Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (2): 497-505     CSTR: 32134.14.1005.4537.2024.083      DOI: 10.11902/1005.4537.2024.083
  研究报告 本期目录 | 过刊浏览 |
Zr-1.35Sn-0.22Fe-0.13Cr-0.05Ni合金热处理工艺优化及其高温高压水腐蚀行为研究
雷艾嘉1, 戴训2, 许江涛2, 邓睿驹2, 黄雪飞1()
1.四川大学材料科学与工程学院 成都 610065
2.中国核动力研究设计院 反应堆燃料及材料重点实验室 成都 610213
Optimization of Heat Treatment Process and Corrosion Performance in High-temperature and High-pressure of Zr-1.35Sn-0.22Fe-0.13Cr-0.05Ni Alloy
LEI Aijia1, DAI Xun2, XU Jiangtao2, DENG Ruiju2, HUANG Xuefei1()
1.College of Materials Science and Engineering, Sichuan university, Chengdu 610065, China
2.Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China, Chengdu 610213, China
引用本文:

雷艾嘉, 戴训, 许江涛, 邓睿驹, 黄雪飞. Zr-1.35Sn-0.22Fe-0.13Cr-0.05Ni合金热处理工艺优化及其高温高压水腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 497-505.
Aijia LEI, Xun DAI, Jiangtao XU, Ruiju DENG, Xuefei HUANG. Optimization of Heat Treatment Process and Corrosion Performance in High-temperature and High-pressure of Zr-1.35Sn-0.22Fe-0.13Cr-0.05Ni Alloy[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(2): 497-505.

全文: PDF(13023 KB)   HTML
摘要: 

研究了不同热处理工艺处理后得到的Zr-1.35Sn-0.22Fe-0.13Cr-0.05Ni合金在360 ℃、18.6 MPa去离子水环境中的均匀腐蚀行为。实验结果表明,Zr-1.35Sn-0.22Fe-0.13Cr-0.05Ni合金的腐蚀动力学曲线在转折点前表现出典型的类抛物线规律,其腐蚀动力学初次转折时间相较Zircaloy-4合金(Zr-1.50Sn-0.20Fe-0.1Cr)显著推迟,意味着降低Sn元素可以提升锆合金的抗高温高压水腐蚀性能。提高Zr-1.35Sn-0.22Fe-0.13Cr-0.05Ni合金的中间退火温度或延长α相的保温时间可以增加第二相的平均粒径,同时可以使Zr(Fe, Cr)2中的Fe/Cr原子比率更接近1,有利于延长腐蚀动力学初次转折时间。

关键词 锆合金腐蚀第二相累积退火参数    
Abstract

The Zr-Sn-Fe-Cr-Ni alloy, due to its insensitivity to dissolved oxygen in high-temperature water corrosion environment, is suitable for reactors with high dissolved oxygen content such as Small Modular Reactors and Advanced Boiling Water Reactors. To develop high-performance Zr-Sn-Fe-Cr-Ni alloys, the Sn content was reduced, and the content of Fe, Cr, and Ni was appropriately increased based on the Zircaloys. Then the influence of heat treatments on the microstructural variations of the new Zr-1.35Sn-0.22Fe-0.13Cr-0.05Ni alloy was characterized. Meanwhile, the corrosion behavior of the Zr-1.35Sn-0.22Fe-0.13Cr-0.05Ni alloys, being subjected to two different heat treatments, was studied in high-temperature and high-pressure water at 360 oC/18.6 MPa for 330 d by taking Zircaloy-4 as comparison. Results show that the two different heat treated Zr-1.35Sn-0.22Fe-0.13Cr-0.05Ni alloys exhibited more or less the same corrosion behavior with typical approximate parabolic kinetics in the initial corrosion stage. After 220 d and 250 d of exposure, corrosion transitions occurred respectively. Compared to Zircaloy-4, the corrosion transition time was significantly delayed. This suggests that reducing the Sn content is advantageous in delaying the time for the occurrence of the corrosion transition during the initial corrosion period, which may be conductive to the improvement of long-term corrosion resistance of the Zr-Sn-Fe-Cr-Ni alloys. This may be ascribed to that by increasing the intermediate annealing temperature or extending the holding time by α-phase region for Zr-1.35Sn-0.22Fe-0.13Cr-0.05Ni alloy may be facilitate the increase of the average size of second phase particles, thus make the atomic ratio Fe/Cr closer to 1, which may be conductive to effectively delay the occurrence of the first corrosion transition of the Zr-Sn-Fe-Cr-Ni alloys during the initial corrosion period.

Key wordszirconium alloy    corrosion    second phase    cumulative annealing parameter
收稿日期: 2024-03-18      32134.14.1005.4537.2024.083
ZTFLH:  TG172.82  
基金资助:国家重点研发计划(2023YFB3710705);高端装备先进材料与制造重点实验室开放课题(2023KFKT0009)
通讯作者: 黄雪飞,E-mail:huangxf08@scu.edu.cn,研究方向为核材料
Corresponding author: HUANG Xuefei, E-mail: huangxf08@scu.edu.cn
作者简介: 雷艾嘉,女,1994年生,硕士生
图1  原始管材AD-RD方向的晶粒取向分布图和AD方向的反极图
AlloyRecrystallized fractionLow angle grain boundaries
Y191.90%10.8%
Y392.80%10.5%
表1  锆合金原始管材再结晶分数和小角度晶界占比
图2  Y1合金和Y3合金的第二相分布与第二相粒径统计图
图3  Y1合金和Y3合金基体的高角环形暗场(HAADF)图像
图4  Y1合金和Y3合金中Zr-Fe-Cr相的Fe/Cr比率
图5  Y1合金和Y3合金的第二相明场和选区电子衍射(SAED)花样
图6  锆合金腐蚀增重和时间关系图
SampleCorrosion mass gain at transition point / mg·dm-2Transition time / dKinetics law in the pre-transition regionR2
Zircaloy-435.61605.45t0.350.9984
Y143.22207.42t0.320.9983
Y345.02506.92t0.330.9983
表2  腐蚀动力学曲线参数
图7  Y1合金高温高压水腐蚀不同时间后的表面氧化膜截面形貌
图8  Y3合金高温高压水腐蚀不同时间后的氧化膜截面形貌
图9  Zircaloy-4合金高温高压水腐蚀不同时间后的氧化膜截面形貌
图10  Y1合金和Y3合金高温高压水腐蚀不同时间后的金属-氧化物界面三维形貌
图11  金属-氧化物界面Sq与腐蚀时间关系图
1 IAEA. Waterside Corrosion of Zirconium Alloys in Nuclear Power Plants [M]. Vienna: International Atomic Energy Agency, 1998: 11
2 IAEA. Advances in Small Modular Reactor Technology Developments [M]. Vienna: IAEA Advanced Reactors Information System (ARIS), 2018: 11
3 Wei T G, Lin J K, Long C S, et al. Effect of dissolved oxygen in steam on the corrosion behaviors of zirconium alloys [J]. Acta Metall. Sin., 2016, 52: 209
doi: 10.11900/0412.1961.2015.00219
3 韦天国, 林建康, 龙冲生 等. 蒸汽中的溶解氧对锆合金腐蚀行为的影响 [J]. 金属学报, 2016, 52: 209
doi: 10.11900/0412.1961.2015.00219
4 Urbanic V F, Choubey R, Chow C K. Investigation of variables that influence corrosion of zirconium alloys during irradiation [A]. EuckenCM, GardeAM. Zirconium in the Nuclear Industry: Ninth International Symposium [M]. Philadelphia: ASTM International, 1991: 665
5 Kiran Kumar M, Aggarwal S, Kain V, et al. Effect of dissolved oxygen on oxidation and hydrogen pick up behavior—Zircaloy vs Zr-Nb alloys[J]. Nucl. Eng. Des., 2010, 240: 985
6 Johnson A B, Jr, LeSurf J E, Proebstle R A. Study of zirconium alloy corrosion parameters in the advanced test reactor [A]. SchemelJH, RosenbaumH S. Zirconium in Nuclear Applications [M]. Philadelphia: ASTM International, 1974: 495
7 Adamson R B, Rudling P. 4-Properties of zirconium alloys and their applications in light water reactors (LWRs) [A]. Murty K L. Materials Ageing and Degradation in Light Water Reactors [M]. Cambridge: Woodhead Publishing, 2013: 151
8 Garzarolli F, Broy Y, Busch R A. Comparison of the long-time corrosion behavior of certain Zr alloys in PWR, BWR, and laboratory tests [A]. BradleyER, SabolGP. Zirconium in the Nuclear Industry: Eleventh International Symposium [M]. Philadelphia: ASTM International, 1996: 850
9 Nanikawa S, Etoh Y, Shimada S, et al. Correlation between characteristics of oxide films formed on Zr alloys in BWRs and corrosion performance [A]. SabolGP, MoanGD. Zirconium in the Nuclear Industry: Twelfth International Symposium [M]. Philadelphia: ASTM International, 2000: 815
10 Ruhmann H, Manzel R, Sell H J, et al. In-BWR and out-of-pile nodular corrosion behavior of Zry-2/4 type melts with varying Fe, Cr, and Ni content and varying process history [A]. BradleyE R, SabolG P. Zirconium in the Nuclear Industry: Eleventh International Symposium [M]. Philadelphia: ASTM International, 1996: 865
11 Etoh Y, Shimada S, Yasuda T, et al. Development of new zirconium alloys for a BWR [A]. BradleyER, SabolGP. Zirconium in the Nuclear Industry: Eleventh International Symposium [M]. Philadelphia: ASTM International, 1996: 825
12 Garzarolli F, Cox B, Rudling P. Optimization of Zry-2 for high burnups [J]. J. ASTM Int., 2010, 7: 1
13 Sell H J, Trapp-Pritsching S, Garzarolli F. Effect of alloying elements and impurities on in-BWR corrosion of zirconium alloys [J]. J. ASTM Int., 2006, 3: 1
14 Chai L J, Luan B F, Chen J W, et al. Review on correlation of accumulated annealing parameter and corrosion resistance of Nb-containing zirconium alloys [J]. Rare Met. Mater. Eng., 2012, 41: 1119
14 柴林江, 栾佰峰, 陈建伟 等. 累积退火参数与含Nb锆合金耐腐蚀性能关系述评 [J]. 稀有金属材料与工程, 2012, 41: 1119
15 Standard test method for corrosion testing of products of zirconium, hafnium, and their alloys in water at 680°F (360 oC) or in steam at 750°F (400oC) [S]. 2019
16 Chai L J, Luan B F, Zhou Y, et al. Review of second phase particles on zirconium alloys (Ⅰ): Zircaloys [J]. Chin. J. Nonferrous Met., 2012, 22: 1594
16 柴林江, 栾佰峰, 周 宇 等. 锆合金第二相研究述评(Ⅰ): Zircaloys合金 [J]. 中国有色金属学报, 2012, 22: 1594
17 Bouineau V, Bénier G, Pêcheur D, et al. Analysis of the waterside corrosion kinetics of zircaloy-4 fuel cladding in French PWRs [J]. Nucl. Technol., 2010, 170: 444
18 Yilmazbayhan A, Motta A T, Comstock R J, et al. Structure of zirconium alloy oxides formed in pure water studied with synchrotron radiation and optical microscopy: Relation to corrosion rate [J]. J. Nucl. Mater., 2004, 324: 6
19 Liu J L, Yu H B, Karamched P, et al. Mechanism of the α-Zr to hexagonal-ZrO transformation and its impact on the corrosion performance of nuclear Zr alloys [J]. Acta Mater., 2019, 179: 328
20 Wei T G, Dai X, Zhao Y, et al. ZrO phase embedded in the oxide of Zr-Sn-Nb-Fe-Cr alloy after corrosion [J]. J. Nucl. Mater., 2022, 571: 153992
21 Yankova M S, Garner A, Baxter F, et al. Untangling competition between epitaxial strain and growth stress through examination of variations in local oxidation [J]. Nat. Commun., 2023, 14: 250
doi: 10.1038/s41467-022-35706-3 pmid: 36646682
22 Wei T G, Dai X, Long C S, et al. Comparison on the microstructure, aqueous corrosion behavior and hydrogen uptake of a new Zr-Sn-Nb alloy prepared by different hot rolling temperature [J]. Corros. Sci., 2021, 192: 109808
23 Likhanskii V V, Aliev T N, Kolesnik M Y, et al. Method of elastic energy minimization for evaluation of transition parameters in oxidation kinetics of Zr alloys [J]. Corros. Sci., 2012, 61: 143
24 Ni N, Lozano-Perez S, Sykes J M, et al. Focussed ion beam sectioning for the 3D characterisation of cracking in oxide scales formed on commercial ZIRLOTM alloys during corrosion in high temperature pressurized water [J]. Corros. Sci., 2011, 53: 4073
25 Rudling P, Wikmark G, Lehtinen B, et al. Impact of second phase particles on BWR Zr-2 corrosion and hydriding performance [A]. SabolGP, MoanGD. Zirconium in the Nuclear Industry: Twelfth International Symposium [M]. Philadelphia: ASTM International, 2000: 678
26 Tejland P, Andrén H O, Sundell G, et al. Oxidation mechanism in Zircaloy-2—the effect of SPP size distributioN [A]. ComstockB, BarbérisP. Zirconium in the Nuclear Industry: 17th Volume [M]. Philadelphia: ASTM International, 2015: 373
27 Tejland P, Andrén H O. Origin and effect of lateral cracks in oxide scales formed on zirconium alloys [J]. J. Nucl. Mater., 2012, 430: 64
28 Annand K, Nord M, MacLaren I, et al. The corrosion of Zr(Fe, Cr)2 and Zr2Fe secondary phase particles in Zircaloy-4 under 350 oC pressurised water conditions [J]. Corros. Sci., 2017, 128: 213
29 Proff C, Abolhassani S, Lemaignan C. Oxidation behaviour of zirconium alloys and their precipitates-A mechanistic study [J]. J. Nucl. Mater., 2013, 432: 222
30 Abolhassani S, Proff C, Veleva L, et al. Transmission electron microscopy examinations of metal-oxide interface of zirconium-based alloys irradiated in halden reactor-IFA-638 [A]. ComstockRJ, MottaAT. Zirconium in the Nuclear Industry: 18th International Symposium [M]. Philadelphia: ASTM International, 2018: 614
31 Frankel P G, Wei J, Francis E M, et al. Effect of Sn on corrosion mechanisms in advanced Zr-cladding for pressurised water reactors [A]. ComstockB, BarbérisP. Zirconium in the Nuclear Industry: 17th Volume [M]. Philadelphia: ASTM International, 2015: 404
32 Liao J J, Zhang J S, Zhang W, et al. Critical behavior of interfacial t-ZrO2 and other oxide features of zirconium alloy reaching critical transition condition [J]. J. Nucl. Mater., 2021, 543: 152474
33 Liao J J, Xu F, Peng Q, et al. Research on the existence and stability of interfacial tetragonal zirconia formed on zirconium alloys [J]. J. Nucl. Mater., 2020, 528: 151846
[1] 赵杰, 徐广旭, 张烘玮, 李敬法, 吕冉, 王嘉龙, 闫东雷. X80掺氢天然气管道的氢脆与腐蚀耦合作用研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 407-415.
[2] 缪浩, 尹程辉, 王洪伦, 高逸晖, 陈俊航, 张昊, 李波, 吴俊升, 肖葵. 污染海洋大气环境下不锈钢加速腐蚀试验环境谱评价及相关性[J]. 中国腐蚀与防护学报, 2025, 45(2): 449-459.
[3] 姜慧芳, 刘扬豪, 刘莹, 李迎超, 于浩波, 赵博, 陈曦. 地下储氢库J55钢氢环境下微生物腐蚀机理研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 347-358.
[4] 崔博伦, 赵杰, 吕冉, 李敬法, 宇波, 闫东雷. 掺氢天然气输送管材氢脆与腐蚀复合防护技术研究进展[J]. 中国腐蚀与防护学报, 2025, 45(2): 327-337.
[5] 靳振廷, 宋亓宁, 刘琪, 彭春兰, 许楠, 陆其清, 包晔峰, 赵立娟, 赵建华. 铜合金在不同pH3.5%NaCl溶液中的浸泡腐蚀性能研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 506-514.
[6] 翟熙伟, 刘士一, 王丽, 贾瑞灵, 张慧霞. 载荷对5383铝合金焊接接头电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(2): 515-522.
[7] 吴宇航, 陈旭, 王首德, 刘畅, 刘杰. 直流电作用下X70钢在近中性土壤中应力腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 489-496.
[8] 郑文培, 刘迎正, 张娅茹, 周涛涛, 李兴涛, 禹胜阳, 蒋璐朦. 基于全局与局部误差融合的集成腐蚀速率预测模型:一种稳健优化策略[J]. 中国腐蚀与防护学报, 2025, 45(2): 523-532.
[9] 白钲清, 农靖, 韦世宸, 徐健. 预充氢对Ni-Cr合金在高温高压水中腐蚀行为影响[J]. 中国腐蚀与防护学报, 2025, 45(2): 338-346.
[10] 崔德春, 熊亮, 于邦廷, 吴浩志, 董绍华, 陈林. 含腐蚀缺陷氢气管道局部氢浓度有限元模拟分析[J]. 中国腐蚀与防护学报, 2025, 45(2): 359-370.
[11] 杨震宇, 基超, 郭丽雅, 徐闰, 彭伟, 赵洪山, 韦习成, 董瀚. 6种典型商用纯铁和钢材在3.5%NaCl溶液中的初期腐蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(2): 469-478.
[12] 汤熠鑫, 张飞, 崔中雨, 崔洪芝, 李燚周. 氢对2205双相不锈钢在3.5%NaCl溶液中缝隙腐蚀行为影响[J]. 中国腐蚀与防护学报, 2025, 45(2): 431-437.
[13] 许竞翔, 黄睿阳, 褚振华, 蒋全通. FeNiCoCrW0.2Al0.1 高熵合金在硫酸盐还原菌溶液环境下的腐蚀研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 460-468.
[14] 燕冰川, 曾云鹏, 张宁, 史显波, 严伟. 石油管材用含Cu钢焊接接头的微生物腐蚀研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 479-488.
[15] 马宏宇, 刘叡, 崔宇, 柯培玲, 刘莉, 王福会. 静水压力对Cr/GLC叠层涂层腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(1): 103-114.