|
|
Zr-1.35Sn-0.22Fe-0.13Cr-0.05Ni合金热处理工艺优化及其高温高压水腐蚀行为研究 |
雷艾嘉1, 戴训2, 许江涛2, 邓睿驹2, 黄雪飞1( ) |
1.四川大学材料科学与工程学院 成都 610065 2.中国核动力研究设计院 反应堆燃料及材料重点实验室 成都 610213 |
|
Optimization of Heat Treatment Process and Corrosion Performance in High-temperature and High-pressure of Zr-1.35Sn-0.22Fe-0.13Cr-0.05Ni Alloy |
LEI Aijia1, DAI Xun2, XU Jiangtao2, DENG Ruiju2, HUANG Xuefei1( ) |
1.College of Materials Science and Engineering, Sichuan university, Chengdu 610065, China 2.Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China, Chengdu 610213, China |
引用本文:
雷艾嘉, 戴训, 许江涛, 邓睿驹, 黄雪飞. Zr-1.35Sn-0.22Fe-0.13Cr-0.05Ni合金热处理工艺优化及其高温高压水腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 497-505.
Aijia LEI,
Xun DAI,
Jiangtao XU,
Ruiju DENG,
Xuefei HUANG.
Optimization of Heat Treatment Process and Corrosion Performance in High-temperature and High-pressure of Zr-1.35Sn-0.22Fe-0.13Cr-0.05Ni Alloy[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(2): 497-505.
1 |
IAEA. Waterside Corrosion of Zirconium Alloys in Nuclear Power Plants [M]. Vienna: International Atomic Energy Agency, 1998: 11
|
2 |
IAEA. Advances in Small Modular Reactor Technology Developments [M]. Vienna: IAEA Advanced Reactors Information System (ARIS), 2018: 11
|
3 |
Wei T G, Lin J K, Long C S, et al. Effect of dissolved oxygen in steam on the corrosion behaviors of zirconium alloys [J]. Acta Metall. Sin., 2016, 52: 209
doi: 10.11900/0412.1961.2015.00219
|
3 |
韦天国, 林建康, 龙冲生 等. 蒸汽中的溶解氧对锆合金腐蚀行为的影响 [J]. 金属学报, 2016, 52: 209
doi: 10.11900/0412.1961.2015.00219
|
4 |
Urbanic V F, Choubey R, Chow C K. Investigation of variables that influence corrosion of zirconium alloys during irradiation [A]. EuckenCM, GardeAM. Zirconium in the Nuclear Industry: Ninth International Symposium [M]. Philadelphia: ASTM International, 1991: 665
|
5 |
Kiran Kumar M, Aggarwal S, Kain V, et al. Effect of dissolved oxygen on oxidation and hydrogen pick up behavior—Zircaloy vs Zr-Nb alloys[J]. Nucl. Eng. Des., 2010, 240: 985
|
6 |
Johnson A B, Jr, LeSurf J E, Proebstle R A. Study of zirconium alloy corrosion parameters in the advanced test reactor [A]. SchemelJH, RosenbaumH S. Zirconium in Nuclear Applications [M]. Philadelphia: ASTM International, 1974: 495
|
7 |
Adamson R B, Rudling P. 4-Properties of zirconium alloys and their applications in light water reactors (LWRs) [A]. Murty K L. Materials Ageing and Degradation in Light Water Reactors [M]. Cambridge: Woodhead Publishing, 2013: 151
|
8 |
Garzarolli F, Broy Y, Busch R A. Comparison of the long-time corrosion behavior of certain Zr alloys in PWR, BWR, and laboratory tests [A]. BradleyER, SabolGP. Zirconium in the Nuclear Industry: Eleventh International Symposium [M]. Philadelphia: ASTM International, 1996: 850
|
9 |
Nanikawa S, Etoh Y, Shimada S, et al. Correlation between characteristics of oxide films formed on Zr alloys in BWRs and corrosion performance [A]. SabolGP, MoanGD. Zirconium in the Nuclear Industry: Twelfth International Symposium [M]. Philadelphia: ASTM International, 2000: 815
|
10 |
Ruhmann H, Manzel R, Sell H J, et al. In-BWR and out-of-pile nodular corrosion behavior of Zry-2/4 type melts with varying Fe, Cr, and Ni content and varying process history [A]. BradleyE R, SabolG P. Zirconium in the Nuclear Industry: Eleventh International Symposium [M]. Philadelphia: ASTM International, 1996: 865
|
11 |
Etoh Y, Shimada S, Yasuda T, et al. Development of new zirconium alloys for a BWR [A]. BradleyER, SabolGP. Zirconium in the Nuclear Industry: Eleventh International Symposium [M]. Philadelphia: ASTM International, 1996: 825
|
12 |
Garzarolli F, Cox B, Rudling P. Optimization of Zry-2 for high burnups [J]. J. ASTM Int., 2010, 7: 1
|
13 |
Sell H J, Trapp-Pritsching S, Garzarolli F. Effect of alloying elements and impurities on in-BWR corrosion of zirconium alloys [J]. J. ASTM Int., 2006, 3: 1
|
14 |
Chai L J, Luan B F, Chen J W, et al. Review on correlation of accumulated annealing parameter and corrosion resistance of Nb-containing zirconium alloys [J]. Rare Met. Mater. Eng., 2012, 41: 1119
|
14 |
柴林江, 栾佰峰, 陈建伟 等. 累积退火参数与含Nb锆合金耐腐蚀性能关系述评 [J]. 稀有金属材料与工程, 2012, 41: 1119
|
15 |
Standard test method for corrosion testing of products of zirconium, hafnium, and their alloys in water at 680°F (360 oC) or in steam at 750°F (400oC) [S]. 2019
|
16 |
Chai L J, Luan B F, Zhou Y, et al. Review of second phase particles on zirconium alloys (Ⅰ): Zircaloys [J]. Chin. J. Nonferrous Met., 2012, 22: 1594
|
16 |
柴林江, 栾佰峰, 周 宇 等. 锆合金第二相研究述评(Ⅰ): Zircaloys合金 [J]. 中国有色金属学报, 2012, 22: 1594
|
17 |
Bouineau V, Bénier G, Pêcheur D, et al. Analysis of the waterside corrosion kinetics of zircaloy-4 fuel cladding in French PWRs [J]. Nucl. Technol., 2010, 170: 444
|
18 |
Yilmazbayhan A, Motta A T, Comstock R J, et al. Structure of zirconium alloy oxides formed in pure water studied with synchrotron radiation and optical microscopy: Relation to corrosion rate [J]. J. Nucl. Mater., 2004, 324: 6
|
19 |
Liu J L, Yu H B, Karamched P, et al. Mechanism of the α-Zr to hexagonal-ZrO transformation and its impact on the corrosion performance of nuclear Zr alloys [J]. Acta Mater., 2019, 179: 328
|
20 |
Wei T G, Dai X, Zhao Y, et al. ZrO phase embedded in the oxide of Zr-Sn-Nb-Fe-Cr alloy after corrosion [J]. J. Nucl. Mater., 2022, 571: 153992
|
21 |
Yankova M S, Garner A, Baxter F, et al. Untangling competition between epitaxial strain and growth stress through examination of variations in local oxidation [J]. Nat. Commun., 2023, 14: 250
doi: 10.1038/s41467-022-35706-3
pmid: 36646682
|
22 |
Wei T G, Dai X, Long C S, et al. Comparison on the microstructure, aqueous corrosion behavior and hydrogen uptake of a new Zr-Sn-Nb alloy prepared by different hot rolling temperature [J]. Corros. Sci., 2021, 192: 109808
|
23 |
Likhanskii V V, Aliev T N, Kolesnik M Y, et al. Method of elastic energy minimization for evaluation of transition parameters in oxidation kinetics of Zr alloys [J]. Corros. Sci., 2012, 61: 143
|
24 |
Ni N, Lozano-Perez S, Sykes J M, et al. Focussed ion beam sectioning for the 3D characterisation of cracking in oxide scales formed on commercial ZIRLOTM alloys during corrosion in high temperature pressurized water [J]. Corros. Sci., 2011, 53: 4073
|
25 |
Rudling P, Wikmark G, Lehtinen B, et al. Impact of second phase particles on BWR Zr-2 corrosion and hydriding performance [A]. SabolGP, MoanGD. Zirconium in the Nuclear Industry: Twelfth International Symposium [M]. Philadelphia: ASTM International, 2000: 678
|
26 |
Tejland P, Andrén H O, Sundell G, et al. Oxidation mechanism in Zircaloy-2—the effect of SPP size distributioN [A]. ComstockB, BarbérisP. Zirconium in the Nuclear Industry: 17th Volume [M]. Philadelphia: ASTM International, 2015: 373
|
27 |
Tejland P, Andrén H O. Origin and effect of lateral cracks in oxide scales formed on zirconium alloys [J]. J. Nucl. Mater., 2012, 430: 64
|
28 |
Annand K, Nord M, MacLaren I, et al. The corrosion of Zr(Fe, Cr)2 and Zr2Fe secondary phase particles in Zircaloy-4 under 350 oC pressurised water conditions [J]. Corros. Sci., 2017, 128: 213
|
29 |
Proff C, Abolhassani S, Lemaignan C. Oxidation behaviour of zirconium alloys and their precipitates-A mechanistic study [J]. J. Nucl. Mater., 2013, 432: 222
|
30 |
Abolhassani S, Proff C, Veleva L, et al. Transmission electron microscopy examinations of metal-oxide interface of zirconium-based alloys irradiated in halden reactor-IFA-638 [A]. ComstockRJ, MottaAT. Zirconium in the Nuclear Industry: 18th International Symposium [M]. Philadelphia: ASTM International, 2018: 614
|
31 |
Frankel P G, Wei J, Francis E M, et al. Effect of Sn on corrosion mechanisms in advanced Zr-cladding for pressurised water reactors [A]. ComstockB, BarbérisP. Zirconium in the Nuclear Industry: 17th Volume [M]. Philadelphia: ASTM International, 2015: 404
|
32 |
Liao J J, Zhang J S, Zhang W, et al. Critical behavior of interfacial t-ZrO2 and other oxide features of zirconium alloy reaching critical transition condition [J]. J. Nucl. Mater., 2021, 543: 152474
|
33 |
Liao J J, Xu F, Peng Q, et al. Research on the existence and stability of interfacial tetragonal zirconia formed on zirconium alloys [J]. J. Nucl. Mater., 2020, 528: 151846
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|