Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (2): 449-459     CSTR: 32134.14.1005.4537.2024.098      DOI: 10.11902/1005.4537.2024.098
  研究报告 本期目录 | 过刊浏览 |
污染海洋大气环境下不锈钢加速腐蚀试验环境谱评价及相关性
缪浩1, 尹程辉1, 王洪伦2, 高逸晖3, 陈俊航1, 张昊1, 李波1, 吴俊升1, 肖葵1()
1.北京科技大学新材料技术研究院 北京 100083
2.西昌卫星发射中心航天发射场可靠性技术重点实验室 海口 571126
3.中国电子科技集团公司第二十研究所 西安 710068
Correlation of Laboratory Simulation Test and Field Exposure Test for Three Stainless Steels in Polluted Marine Atmosphere of Qingdao Coastal Area
MIAO Hao1, YIN Chenghui1, WANG Honglun2, GAO Yihui3, CHEN Junhang1, ZHANG Hao1, LI Bo1, WU Junsheng1, XIAO Kui1()
1.Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
2.Key Laboratory of Space Launch Site Reliability Technology, Xichang Satellite Launch Center, Haikou 571126, China
3.Twentieth Research Institute of China Electronics Technology Corporation, Xi'an 710068, China
引用本文:

缪浩, 尹程辉, 王洪伦, 高逸晖, 陈俊航, 张昊, 李波, 吴俊升, 肖葵. 污染海洋大气环境下不锈钢加速腐蚀试验环境谱评价及相关性[J]. 中国腐蚀与防护学报, 2025, 45(2): 449-459.
Hao MIAO, Chenghui YIN, Honglun WANG, Yihui GAO, Junhang CHEN, Hao ZHANG, Bo LI, Junsheng WU, Kui XIAO. Correlation of Laboratory Simulation Test and Field Exposure Test for Three Stainless Steels in Polluted Marine Atmosphere of Qingdao Coastal Area[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(2): 449-459.

全文: PDF(20103 KB)   HTML
摘要: 

依据污染海洋大气环境因素设计紫外+周浸的环境谱加速试验方法,开展了430、316L、2205不锈钢的腐蚀行为和相关性研究。采用失重法、X射线光电子能谱分析仪(XPS)、扫描电子显微镜(SEM)、腐蚀电化学等方法对模拟污染海洋大气环境谱加速试验不同周期下3种不锈钢的腐蚀行为进行了研究,采用灰色关联度分析法研究了室内加速试验与青岛污染海洋大气环境下室外暴露试验的相关性。结果表明:紫外+周浸试验480 h后,430不锈钢发生明显的腐蚀,316L不锈钢出现明显的点蚀,2205不锈钢没有明显的腐蚀现象。灰色关联度分析3种不锈钢与户外暴露试验结果具有较好的相关性,3种不锈钢在污染海洋大气环境下的腐蚀寿命预测模型分别为T430 = 50.0114t 0.134351T316L = 66.32242t 0.52341T2205 = 620.8745t 0.112522

关键词 不锈钢环境谱评价污染海洋大气环境相关性腐蚀寿命    
Abstract

According to the acquired environmental factors of polluted Marine atmosphere at Qingdao coastal area, an environment spectrum composed of varying ultraviolet irradiation and weekly soaking was designed for laboratory accelerated test. Thereafter, the corrosion behavior of three stainless steels, 430, 316L and 2205 was studied in parallel via lab testing with the proposed spectrum, and further, the correlation of the acquired data was evaluated with the outdoor exposure test results at selected sites in polluted Marine atmospheric environment of Qingdao area. The tested steels were characterized by means of weightlessness method, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), corrosion electrochemistry etc. The results show that after 480 h test of UV irradiation + weekly shocking, 430 stainless steel underwent obvious corrosion, 316L stainless steel showed obvious pitting corrosion, and 2205 stainless steel experienced no obvious corrosion. However, the gray correlation analysis reveals that the laboratory corrosion data for the three stainless steels 430, 316L and 2205 and showed relatively good correlation with those of outdoor exposure test. Accordingly, the following three formulas may be proposed: T430 = 50.0114t 0.134351, T316L = 66.32242t 0.52341 and T2205 = 620.8745t 0.112522, as the corrosion-life prediction model for the corrosion of three stainless steels 430, 316L and 2205 in Qingdao polluted Marine atmospheric environment respectively.

Key wordsstainless steel    environmental spectrum evaluation    pollution of the ocean atmospheric environment    correlation    corrosion life
收稿日期: 2024-03-27      32134.14.1005.4537.2024.098
ZTFLH:  TG172.3  
基金资助:国家重点研发计划(2017YFB0304602)
通讯作者: 肖 葵,E-mail:xiaokui@ustb.edu.cn,研究方向为金属材料大气腐蚀行为与机理研究、材料服役环境损伤机理和环境腐蚀评价、电子材料环境损伤行为与防护工艺研究、金属材料微生物腐蚀行为与机理、材料环境腐蚀数据库设计与建设
Corresponding author: XIAO Kui, E-mail: xiaokui@ustb.edu.cn
作者简介: 缪 浩,男,2001年生,硕士生
MaterialCSiMnSPNiCrMoV
4300.050.240.20.0180.0250.0716.14-0.1
316L0.030.441.460.0160.02710.1116.842.19-
22050.040.541.560.0150.0416.0322.123.41-
表1  430、316L、2205不锈钢的化学成分 (mass fraction / %)
图1  模拟工业海洋环境的试验方法
图2  430、316L和2205不锈钢室内加速试验后的失重和拟合曲线
SampleAnR2
4300.039980.952950.99713
316L0.020550.792190.98433
22050.027840.485860.97145
表2  430、316L和2205不锈钢室内加速试验后的拟合结果
图3  430、316L和2205不锈钢室内加速试验后的失重速率曲线
图4  430不锈钢试验不同时间后的表面腐蚀形貌
图5  430不锈钢试验不同时间后的SEM图
图6  316L不锈钢试验不同时间后的表面腐蚀形貌
图7  316L不锈钢试验不同时间后的SEM图
图8  2205不锈钢试验不同时间后的表面腐蚀形貌
图9  2205不锈钢试验不同时间后的SEM图
图10  试验428 h后的430、316L和2205不锈钢腐蚀产物的Fe2p分峰拟合图谱
图11  430、316L和2205不锈钢试验不同时间后的极化曲线
MaterialTest time / hEcorr / mVIcorr / nA·cm-2
430107-489.421053.80
214-320.72309.34
321-190.0655.14
428-220.8282.78
316L107-49.75112.21
214-72.71104.07
321-186.53118.60
428-199.6271.19
2205107-114.06237.95
214-161.13100.26
321-221.0247.26
428-186.2565.60
表3  430、316L和2205不锈钢极化曲线的拟合结果
Test time / hOutdoor exposure mass loss / g·m-2Indoor accelerated mass loss / g·m-2
X430X316LX2205X430X316LX2205
107 (1)1.66330.57010.63343.33080.78720.281
214 (2)1.81770.75990.65796.56011.55090.3735
321 (3)1.91450.89900.672610.09471.88910.4355
428 (4)1.98631.01290.683314.69882.52770.5469
表4  3种不锈钢户外暴露与紫外+周浸试验失重数据
Test time / hOutdoor exposure mass lossIndoor accelerated mass loss
Y430Y316LY2205Y430Y316LY2205
107 (1)1.00001.00001.00001.00001.00001.0000
214 (2)1.09281.33301.03861.96951.97011.3290
321 (3)1.15101.57701.06193.03072.39981.5496
428 (4)1.19421.77681.07874.41293.21101.9460
表5  3种不锈钢户外暴露与紫外+周浸试验数据初值化处理结果
Test time / h430316L2205
107 (1)000
214 (2)0.87670.63720.2903
321 (3)1.87960.82280.4877
428 (4)3.21871.43420.8673
表6  3种不锈钢的绝对差序列
1 Chen H. Research on corrosion behavior of stainless steel in marine atmospheric [D]. Beijing: China Academy of Machinery Science and Technology, 2021
1 陈 昊. 不锈钢在海洋大气环境中的腐蚀行为研究 [D]. 北京: 机械科学研究总院, 2021
2 Ma H C, Liu Z Y, Du C W, et al. Effect of SO2 content on corrosion behavior of high-strength steel E690 in polluted marine atmosphere [J]. J. Mech. Eng., 2016, 52(16): 33
2 马宏驰, 刘智勇, 杜翠薇 等. SO2质量分数对污染海洋大气环境中高强钢E690腐蚀行为的影响 [J]. 机械工程学报, 2016, 52(16): 33
doi: 10.3901/JME.2016.16.033
3 Zhang D J, Cheng C Q, Yang H, et al. Effect of passivation film integrity on marine atmospheric corrosion of stainless steel and its quality inspection methods [J]. Corros. Prot., 2023, 44(5): 46
3 张东玖, 程从前, 杨 华 等. 钝化膜完整性对不锈钢海洋大气腐蚀的影响及其质检方法 [J]. 腐蚀与防护, 2023, 44(5): 46
4 Song J L, Jiang Z X, Yi P, et al. Corrosion behavior and product evolution of steel for high-speed railway bogie G390NH in simulated marine and industrial atmospheric environment [J]. Acta Metall. Sin., 2023, 59: 1487
doi: 10.11900/0412.1961.2021.00366
4 宋嘉良, 江紫雪, 易 盼 等. 高铁转向架用钢G390NH在模拟海洋和工业大气环境下的腐蚀行为及产物演化规律 [J]. 金属学报, 2023, 59: 1487
doi: 10.11900/0412.1961.2021.00366
5 Gümpel P, Hörtnagl A. Influence of the surface condition on corrosion behavior of stainless steel [J]. Mater. Corros., 2016, 67: 607
6 Guo M X, Tang J R, Pan C, et al. The effect of temperature and UV irradiation on corrosion behavior of 304 stainless steel exposed to a simulated marine atmosphere [J]. Mater. Corros., 2022, 73: 876
7 Almeida E, Morcillo M, Rosales B. Atmospheric corrosion of mild steel. Part Ⅱ-Marine atmospheres [J]. Mater. Corros., 2000, 51: 865
8 Yin C H, Pan J L, Chen J H, et al. Corrosion life assessment of stainless steel in tropical marine atmosphere [J]. Surf. Technol., 2022, 51(4): 183
8 尹程辉, 潘吉林, 陈俊航 等. 热带海洋大气环境下不锈钢的腐蚀寿命评估 [J]. 表面技术, 2022, 51(4): 183
9 Fujimoto S, Yamada T, Shibata T. Improvement of pitting corrosion resistance of type 304 stainless steel by modification of passive film with ultraviolet light irradiation [J]. J. Electrochem. Soc., 1998, 145: L79
10 Moussa S O, Hocking M G. The photo-inhibition of localized corrosion of 304 stainless steel in sodium chloride environment [J]. Corros. Sci., 2001, 43: 2037
11 MacDonald D D, Heaney D F. Effect of variable intensity ultraviolet radiation on passivity breakdown of AISI Type 304 stainless steel [J]. Corros. Sci., 2000, 42: 1779
12 Lin C, Wang F P, Li X G. The progress of research methods on atmospheric corrosion [J]. J. Chin. Soc. Corros. Prot., 2004, 24(4): 249
12 林 翠, 王凤平, 李晓刚. 大气腐蚀研究方法进展 [J]. 中国腐蚀与防护学报, 2004, 24(4): 249
13 Bao Z B, Wang Q M, Jiang S M, et al. Influence of salt spray corrosion on subsequent isothermal oxidation behaviours of AIP NiCoCrAlYSiB coatings [J]. Corros. Sci., 2008, 50: 2372
14 Chen J W, Liu J, Wang H B, et al. Experimental study on neutral salt spray accelerated corrosion of metal protective coatings for power-transmission and transformation equipment [J]. Coatings, 2023, 13: 480
15 Ren J H, Chen A Z, Gao R Q, et al. Analysis of corrosion resistance of 445J2 ferrite stainless steel [J]. Phys. Exam. Test., 2023, 41(2): 11
15 任娟红, 陈安忠, 高仁强 等. 445J2铁素体不锈钢的耐蚀性分析 [J]. 物理测试, 2023, 41(2): 11
16 Chen J H, Bai Z H, Xue W, et al. Corrosion life prediction model of 304 stainless steel in Qingdao polluted marine atmospheric environment [J]. Mater. Prot., 2019, 52(12): 48
16 陈俊航, 白子恒, 薛 伟 等. 304不锈钢在青岛污染海洋大气环境中的腐蚀寿命预测模型 [J]. 材料保护, 2019, 52(12): 48
17 Lyon S B, Thompson G E, Johnson J B, et al. Accelerated atmospheric corrosion testing using a cyclic wet/dry exposure test: aluminum, galvanized steel, and steel [J]. Corrosion, 1987, 43: 719
18 Guo M X, Lu X, Tang J R, et al. Corrosion behavior of 316 stainless steel exposed to a simulated salt lake atmospheric environment under UV illumination [J]. Int. J. Electrochem. Sci., 2021, 16: 210457
19 Guo H C, Wei H H, Li G Q, et al. Experimental research on fatigue performance of butt welds of corroded Q690 high strength steel [J]. J. Constr. Steel Res., 2021, 184: 106801
20 Chang M, Jia J W, Huang C S, et al. An effectiveness analysis for the multi-factor accelerated test of a copper-free self-polishing antifouling coating [J]. Coatings, 2023, 13: 1685
21 Zhao Y T, Ding H L, Qiu K N, et al. Research progress on influencing factors and test methods of atmospheric corrosion of metals [J]. J. Shanghai Univ. Electr. Power, 2022, 38: 527
21 赵悦彤, 丁红蕾, 邱凯娜 等. 金属大气腐蚀影响因素及实验方法研究综述 [J]. 上海电力大学学报, 2022, 38: 527
22 Liu S G, Cao G, Zheng P H. Study on the corrosion behavior of austenitic stainless steel piping in ships with TIG automatic welding [J]. Mater. Prot., 2024, 57(1): 196
22 刘水根, 操 戈, 郑鹏华. 船舶奥氏体不锈钢管TIG自动焊腐蚀行为研究 [J]. 材料保护, 2024, 57(1): 196
23 Mu X L, Tian Y E, Wang X H. The relativity of the simulated accelerated test of carbon steel and low alloy steel and atmospheric corrosion test [J]. Environ. Technol., 2001, 19(4): 14
23 牟献良, 田月娥, 汪学华. 碳钢和低合金钢模拟加速试验与大气腐蚀试验的相关性 [J]. 环境技术, 2001, 19(4): 14
24 Ding D D, Feng Y, Huang X C, et al. Correlativity on indoor accelerated corrosion and atmospheric exposure of 430 stainless steel [J]. Surf. Technol., 2016, 45(7): 56
24 丁冬冬, 凤 仪, 黄晓晨 等. 430不锈钢室内加速腐蚀与大气暴露的相关性研究 [J]. 表面技术, 2016, 45(7): 56
25 Dong C F, Luo H, Xiao K, et al. Evaluation of corrosion behaviour of 316L stainless steel exposed in marine atmosphere of Xisha islands [J]. J. Sichuan Univ. (Eng. Sci. Ed.), 2012, 44(3): 179
25 董超芳, 骆 鸿, 肖 葵 等. 316L不锈钢在西沙海洋大气环境下的腐蚀行为评估 [J]. 四川大学学报(工程科学版), 2012, 44(3): 179
26 Du J, Yu M Y, Liu P L, et al. Corrosion behavior of 2205 duplex stainless steel in acidizing stimulation solution for oil and gas wells at 200 oC [J]. Anti-Corros. Methods Mater., 2022, 69: 149
27 Yao Q, Chen J H, Song Y H, et al. Corrosion failure of stainless steel bellows in marine atmosphere [J]. Equip. Environ. Eng., 2020, 17(12): 86
27 姚 琼, 陈俊航, 宋玉红 等. 不锈钢波纹管在海洋大气环境下的腐蚀失效分析 [J]. 装备环境工程, 2020, 17(12): 86
28 Li X G, Dong C F, Xiao K, et al. Initial Behavior and Mechanism of Atmospheric Corrosion of Metals [M]. Beijing: Science Press, 2009
28 李晓刚, 董超芳, 肖 葵 等. 金属大气腐蚀初期行为与机理 [M]. 北京: 科学出版社, 2009
29 Arunnellaiappan T, Krishna L R, Anoop S, et al. Fabrication of multifunctional black PEO coatings on AA7075 for spacecraft applications [J]. Surf. Coat. Technol., 2016, 307: 735
30 Hu Y T, Dong P F, Jiang L, et al. Corrosion behavior of riveted joints of TC4 Ti-alloy and 316L stainless steel in simulated marine atmosphere [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 167
30 胡玉婷, 董鹏飞, 蒋 立 等. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2020, 40: 167
doi: 10.11902/1005.4537.2018.183
31 Jiang Q T, Yang L H, Lu D Z, et al. The galvanic corrosion of high-strength AZ80 Mg alloys in typical marine environment [J]. Oceanol. Limnol. Sin., 2020, 51: 899
31 蒋全通, 杨黎晖, 路东柱 等. 典型海洋大气环境中AZ80镁合金电偶腐蚀行为研究 [J]. 海洋与湖沼, 2020, 51: 899
32 Li H R. Study on corrosion rate prediction method of oil and gas pipeline [D]. Jingzhou: Yangtze University, 2021
32 李昊燃. 油气管道腐蚀速率预测方法研究 [D]. 荆州: 长江大学, 2021
33 Evans U R, King C V. The corrosion and oxidation of metals [J]. J. Electrochem. Soc., 1961, 108: 94C
34 Tang R M, Zhu Y C, Liu G M, et al. Gray correlative degree analysis of Q235 steel/conductive concrete corrosion in three typical soil environments [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 110
34 唐荣茂, 朱亦晨, 刘光明 等. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析 [J]. 中国腐蚀与防护学报, 2021, 41: 110
doi: 10.11902/1005.4537.2020.039
[1] 汤熠鑫, 张飞, 崔中雨, 崔洪芝, 李燚周. 氢对2205双相不锈钢在3.5%NaCl溶液中缝隙腐蚀行为影响[J]. 中国腐蚀与防护学报, 2025, 45(2): 431-437.
[2] 张慧云, 郑留伟, 梁伟. 退火工艺对304奥氏体不锈钢的组织演变及氢脆行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(2): 438-448.
[3] 陈辉, 徐福斌, 方亚雄, 朱忠亮. Super304H不锈钢在605 ℃640 ℃超临界水中的氧化行为[J]. 中国腐蚀与防护学报, 2025, 45(1): 209-216.
[4] 孙琼琼, 贾玺泉, 徐震霖, 何宜柱, 范光伟, 张威, 李欢. 304430不锈钢铸坯氧化皮结构及结合力研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1649-1655.
[5] 许志昱, 胡骞, 黄峰, 刘静, 卢献忠. 缝隙几何尺寸对闭塞区化学环境及腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(6): 1581-1588.
[6] 马晋遥, 董楠, 郭振森, 韩培德. B、Ce微合金化对S31254超级奥氏体不锈钢析出相及耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(6): 1610-1616.
[7] 喻政, 陈明辉, 王金龙, 杨莎莎, 王福会. 煤灰中碱金属硫酸盐和氯盐含量对HR3C和渗铝HR3C不锈钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(6): 1389-1398.
[8] 吴铭, 任延杰, 马灼春, 张思甜, 陈荐, 牛焱. F55双相不锈钢在800~1000℃纯氧气中的高温氧化行为[J]. 中国腐蚀与防护学报, 2024, 44(5): 1332-1338.
[9] 洪孝木, 王永强, 李娜, 田凯, 杜娟. 时效处理对马氏体时效硬化不锈钢显微组织和局部腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(5): 1285-1294.
[10] 乔泽, 李清泉, 刘晓航, 李燚周. 中性氯化钠溶液中硝酸根和电偶对7075-T651铝合金缝隙腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1047-1054.
[11] 于佳汇, 王彤彤, 高云, 高荣杰. Bi2S3/TiO2 纳米复合材料的制备及其对304不锈钢的光生阴极保护性能研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 901-908.
[12] 李禅, 王庆田, 杨承刚, 张宪伟, 韩冬傲, 刘雨薇, 刘智勇. 904L超级奥氏体不锈钢在模拟核电一回路环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 716-724.
[13] 邢少华, 彭文山, 钱峣, 李相波, 马力, 张大磊. 海水流速对经抛光和钝化表面处理的2205不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 658-668.
[14] 耿真真, 张钰柱, 杜小将, 吴汉辉. S2-Cl-316L奥氏体不锈钢的腐蚀钝化行为的协同作用[J]. 中国腐蚀与防护学报, 2024, 44(3): 797-806.
[15] 冯兴国, 顾卓然, 范琦琦, 卢向雨, 杨雅师. 改性珊瑚混凝土中2205不锈钢钢筋的耐蚀性研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 789-796.