Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (2): 506-514     CSTR: 32134.14.1005.4537.2024.215      DOI: 10.11902/1005.4537.2024.215
  研究报告 本期目录 | 过刊浏览 |
铜合金在不同pH3.5%NaCl溶液中的浸泡腐蚀性能研究
靳振廷, 宋亓宁(), 刘琪, 彭春兰, 许楠, 陆其清, 包晔峰, 赵立娟, 赵建华
河海大学材料科学与工程学院 常州 213251
Long-term Corrosion Behavior of Three Cu-alloys in 3.5%NaCl Solutions with Different pH Values
JIN Zhenting, SONG Qining(), LIU Qi, PENG Chunlan, XU Nan, LU Qiqing, BAO Yefeng, ZHAO Lijuan, ZHAO Jianhua
School of Materials Science and Engineering, Hohai University, Changzhou 213251, China
引用本文:

靳振廷, 宋亓宁, 刘琪, 彭春兰, 许楠, 陆其清, 包晔峰, 赵立娟, 赵建华. 铜合金在不同pH3.5%NaCl溶液中的浸泡腐蚀性能研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 506-514.
Zhenting JIN, Qining SONG, Qi LIU, Chunlan PENG, Nan XU, Qiqing LU, Yefeng BAO, Lijuan ZHAO, Jianhua ZHAO. Long-term Corrosion Behavior of Three Cu-alloys in 3.5%NaCl Solutions with Different pH Values[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(2): 506-514.

全文: PDF(7999 KB)   HTML
摘要: 

采用静态浸泡腐蚀实验、电化学测试,并结合腐蚀形貌观察等研究了pH (2、4、6.8、10、12)对铸态高锰铝青铜(MAB)、镍铝青铜(NAB)和锰黄铜(MB)在3.5%NaCl溶液中的腐蚀性能的影响。结果表明,3种铜合金均是在pH = 2时,因κ相溶解和β/β′相腐蚀而导致腐蚀失重率最大,在pH = 4、6.8和10溶液中的腐蚀失重率较为接近,在pH = 12时表现出钝化行为,失重率最小。对比3种铜合金发现,MAB在任一溶液中的失重率均为最高,耐蚀性最差;NAB在pH = 12溶液中的失重率与MB接近,而在其他溶液中失重率均为最低。在pH = 6.8溶液中长期浸泡后,NAB表面腐蚀产物膜保护性最好,耐蚀性最优;在pH = 12时,3种铜合金表面形成了钝化膜,阻抗随浸泡时间延长而快速增大,钝化膜保护性由高到低顺序为:MB、NAB、MAB,这一结果与腐蚀失重结果相吻合。

关键词 铜合金腐蚀失重电化学    
Abstract

The corrosion behavior of Cu-alloys used for marine propeller, including Mg-Al bronze (MAB), Ni-Al bronze (NAB) and Mn brass (MB) in 3.5%NaCl solutions with different pH values (2, 4, 6.8, 10, 12) was assessed via long-term mass change measurement, electrochemical test, and corrosion morphology observation. The results show that the corrosion rate of the three Cu-alloys is the highest when the solution pH = 2, this may be due to the severe dissolution of κ phase and preferential corrosion of β/β′ phases. When the solution pH = 4, 6.8 and 10, the corrosion mass loss rate of the three Cu-alloys is close, and for the solution pH = 12, the three Cu-alloys exhibit passive behavior with the least mass loss. MAB presents the highest corrosion rate and the worst corrosion resistance in any test solution. The mass loss rate of NAB in the solution of pH = 12 is close to that of MB, while the mass loss rate in other solutions is the lowest. After long-term immersion in the solution of pH = 6 and 8 respectively, the corrosion products film formed on the NAB surface exhibits the best protectiveness. In the solution of pH = 12, passive films may form on the surfaces of the three Cu-alloys, and their impedance increases rapidly with extended immersion time. The ranking order of the protectiveness of passive films is as: MB, NAB and MAB from high to low, which consistent with the mass change measurement results.

Key wordsCu-alloy    corrosion    gravimetric measurement    electrochemistry
收稿日期: 2024-07-19      32134.14.1005.4537.2024.215
ZTFLH:  TG174  
基金资助:材料腐蚀与防护四川省重点实验室开放基金(2023CL09)
通讯作者: 宋亓宁,E-mail:qnsong@hhu.edu.cn,研究方向为海洋环境金属材料多相流腐蚀防护
Corresponding author: SONG Qining, E-mail: qnsong@hhu.edu.cn
作者简介: 靳振廷,男,1996年生,硕士生
MaterialAlFeNiMnZnCu
MAB7.283.622.1012.35-Bal.
NAB9.184.064.491.03-Bal.
MB0.860.890.222.17Bal.55.7
表1  3种铜合金的化学成分
图1  MAB, NAB及MB铜合金的金相组织
图2  MAB, NAB及MB在不同pH溶液中的浸泡腐蚀失重率随时间变化曲线
图3  MAB、NAB及MB在不同pH值3.5%NaCl溶液中的极化曲线
Immersion time / hpH valueMABNABMB
Ecorr / mVIcorr / A·cm-2Ecorr / mVIcorr / A·cm-2Ecorr / mVIcorr / A·cm-2
02-558.81.49 × 10-5-333.41.29 × 10-5-462.52.35 × 10-5
4-407.42.66 × 10-6-291.93.89 × 10-6-401.24.09 × 10-6
6.8-426.21.58 × 10-6-274.16.74 × 10-6-416.21.97 × 10-6
10-382.13.69 × 10-6-262.37.22 × 10-6-411.41.78 × 10-6
12-380.91.11 × 10-5-333.81.39 × 10-5-214.24.61 × 10-7
7202-332.32.26 × 10-6-283.82.45 × 10-6-328.54.96 × 10-6
4-623.84.58 × 10-6-495.37.98 × 10-7-420.91.92 × 10-6
6.8-603.56.34 × 10-6-265.22.35 × 10-7-428.79.35 × 10-7
10-523.41.89 × 10-6-428.01.73 × 10-7-431.22.38 × 10-7
12-506.61.46 × 10-6-577.43.43 × 10-8-493.28.19 × 10-8
表2  3种铜合金在不同溶液中初期及经浸泡720 h后的极化曲线拟合结果
图4  MAB、NAB及MB在不同pH溶液中浸泡不同时间后的EIS结果
图5  铜合金在3.5%NaCl溶液中EIS等效拟合电路示意图
pH valueMaterialImmersion time / hRsΩ·cm2Y1Ω-1·s nn1RfkΩ·cm2Y2Ω-1·s nn2RctkΩ·cm2WΩ-1·s-0.5
6.8MAB06.324.435 × 10-40.780.263.578 × 10-50.991.465.23 × 10-3
2409.824.989 × 10-40.742.671.736 × 10-30.683.91-
72011.654.133 × 10-40.718.251.435 × 10-30.937.27-
NAB05.708.026 × 10-40.650.825.301 × 10-30.600.943.81 × 10-4
2407.031.808 × 10-40.856.682.085 × 10-30.7814.44-
72010.561.442 × 10-40.8410.891.585 × 10-50.8631.20-
MB06.352.065 × 10-40.800.559.498 × 10-40.564.67-
24011.523.102 × 10-40.628.622.555 × 10-40.6717.34-
72012.462.199 × 10-40.709.829.381 × 10-50.7424.43-
12MAB05.802.19 × 10-40.730.506.507 × 10-40.850.964.27 × 10-3
2408.883.994 × 10-40.713.317.778 × 10-40.856.62-
7209.973.727 × 10-40.689.021.285 × 10-30.9512.07-
NAB07.102.327 × 10-50.890.769.484 × 10-50.549.047.12 × 10-4
2407.821.264 × 10-40.8012.694.457 × 10-70.77146.5-
7209.401.083 × 10-40.8019.545.952 × 10-70.81171.8-
MB035.691.263 × 10-50.925.745.031 × 10-50.5134.61-
2408.944.216 × 10-50.8026.033.123 × 10-50.6679.29-
72010.813.107 × 10-50.8236.343.789 × 10-50.72180.50-
表3  MAB、NAB和MB在不同pH值3.5% NaCl溶液中浸泡不同时间后的EIS拟合结果
图6  MAB、NAB和MB在pH = 2、6.8及12的3.5%NaCl溶液中浸泡720 h后的截面形貌
1 Zhu J, Jiang Y J, He D C. Comparison of copper alloy for marine propeller manufacture [J]. Mar. Technol., 2019, (6): 64
1 朱 晶, 姜元军, 何大川. 船用螺旋桨常用铜合金材料比较 [J]. 造船技术, 2019, (6): 64
2 Li S Y, Song J L, Wei H, et al. Corrosion behavior of Cu-Ti alloy in simulated S2- contaminated seawater [J]. Rare Metal Mat. Eng., 2022, 51: 895
2 李思远, 宋坚磊, 卫 欢 等. Cu-Ti合金在模拟S2-污染海水中的腐蚀行为 [J]. 稀有金属材料与工程, 2022, 51: 895
3 Wharton J A, Stokes K R. The influence of nickel-aluminium bronze microstructure and crevice solution on the initiation of crevice corrosion [J]. Electrochim. Acta, 2008, 53: 2463
4 Luo Z Q, Xin B L, Zhang W W, et al. Influence of pH value on corrosion of wear-resistant casting alloy Cu-17Ni-3Al-X [J]. J. South China Univ. Technol. (Nat. Sci. Ed.), 2011, 39(11): 125
4 罗宗强, 辛保亮, 张卫文 等. pH值对Cu-17Ni-3Al-X耐磨铸造铜合金腐蚀的影响 [J]. 华南理工大学学报(自然科学版), 2011, 39(11): 125
doi: 1000-565X (21000-565X (2011) 11-0125-07
5 Neodo S, Carugo D, Wharton J A, et al. Electrochemical behaviour of nickel-aluminium bronze in chloride media: Influence of pH and benzotriazole [J]. J. Electroanal. Chem., 2013, 695: 38
6 Chen H L, Ma L, Huang G S, et al. Effects of pH value, temperature and salinity on film formation of B30 Cu-Ni alloy in seawater [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 481
6 陈翰林, 马 力, 黄国胜 等. pH值、温度和盐度对B30铜镍合金在海水中成膜的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 481
doi: 10.11902/1005.4537.2022.199
7 Du L L, Zhang G T, Wei L, et al. Inhomogeneous phases in Cu-Zn-Al-Fe-Mn and the micro-galvanic coupling in 3.5wt%NaCl solutions at different pH [J]. Corros. Sci., 2022, 195: 110005
8 General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Corrosion of metals and alloys—Removal of corrosion products from corrosion test specimens [S]. Beijing: Standards Press of China, 2016
8 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 金属和合金的腐蚀 腐蚀试样上腐蚀产物的清除 [S]. 北京: 中国标准出版社, 2016
9 Iqbal J, Hasan F, Ahmad F. Characterization of phases in an as-cast copper-manganese-aluminum alloy [J]. J. Mater. Sci. Technol., 2006, 22: 779
10 Yi X N, Ma A L, Zheng Y G, et al. Elucidating different selective corrosion behavior of two typical marine aluminum bronze alloys from the perspective of constituent phases [J]. Corros. Sci., 2024, 235: 112167
11 Hasan F, Jahanafrooz A, Lorimer G W, et al. The morphology, crystallography, and chemistry of phases in as-cast nickel-aluminum bronze [J]. Metall. Trans., 1982, 13A: 1337
12 Song Q N, Li H L, Xu N, et al. Selective phase corrosion and cavitation erosion behaviors of various copper alloys in 3.5%NaCl solutions with different pH values [J]. Trans. Nonferrous Met. Soc. China, 2023, 33: 3039
13 Song Q N, Zheng Y G, Ni D R, et al. Studies of the nobility of phases using scanning Kelvin probe microscopy and its relationship to corrosion behaviour of Ni-Al bronze in chloride media [J]. Corros. Sci., 2015, 92: 95
14 Amegroud H, Guenbour A, Bellaouchou A, et al. A comprehensive investigation of the electrochemical behavior of nickel-aluminum bronze alloy in alkaline solution: The effect of film formation potential [J]. Colloids Surf., 2021, 614A: 126126
15 Wharton J A, Barik R C, Kear G, et al. The corrosion of nickel-aluminium bronze in seawater [J]. Corros. Sci., 2005, 47: 3336
16 Zhang C D, Liu B, Shi Z Y, et al. Research progress in corrosion behavior of nickel aluminum bronze alloys in seawater [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 25
16 张赪栋, 刘 斌, 石泽耀 等. 镍铝青铜合金海水腐蚀行为研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 25
doi: 10.11902/1005.4537.2020.221
17 Yuan S J, Pehkonen S O. Surface characterization and corrosion behavior of 70/30 Cu-Ni alloy in pristine and sulfide-containing simulated seawater [J]. Corros. Sci., 2007, 49: 1276
18 Ding Y, Zhao R, Qin Z B, et al. Evolution of the corrosion product film on nickel-aluminum bronze and its corrosion behavior in 3.5wt%NaCl solution [J]. Materials, 2019, 12: 209
19 Nakhaie D, Davoodi A, Imani A. The role of constituent phases on corrosion initiation of NiAl bronze in acidic media studied by SEM-EDS, AFM and SKPFM [J]. Corros. Sci., 2014, 80: 104
20 Lv Y T, Guo J W, Zhang G S, et al. Insights into the selective phase corrosion of as cast NiAl bronze alloy: Effect of electrical properties of each phase's protective film [J]. J. Alloy. Compd., 2022, 891: 162008
21 Culpan E A, Rose G. Corrosion behaviour of cast nickel aluminium bronze in sea water [J]. Br. Corros. J., 1979, 14: 160
22 Gudić S, Vrsalović L, Radeljić A, et al. Comparison of corrosion behaviour of copper and copper alloys in aqueous chloride solution [J]. Chem. Ind. Chem. Eng. Quart., 2021, 27: 383
23 Wang W Y, Zhang W J, Liu Y F, et al. Tailoring microstructure of a nickel aluminium bronze by hot extrusion and its impact on mechanical and corrosion behaviour [J]. Corros. Sci., 2023, 215: 111049
24 Asgari M, Foratirad H, Golabadi M, et al. Investigation of the corrosion behavior of aluminum bronze alloy in alkaline environment [J]. Materialwiss. Werkstofftech., 2021, 52: 511
[1] 王慧玲, 明洪亮, 王俭秋, 韩恩厚. 掺氢天然气管线钢氢渗透行为研究进展[J]. 中国腐蚀与防护学报, 2025, 45(2): 249-260.
[2] 赵杰, 徐广旭, 张烘玮, 李敬法, 吕冉, 王嘉龙, 闫东雷. X80掺氢天然气管道的氢脆与腐蚀耦合作用研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 407-415.
[3] 缪浩, 尹程辉, 王洪伦, 高逸晖, 陈俊航, 张昊, 李波, 吴俊升, 肖葵. 污染海洋大气环境下不锈钢加速腐蚀试验环境谱评价及相关性[J]. 中国腐蚀与防护学报, 2025, 45(2): 449-459.
[4] 姜慧芳, 刘扬豪, 刘莹, 李迎超, 于浩波, 赵博, 陈曦. 地下储氢库J55钢氢环境下微生物腐蚀机理研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 347-358.
[5] 崔博伦, 赵杰, 吕冉, 李敬法, 宇波, 闫东雷. 掺氢天然气输送管材氢脆与腐蚀复合防护技术研究进展[J]. 中国腐蚀与防护学报, 2025, 45(2): 327-337.
[6] 翟熙伟, 刘士一, 王丽, 贾瑞灵, 张慧霞. 载荷对5383铝合金焊接接头电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(2): 515-522.
[7] 雷艾嘉, 戴训, 许江涛, 邓睿驹, 黄雪飞. Zr-1.35Sn-0.22Fe-0.13Cr-0.05Ni合金热处理工艺优化及其高温高压水腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 497-505.
[8] 吴宇航, 陈旭, 王首德, 刘畅, 刘杰. 直流电作用下X70钢在近中性土壤中应力腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 489-496.
[9] 郑文培, 刘迎正, 张娅茹, 周涛涛, 李兴涛, 禹胜阳, 蒋璐朦. 基于全局与局部误差融合的集成腐蚀速率预测模型:一种稳健优化策略[J]. 中国腐蚀与防护学报, 2025, 45(2): 523-532.
[10] 白钲清, 农靖, 韦世宸, 徐健. 预充氢对Ni-Cr合金在高温高压水中腐蚀行为影响[J]. 中国腐蚀与防护学报, 2025, 45(2): 338-346.
[11] 崔德春, 熊亮, 于邦廷, 吴浩志, 董绍华, 陈林. 含腐蚀缺陷氢气管道局部氢浓度有限元模拟分析[J]. 中国腐蚀与防护学报, 2025, 45(2): 359-370.
[12] 杨震宇, 基超, 郭丽雅, 徐闰, 彭伟, 赵洪山, 韦习成, 董瀚. 6种典型商用纯铁和钢材在3.5%NaCl溶液中的初期腐蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(2): 469-478.
[13] 汤熠鑫, 张飞, 崔中雨, 崔洪芝, 李燚周. 氢对2205双相不锈钢在3.5%NaCl溶液中缝隙腐蚀行为影响[J]. 中国腐蚀与防护学报, 2025, 45(2): 431-437.
[14] 许竞翔, 黄睿阳, 褚振华, 蒋全通. FeNiCoCrW0.2Al0.1 高熵合金在硫酸盐还原菌溶液环境下的腐蚀研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 460-468.
[15] 燕冰川, 曾云鹏, 张宁, 史显波, 严伟. 石油管材用含Cu钢焊接接头的微生物腐蚀研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 479-488.