long-life and deeply rechargeable aqueous Zn anodes [J]. J. Mater. Chem., 2020, 8A: 22100
|
[34] |
Zong Q, Lv B, Liu C F, et al. Dendrite-free and highly stable Zn metal anode with BaTiO3/P(VDF-TrFE) coating [J]. ACS Energy Lett., 2023, 8: 2886
|
[35] |
Zhou C C, Shan L T, Nan Q, et al. Construction of robust organic-inorganic interface layer for dendrite-free and durable zinc metal anode [J]. Adv. Funct. Mater., 2024, 34: 2312696
|
[36] |
Chen J J, Xiong J M, Ye M H, et al. Suppression of hydrogen evolution reaction by modulating the surface redox potential toward long-life zinc metal anodes [J]. Adv. Funct. Mater., 2024, 34: 2312564
|
[37] |
Zhang R C, Feng Y, Ni Y X, et al. Bifunctional interphase with target‐distributed desolvation sites and directionally depositional ion flux for sustainable zinc anode [J]. Angew. Chem. Int. Ed., 2023, 62: e202304503
|
[38] |
Zhang G H, Zhang X N, Liu H Z, et al. 3D‐printed multi‐channel metal lattices enabling localized electric-field redistribution for dendrite-free aqueous Zn ion batteries [J]. Adv. Energy Mater., 2021, 11: 2003927
|
[39] |
Zhang M, Yu P F, Xiong K R, et al. Construction of mixed ionic-electronic conducting scaffolds in Zn powder: a scalable route to dendrite-free and flexible Zn anodes [J]. Adv. Mater., 2022, 34: 2200860
|
[40] |
Zhou J H, Wu F, Mei Y, et al. Establishing thermal infusion method for stable zinc metal anodes in aqueous zinc-ion batteries [J]. Adv. Mater., 2022, 34: 2200782
|
[41] |
Zheng Y Y, Wang D, Kaushik S, et al. Ionic liquid electrolytes for next-generation electrochemical energy devices [J]. EnergyChem, 2022, 4: 100075
|
[42] |
Li H F, Liu Z X, Liang G J, et al. Waterproof and tailorable elastic rechargeable yarn zinc ion batteries by a cross-linked polyacrylamide electrolyte [J]. ACS Nano, 2018, 12: 3140
doi: 10.1021/acsnano.7b09003
pmid: 29589438
|
[43] |
Huang S W, Hou L, Li T Y, et al. Antifreezing hydrogel electrolyte with ternary hydrogen bonding for high-performance zinc-ion batteries [J]. Adv. Mater., 2022, 34: 2110140
|
[44] |
Quan Y H, Zhou W J, Wu T, et al. Sorbitol-modified cellulose hydrogel electrolyte derived from wheat straws towards high-performance environmentally adaptive flexible zinc-ion batteries [J]. Chem. Eng. J., 2022, 446: 137056
|
[45] |
He Q, Chang Z, Zhong Y, et al. Highly entangled hydrogel enables stable zinc metal batteries via interfacial confinement effect [J]. ACS Energy Lett., 2023, 8: 5253
|
[46] |
Wu Q, Huang J, Zhang J L, et al. Multifunctional cellulose nanocrystals electrolyte additive enable ultrahigh‐rate and dendrite‐free Zn anodes for rechargeable aqueous zinc batteries [J]. Angew. Chem., 2024, 136: e202319051
|
[47] |
Zhang Q, Luan J Y, Fu L, et al. The three‐dimensional dendrite‐free zinc anode on a copper mesh with a zinc‐oriented polyacrylamide electrolyte additive [J]. Angew. Chem. Int. Ed., 2019, 58: 15841
doi: 10.1002/anie.201907830
pmid: 31437348
|
[48] |
Cao L S, Li D, Hu E Y, et al. Solvation structure design for aqueous Zn metal batteries [J]. J. Am. Chem. Soc., 2020, 142: 21404
doi: 10.1021/jacs.0c09794
pmid: 33290658
|
[49] |
Liu S L, Mao J F, Pang W K, et al. Tuning the electrolyte solvation structure to suppress cathode dissolution, water reactivity, and Zn dendrite growth in zinc-ion batteries [J]. Adv. Funct. Mater., 2021, 31: 2104281
|
[50] |
Sun P, Ma L, Zhou W H, et al. Simultaneous regulation on solvation shell and electrode interface for dendrite‐free Zn ion batteries achieved by a low‐cost glucose additive [J]. Angew. Chem., 2021, 133: 18395
|
[51] |
Sui Y M, Ji X L. Anticatalytic strategies to suppress water electrolysis in aqueous batteries [J]. Chem. Rev., 2021, 121: 6654
|
[52] |
Bi H B, Wang X S, Liu H L, et al. A universal approach to aqueous energy storage via ultralow‐cost electrolyte with super-concentrated sugar as hydrogen‐bond‐regulated solute [J]. Adv. Mater., 2020, 32: 2000074
|
[53] |
Liu C, Li Q, Lin Y L, et al. Functional group differentiation of isomeric solvents enables distinct zinc anode chemistry [J]. Nano Res. Energy, 2023, 2: e9120064
|
[54] |
Xu W N, Zhao K N, Huo W C, et al. Diethyl ether as self-healing electrolyte additive enabled long-life rechargeable aqueous zinc ion batteries [J]. Nano Energy, 2019, 62: 275
|
[55] |
Qu Z, Ma J C, Huang Y, et al. A photolithographable electrolyte for deeply rechargeable Zn microbatteries in on-chip devices [J]. Adv. Mater., 2024, 36: 2310667
|
[56] |
Weng J Q, Zhu W Q, Yu K, et al. Enhancing Zn‐metal anode stability: key effects of electrolyte additives on ion‐shield‐like electrical double layer and stable solid electrolyte interphase [J]. Adv. Funct. Mater., 2024, 34: 2314347
|
[57] |
Chen J Z, Liu N, Dong W J, et al. Simultaneous regulation of coordination environment and electrode interface for highly stable zinc anode using a bifunctional citrulline additive [J]. Adv. Funct. Mater., 2024, 34: 2313925
|
[58] |
Liu Y Q, Gao A M, Hao J N, et al. Soaking-free and self-healing hydrogel for wearable zinc-ion batteries [J]. Chem. Eng. J., 2023, 452: 139605
|
[59] |
Han C, Li W J, Liu H K, et al. Principals and strategies for constructing a highly reversible zinc metal anode in aqueous batteries [J]. Nano Energy, 2020, 74: 104880
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|