|
|
重水堆压力管延迟氢化物开裂应力强度因子门槛值测试方法研究 |
鲍一晨1, 石秀强1, 孟凡江1, 潘春婷2, 明洪亮2( ) |
1.上海核工程研究设计院股份有限公司 上海 200233 2.中国科学院金属研究所 沈阳 110016 |
|
Assessment Method of Threshold Stress Intensity Factor of Delayed Hydride Cracking for Pressure Tube in Heavy Water Reactor |
BAO Yichen1, SHI Xiuqiang1, MENG Fanjiang1, PAN Chunting2, MING Hongliang2( ) |
1.Shanghai Nuclear Engineering Research and Design Institute Co., Ltd., Shanghai 200233, China 2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
鲍一晨, 石秀强, 孟凡江, 潘春婷, 明洪亮. 重水堆压力管延迟氢化物开裂应力强度因子门槛值测试方法研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 381-387.
Yichen BAO,
Xiuqiang SHI,
Fanjiang MENG,
Chunting PAN,
Hongliang MING.
Assessment Method of Threshold Stress Intensity Factor of Delayed Hydride Cracking for Pressure Tube in Heavy Water Reactor[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(2): 381-387.
1 |
Sagat S, Coleman C E, Griffiths M, et al. The effect of fluence and irradiation temperature on delayed hydride cracking in Zr-2.5Nb [A]. GardeA M, BradleyE R. Zirconium in the Nuclear Industry: Tenth International Symposium [M]. West Conshocken: ASTM, 1994: 35
|
2 |
Bao Y C, Shi X Q, Zhao C L. Hydrogen corrosion-uptake analysis and modeling for heavy water reactor Zr-2.5Nb pressure tube [J]. Corros. Prot., 2020, 41(11): 22
|
2 |
鲍一晨, 石秀强, 赵传礼. 重水堆Zr-2.5Nb压力管腐蚀吸氢分析与建模 [J]. 腐蚀与防护, 2020, 41(11): 22
|
3 |
Shi S Q, Puls M P. Criteria for fracture initiation at hydrides in zirconium alloys I. Sharp crack tip [J]. J. Nucl. Mater., 1994, 208: 232
|
4 |
Simpson L A, Puls M P. The effects of stress, temperature and hydrogen content on hydride-induced crack growth in Zr-2.5 Pct Nb [J]. Metall. Trans., 1979, 10A: 1093
|
5 |
IAEA. Delayed hydride cracking in zirconium alloys in pressure tube nuclear reactors [R]. Vienna: IAEA, 2004
|
6 |
Shek G K, Metzger D R. Effect of hydrogen concentration on the threshold stress intensity factor for delayed hydride cracking in Zr-2.5Nb pressure tubes [A]. Proceedings of ASME 2011 Pressure Vessels and Piping Conference [C]. Baltimore, 2011: 1287
|
7 |
Kim Y S, Ahn S B, Kim K S, et al. Temperature dependence of threshold stress intensity factor, KIH in Zr-2.5Nb alloy and its effect on temperature limit for delayed hydride cracking [J]. Key Eng. Mater., 2006, 326-328: 919
|
8 |
Kim Y S, Park S S, Kwun S I. Threshold stress intensity factor, KIH for delayed hydride cracking of a Zr-2.5Nb tube with loading mode [J]. J. Alloy. Compd., 2008, 462: 367
|
9 |
Sun C, Tan J, Ying S H, et al. Threshold stress intensity factor for delayed hydride cracking of a recrystallized N18 alloy plate along the rolling direction [J]. J. Nucl. Mater., 2010, 406: 212
|
10 |
Shek G K, Jovanoviċ M T, Seahra H, et al. Hydride morphology and striation formation during delayed hydride cracking in Zr-2.5%Nb [J]. J. Nucl. Mater., 1996, 231: 221
|
11 |
Yan D, Eadie R. The critical length of the hydride cluster in delayed hydride cracking of Zr-2.5wt%Nb [J]. J. Mater. Sci., 2000, 35: 5667
|
12 |
Kim Y S, Cheong Y M. Anisotropic delayed hydride cracking velocity of CANDU Zr-2.5Nb pressure tubes [J]. J. Nucl. Mater., 2008, 373: 179
|
13 |
Pan C T, Zhao G N, Bao Y C, et al. Effect of temperature on the delayed hydride cracking rate of Zr-2.5Nb alloy pressure tubes [J]. J. Nucl. Mater., 2023, 588: 154778
|
14 |
Puls M P. Effects of crack tip stress states and hydride-matrix interaction stresses on delayed hydride cracking [J]. Metall. Trans., 1990, 21A: 2905
|
15 |
Shmakov A A, Singh R N, Yan D, et al. A combined SIF and temperature model of delayed hydride cracking in zirconium materials [J]. Comput. Mater. Sci., 2007, 39: 237
|
16 |
Kim Y S, Matvienko Y G, Cheong Y M, et al. A model of the threshold stress intensity factor, KIH, for delayed hydride cracking of Zr-2.5Nb alloy [J]. J. Nucl. Mater., 2000, 278: 251
|
17 |
Kim Y S, Kwon S C, Kim S S. Crack growth pattern and threshold stress intensity factor, KIH, of Zr-2.5Nb alloy with the notch direction [J]. J. Nucl. Mater., 2000, 280: 304
|
18 |
Kim S S. The texture dependence of KIH in Zr-2.5%Nb pressure tube materials [J]. J. Nucl. Mater., 2006, 349: 83
|
19 |
CSA. CSA N285.8:21 Technical requirements for in-service evaluation of zirconium alloy pressure tubes in CANDU reactor [S]. Canadian Standards Association, 2021
|
20 |
Shi S Q, Puls M P. Dependence of the threshold stress intensity factor on hydrogen concentration during delayed hydride cracking in zirconium alloys [J]. J. Nucl. Mater., 1995, 218: 30
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|