Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (2): 359-370     CSTR: 32134.14.1005.4537.2024.161      DOI: 10.11902/1005.4537.2024.161
  临氢关键材料服役行为研究专刊 本期目录 | 过刊浏览 |
含腐蚀缺陷氢气管道局部氢浓度有限元模拟分析
崔德春1,2, 熊亮1, 于邦廷1, 吴浩志3, 董绍华3, 陈林3()
1.中海油研究总院有限责任公司新能源研究院 北京 100028
2.怀柔实验室山西研究院 太原 030032
3.中国石油大学(北京)安全与海洋工程学院 北京 102249
Finite Element Analysis of Local Hydrogen Concentration in Hydrogen Pipeline With Corrosion Defects
CUI Dechun1,2, XIONG Liang1, YU Bangting1, WU Haozhi3, DONG Shaohua3, CHEN Lin3()
1.New Energy Research Department, CNOOC Research Institute Co., Ltd., Beijing 100028, China
2.Shanxi Research Institute of Huairou Laboratory, Taiyuan 030032, China
3.College of Safety and Ocean Engineering, China University of Petroleum, Beijing 102249, China
引用本文:

崔德春, 熊亮, 于邦廷, 吴浩志, 董绍华, 陈林. 含腐蚀缺陷氢气管道局部氢浓度有限元模拟分析[J]. 中国腐蚀与防护学报, 2025, 45(2): 359-370.
Dechun CUI, Liang XIONG, Bangting YU, Haozhi WU, Shaohua DONG, Lin CHEN. Finite Element Analysis of Local Hydrogen Concentration in Hydrogen Pipeline With Corrosion Defects[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(2): 359-370.

全文: PDF(12881 KB)   HTML
摘要: 

针对含有缺陷的现有天然气管道,开展管线钢腐蚀缺陷处氢渗透及局部氢浓度的研究对在役氢气管道基础设施的完整性和安全性至关重要。本文在COMSOL Multiphysics中通过耦合应力场和氢扩散场,建立了含腐蚀缺陷X52钢管道中氢扩散和分布的有限元模型,研究了内部压力、缺陷位置、缺陷长度和深度对氢扩散和分布的影响规律。结果表明,内压导致了缺陷处局部应力集中和氢分布不均,缺陷处的氢浓度随内压的增大而增加,但内腐蚀缺陷处的氢浓度阈值低于外腐蚀缺陷处的氢浓度阈值,并且两缺陷处最大氢浓度位置不同。此外,缺陷长度和深度也会影响氢浓度阈值和位置,并且对内、外腐蚀的影响不同。

关键词 腐蚀缺陷有限元模型氢分布X52钢    
Abstract

Deep understanding on the interaction of hydrogen atoms with pipeline steel is crucial for the matter of the integrity and safety in-service of hydrogen pipeline infrastructure, especially for the case when the existing pipelines with corrosion defects were adopted as hydrogen transportation pipeline. Herein, a finite element (FE) model was developed by coupling mechanical- and diffusion-fields in COMSOL Multiphysics, so that the effect of internal pressure, defect location, defect length and depth on the hydrogen diffusion and distribution was assessed. Results demonstrated that internal pressure may induce local stress concentration and non-uniform hydrogen distribution at defect. Hydrogen concentration at defect increases with the internal pressure, but the threshold of hydrogen concentration at internal corrosion defects is lower than that at external corrosion defects, and the corresponding positions of the maximum hydrogen concentration are different for the two defects. Moreover, the defect length and depth also affect the hydrogen concentration threshold and where the hydrogen concentration maximum emerges, but such effects vary depending on whether the corrosion in question is internal or external.

Key wordscorrosion defect    finite element model    hydrogen distribution    X52 steel
收稿日期: 2024-05-22      32134.14.1005.4537.2024.161
ZTFLH:  TG111.91  
通讯作者: 陈林,E-mail:chenlin@cup.edu.cn,研究方向为金属材料腐蚀与防护
Corresponding author: CHEN Lin, E-mail: chenlin@cup.edu.cn
作者简介: 崔德春,男,1968年生,博士,高级工程师
图1  处于内部压力下的管段示意图,管道上存在的腐蚀缺陷的俯视图和横截面图,用于数值分析的四分之一模型,模型上的内部腐蚀缺陷和外部腐蚀缺陷,内部和外部腐蚀缺陷左右边缘示意图
图2  模型网格划分
图3  外部腐蚀缺陷处最大von Mises应力、静水应力、氢浓度与网格敏感性分析
图4  6~10 MPa内压下内部和外部腐蚀缺陷处von Mises应力(MPa)分布
图5  von Mises应力沿着内腐蚀缺陷左边缘和右边缘,以及外部腐蚀缺陷左边缘和右边缘的线性分布
图6  6~10 MPa内压下内部和外部腐蚀缺陷处的静水应力分布(MPa)
图7  静水应力沿着内腐蚀缺陷左边缘和右边缘,以及外部腐蚀缺陷左边缘和右边缘的线性分布
图8  10 MPa下外部腐蚀缺陷处的氢扩散过程
图9  5 × 106 s时6~10 MPa内压下内部和外部腐蚀缺陷处的氢浓度分布(mol/m3)
图10  氢浓度沿着内腐蚀缺陷左边缘和右边缘,以及外部腐蚀缺陷左边缘和右边缘的线性分布
TypeP / MPaCmax / mol·m-3Location coordinates
x / mmy / mmz / mm
Internal corrosion defect610.200-249.84502.82
810.390-250.30500.00
1010.600-250.90500.82
External corrosion defect610.940-248.56500.70
811.160-248.18500.00
1011.530-248.18500.00
表1  不同内压下的最大氢浓度
图11  内部腐蚀缺陷和外部腐蚀缺陷的最大氢浓度位置
图12  5 × 106 s时10 MPa下不同长度内、外腐蚀缺陷处的氢分布
TypeDefect length mmCmax / mol·m-3Location coordinates
x / mmy / mmz / mm
Internal corrosion defect1010.530-250.29500.00
1210.530-250.86500.97
1410.540-250.87500.93
1610.570-250.90500.82
External corrosion defect1011.200-248.18500.00
1211.300-248.18500.00
1411.340-248.18500.00
1611.530-248.18500.00
表2  不同缺陷长度处的最大氢浓度
图13  5 × 106 s时10 MPa下不同深度内、外腐蚀缺陷处的氢分布
TypeDefect depth / mmCmax / mol·m-3Location coordinates
x / mmy / mmz / mm
Internal corrosion defect1.9110.300-248.46501.05
2.8610.400-249.24503.21
3.8110.500-250.27500.94
4.7610.570-250.90500.82
External corrosion defect1.9110.620-250.75500.00
2.8610.940-249.32501.00
3.8111.210-248.94500.00
4.7611.530-248.18500.00
表3  不同缺陷深度处的最大氢浓度
1 Rusman N A A, Dahari M. A review on the current progress of metal hydrides material for solid-state hydrogen storage applications [J]. Int. J. Hydrog. Energy, 2016, 41: 12108
2 Dutta S. A review on production, storage of hydrogen and its utilization as an energy resource [J]. J. Ind. Eng. Chem., 2014, 20: 1148
3 Cipriani G, Di Dio V, Genduso F, et al. Perspective on hydrogen energy carrier and its automotive applications [J]. Int. J. Hydrog. Energy, 2014, 39: 8482
4 Chen T P. Hydrogen delivery infrastructure options analysis [R]. San Fancisco: Nexant, Inc., 2010
5 Demir M E, Dincer I. Cost assessment and evaluation of various hydrogen delivery scenarios [J]. Int. J. Hydrog. Energy, 2018, 43: 10420
6 van der Zwaan B C C, Schoots K, Rivera-Tinoco R, et al. The cost of pipelining climate change mitigation: an overview of the economics of CH4, CO2 and H2 transportation [J]. Appl. Energy, 2011, 88: 3821
7 Tan K, Mahajan D, Venkatesh T A. Computational fluid dynamic modeling of methane-hydrogen mixture transportation in pipelines: estimating energy costs [J]. MRS Adv., 2022, 7: 388
8 Hall J E, Hooker P, Jeffrey K E. Gas detection of hydrogen/natural gas blends in the gas industry [J]. Int. J. Hydrog. Energy, 2021, 46: 12555
9 Ozturk M, Dincer I. A comprehensive review on power-to-gas with hydrogen options for cleaner applications [J]. Int. J. Hydrog. Energy, 2021, 46: 31511
10 Dodds P E, Staffell I, Hawkes A D, et al. Hydrogen and fuel cell technologies for heating: a review [J]. Int. J. Hydrog. Energy, 2015, 40: 2065
11 Li X, Zhu Q J, Zhou N, et al. Oil-gas pipe corrosion and protection [J]. Surf. Technol., 2017, 46(12): 206
11 李 雪, 朱庆杰, 周 宁 等. 油气管道腐蚀与防护研究进展 [J]. 表面技术, 2017, 46(12): 206
12 Lynch S. Hydrogen embrittlement phenomena and mechanisms [J]. Corros. Rev., 2012, 30: 105
13 Kumnick A J, Johnson H H. Deep trapping states for hydrogen in deformed iron [J]. Acta Metall., 1980, 28: 33
14 Guo S W, Wu H Z, Dong S H, et al. Simulation of hydrogen distribution in pipeline with double corrosion defects [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 335
14 郭诗雯, 吴浩志, 董绍华 等. 含双腐蚀缺陷管道的氢浓度分布模拟 [J]. 中国腐蚀与防护学报, 2024, 44: 335
doi: 10.11902/1005.4537.2023.333
15 Liu W C, Wei B X, Yin H, et al. Finite element analysis of hydrogen permeation in X80 pipeline with corrosion defects under axial strain [J]. Surf. Technol., 2024, 53(8): 84
15 刘韦辰, 韦博鑫, 尹 航 等. 轴向应变作用下含腐蚀缺陷X80管道氢渗透的有限元分析 [J]. 表面技术, 2024, 53(8): 84
16 Gorban A N, Sargsyan H P, Wahab H A. Quasichemical models of multicomponent nonlinear diffusion [J]. Math. Model. Nat. Phenom., 2011, 6: 184
17 Krom A H M, Koers R W J, Bakker A. Hydrogen transport near a blunting crack tip [J]. J. Mech. Phys. Solids, 1999, 47: 971
18 Cisneros M M, Lopez H F, Salas N, et al. Hydrogen permeability in a plasma nitrided API X52 steel [J]. Mater. Sci. Forum, 2003, 442: 85
19 Yang F Q, Zhan W J, Yan T, et al. Numerical analysis of the coupling between hydrogen diffusion and mechanical behavior near the crack tip of titanium [J]. Math. Probl. Eng., 2020, 2020: 3618589
20 Wijmans J G, Baker R W. The solution-diffusion model: a review [J]. J. Membrane Sci., 1995, 107: 1
21 Sofronis P, McMeeking R M. Numerical analysis of hydrogen transport near a blunting crack tip [J]. J. Mech. Phys. Solids, 1989, 37: 317
22 Hirth J P. Effects of hydrogen on the properties of iron and steel [J]. Metall. Trans., 1980, 11A: 861
23 McLellan A G. Non-hydrostatic thermodynamics of chemical systems [J]. Proc. Roy. Soc., 1970, 314A: 443
24 Wikipedia. Nominal pipe size [DB/OL]. [2022-01-09].
25 Hafsi Z, Mishra M, Elaoud S. Hydrogen embrittlement of steel pipelines during transients [J]. Procedia Struct. Integr., 2018, 13: 210
26 Chouchaoui B A, Pick R J. Behaviour of longitudinally aligned corrosion pits [J]. Int. J. Press. Vess. Pip., 1996, 67: 17
27 Xu L Y, Cheng Y F. Corrosion of X100 pipeline steel under plastic strain in a neutral pH bicarbonate solution [J]. Corros. Sci., 2012, 64: 145
[1] 郭诗雯, 吴浩志, 董绍华, 陈林, 程玉峰. 含双腐蚀缺陷管道的氢浓度分布模拟[J]. 中国腐蚀与防护学报, 2024, 44(2): 335-344.
[2] 何彬彬, 侯宇, 吴子轩, 李子立, 李桃, 颜建伟. 接管管口内径对卧式反应釜接管应力状态的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1399-1406.
[3] 刘智勇, 贾静焕, 杜翠薇, 李晓刚, 王丽颖. X80和X52钢在模拟海水环境中的腐蚀行为与规律[J]. 中国腐蚀与防护学报, 2014, 34(4): 327-332.
[4] 杨专钊, 刘道新, 张晓化. 含平底型腐蚀缺陷钢管剩余强度的有限元求解和实验验证[J]. 中国腐蚀与防护学报, 2013, 33(4): 339-346.
[5] 林鸿亮, 王俭秋, 韩恩厚. Cr对铸态X52钢在湿H2S环境中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2013, 33(4): 283-287.
[6] 钟曼英. 氢对2(1/4)Cr-1Mo钢力学性能的影响[J]. 中国腐蚀与防护学报, 2011, 31(3): 236-239.
[7] 徐颖;袁路平;林栋梁;林建鸿;王正东;吴东棣. 堆焊结构的氢浓度分布及其对剥离断裂的影响[J]. 中国腐蚀与防护学报, 1995, 15(2): 112-118.