Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (2): 381-387     CSTR: 32134.14.1005.4537.2024.221      DOI: 10.11902/1005.4537.2024.221
  临氢关键材料服役行为研究专刊 本期目录 | 过刊浏览 |
重水堆压力管延迟氢化物开裂应力强度因子门槛值测试方法研究
鲍一晨1, 石秀强1, 孟凡江1, 潘春婷2, 明洪亮2()
1.上海核工程研究设计院股份有限公司 上海 200233
2.中国科学院金属研究所 沈阳 110016
Assessment Method of Threshold Stress Intensity Factor of Delayed Hydride Cracking for Pressure Tube in Heavy Water Reactor
BAO Yichen1, SHI Xiuqiang1, MENG Fanjiang1, PAN Chunting2, MING Hongliang2()
1.Shanghai Nuclear Engineering Research and Design Institute Co., Ltd., Shanghai 200233, China
2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

鲍一晨, 石秀强, 孟凡江, 潘春婷, 明洪亮. 重水堆压力管延迟氢化物开裂应力强度因子门槛值测试方法研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 381-387.
Yichen BAO, Xiuqiang SHI, Fanjiang MENG, Chunting PAN, Hongliang MING. Assessment Method of Threshold Stress Intensity Factor of Delayed Hydride Cracking for Pressure Tube in Heavy Water Reactor[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(2): 381-387.

全文: PDF(7062 KB)   HTML
摘要: 

在重水堆高温、高压、高辐照运行工况下,压力管材料性能会逐渐发生老化劣化,尤其当锆合金吸收冷却剂中的氘/氢后,其易发生延迟氢化物开裂(DHC)从而威胁压力管的边界完整性。根据加拿大标准CSA N285.8的要求,需要对DHC的应力强度因子门槛值KIH进行评估。针对这一评估需求,对压力管KIH的测试方法进行了研究。使用紧凑拉伸试样进行KIH的测定,测定前使用电化学方法对试样预充氢约180 mg/kg,并分别在250、180、150和120 ℃下测定了其KIH值。测试结果表明,在150~250 ℃之间使用降K法能够较准确地测定压力管锆合金材料的KIH值,且其对测试温度无明显的依赖性。

关键词 压力管延迟氢化物开裂应力强度因子门槛值重水堆测试方法    
Abstract

The material properties of pressure tube will gradually deteriorate under high temperature, high pressure and high irradiation operating conditions of heavy water reactor (HWR), especially when the Zr-alloy absorbs deuterium/hydrogen from the coolant, it will become susceptive to the delayed hydride cracking (DHC), thus threatening the boundary integrity of the pressure tube. According to the Canadian Standard CSA N285.8, the threshold stress intensity factor (KIH) for DHC needs to be evaluated. In response to this demand, the KIH measurement method of pressure tube materials was studied. The KIH was determined using compact tensile specimens, which were pre-charged with hydrogen by electrochemical method for about 180 mg/kg before tensile tests, and their KIH values were measured at 250, 180, 150 and 120 oC respectively. The test results showed that the KIH value of pressure tube Zr-2.5NbZr-alloy can be determined more accurately by using the K-reduction method at temperatures between 150 and 250 oC, and the measured values have no obvious dependence on the test temperatures.

Key wordspressure tube    delayed hydride cracking    threshold stress intensity factor    heavy water reactor    testing method
收稿日期: 2024-07-24      32134.14.1005.4537.2024.221
ZTFLH:  TG172.1  
基金资助:国家重点研发计划(2019YFB1900902)
通讯作者: 明洪亮,E-mail:hlming12s@imr.ac.cn,研究方向为核电厂材料腐蚀与水化学
Corresponding author: MING Hongliang, E-mail: hlming12s@imr.ac.cn
作者简介: 鲍一晨,男,1986年生,硕士,高级工程师
图1  Zr-2.5Nb合金CCT试样取样位置示意图和试样尺寸图[13]
图2  轴向-径向和切向-径向的截面微观组织形貌
图3  充氢时间与试样中氢浓度关系
图4  充氢试样中的氢化物分布
Testing temperature / oCΔV / mVL / mm
2500.0452.30
0.0602.03
1800.0161.31
0.0201.24
0.0341.93
1500.0181.40
0.0322.00
1200.0121.28
0.0151.13
表1  不同温度下有效电位增量与实际裂纹长度统计
图5  KIH测试温度曲线
图6  断裂区域面积计算示意图
图7  不同温度下的加载曲线
图8  不同温度下所测KIH值
图9  不同温度下的试样断口形貌
图10  250 ℃下高倍断口形貌
图11  升K和降K模式下所得KIH值对比[8]
图12  不同温度下断口条纹间距变化[13]
图13  KIH测值与超出TSSD氢浓度的关系[8]
1 Sagat S, Coleman C E, Griffiths M, et al. The effect of fluence and irradiation temperature on delayed hydride cracking in Zr-2.5Nb [A]. GardeA M, BradleyE R. Zirconium in the Nuclear Industry: Tenth International Symposium [M]. West Conshocken: ASTM, 1994: 35
2 Bao Y C, Shi X Q, Zhao C L. Hydrogen corrosion-uptake analysis and modeling for heavy water reactor Zr-2.5Nb pressure tube [J]. Corros. Prot., 2020, 41(11): 22
2 鲍一晨, 石秀强, 赵传礼. 重水堆Zr-2.5Nb压力管腐蚀吸氢分析与建模 [J]. 腐蚀与防护, 2020, 41(11): 22
3 Shi S Q, Puls M P. Criteria for fracture initiation at hydrides in zirconium alloys I. Sharp crack tip [J]. J. Nucl. Mater., 1994, 208: 232
4 Simpson L A, Puls M P. The effects of stress, temperature and hydrogen content on hydride-induced crack growth in Zr-2.5 Pct Nb [J]. Metall. Trans., 1979, 10A: 1093
5 IAEA. Delayed hydride cracking in zirconium alloys in pressure tube nuclear reactors [R]. Vienna: IAEA, 2004
6 Shek G K, Metzger D R. Effect of hydrogen concentration on the threshold stress intensity factor for delayed hydride cracking in Zr-2.5Nb pressure tubes [A]. Proceedings of ASME 2011 Pressure Vessels and Piping Conference [C]. Baltimore, 2011: 1287
7 Kim Y S, Ahn S B, Kim K S, et al. Temperature dependence of threshold stress intensity factor, KIH in Zr-2.5Nb alloy and its effect on temperature limit for delayed hydride cracking [J]. Key Eng. Mater., 2006, 326-328: 919
8 Kim Y S, Park S S, Kwun S I. Threshold stress intensity factor, KIH for delayed hydride cracking of a Zr-2.5Nb tube with loading mode [J]. J. Alloy. Compd., 2008, 462: 367
9 Sun C, Tan J, Ying S H, et al. Threshold stress intensity factor for delayed hydride cracking of a recrystallized N18 alloy plate along the rolling direction [J]. J. Nucl. Mater., 2010, 406: 212
10 Shek G K, Jovanoviċ M T, Seahra H, et al. Hydride morphology and striation formation during delayed hydride cracking in Zr-2.5%Nb [J]. J. Nucl. Mater., 1996, 231: 221
11 Yan D, Eadie R. The critical length of the hydride cluster in delayed hydride cracking of Zr-2.5wt%Nb [J]. J. Mater. Sci., 2000, 35: 5667
12 Kim Y S, Cheong Y M. Anisotropic delayed hydride cracking velocity of CANDU Zr-2.5Nb pressure tubes [J]. J. Nucl. Mater., 2008, 373: 179
13 Pan C T, Zhao G N, Bao Y C, et al. Effect of temperature on the delayed hydride cracking rate of Zr-2.5Nb alloy pressure tubes [J]. J. Nucl. Mater., 2023, 588: 154778
14 Puls M P. Effects of crack tip stress states and hydride-matrix interaction stresses on delayed hydride cracking [J]. Metall. Trans., 1990, 21A: 2905
15 Shmakov A A, Singh R N, Yan D, et al. A combined SIF and temperature model of delayed hydride cracking in zirconium materials [J]. Comput. Mater. Sci., 2007, 39: 237
16 Kim Y S, Matvienko Y G, Cheong Y M, et al. A model of the threshold stress intensity factor, KIH, for delayed hydride cracking of Zr-2.5Nb alloy [J]. J. Nucl. Mater., 2000, 278: 251
17 Kim Y S, Kwon S C, Kim S S. Crack growth pattern and threshold stress intensity factor, KIH, of Zr-2.5Nb alloy with the notch direction [J]. J. Nucl. Mater., 2000, 280: 304
18 Kim S S. The texture dependence of KIH in Zr-2.5%Nb pressure tube materials [J]. J. Nucl. Mater., 2006, 349: 83
19 CSA. CSA N285.8:21 Technical requirements for in-service evaluation of zirconium alloy pressure tubes in CANDU reactor [S]. Canadian Standards Association, 2021
20 Shi S Q, Puls M P. Dependence of the threshold stress intensity factor on hydrogen concentration during delayed hydride cracking in zirconium alloys [J]. J. Nucl. Mater., 1995, 218: 30
[1] 潘春婷, 明洪亮, 石秀强, 鲍一晨, 王俭秋, 韩恩厚. 重水堆压力管延迟氢化物开裂行为研究进展[J]. 中国腐蚀与防护学报, 2025, 45(2): 307-318.
[2] 黄居峰, 宋光铃. 镁合金腐蚀测试与分析研究进展[J]. 中国腐蚀与防护学报, 2024, 44(3): 519-528.
[3] 纪开强, 李光福, 赵亮. 两种不锈钢在模拟重水堆一回路溶液和3.5%NaCl溶液中的点蚀行为[J]. 中国腐蚀与防护学报, 2021, 41(5): 653-658.
[4] 李强, 唐晓, 李焰. 冲刷腐蚀研究方法进展[J]. 中国腐蚀与防护学报, 2014, 34(5): 399-409.
[5] 翁永基 李维锋 李相怡. 电化学噪声方法比较石油用钢的临界点蚀温度[J]. 中国腐蚀与防护学报, 2009, 29(6): 421-425.
[6] 曹辉; 宋光雄; 张峥 . 基于INTERNET的压力管道容器腐蚀失效案例库[J]. 中国腐蚀与防护学报, 2002, 22(5): 274-277 .