|
|
重水堆压力管延迟氢化物开裂行为研究进展 |
潘春婷1,2, 明洪亮1,2( ), 石秀强3, 鲍一晨3, 王俭秋1,2,4, 韩恩厚2,4 |
1.中国科学技术大学材料科学与工程学院 沈阳 110016 2.中国科学院金属研究所 沈阳 110016 3.上海核工程研究设计院股份有限公司 上海 200233 4.广东腐蚀科学与技术创新研究院 广州 510530 |
|
Research Progress on Delayed Hydrides Cracking Behavior of Heavy Water-Reactor Pressure Tube |
PAN Chunting1,2, MING Hongliang1,2( ), SHI Xiuqiang3, BAO Yichen3, WANG Jianqiu1,2,4, HAN En-Hou2,4 |
1.School of Materials of Science and Engineering, University of Science and Technology of China, Shenyang 110016, China 2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 3.Shanghai Nuclear engineering Research and Design Institute Co., Ltd., Shanghai 200233, China 4.Institute of Corrosion Science and Technology, Guangzhou 510530, China |
引用本文:
潘春婷, 明洪亮, 石秀强, 鲍一晨, 王俭秋, 韩恩厚. 重水堆压力管延迟氢化物开裂行为研究进展[J]. 中国腐蚀与防护学报, 2025, 45(2): 307-318.
Chunting PAN,
Hongliang MING,
Xiuqiang SHI,
Yichen BAO,
Jianqiu WANG,
En-Hou HAN.
Research Progress on Delayed Hydrides Cracking Behavior of Heavy Water-Reactor Pressure Tube[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(2): 307-318.
1 |
Liao J P, Mao Y L, Jin D S, et al. Laboratory simulation of crud deposition on Zr-alloy fuel cladding in simulated pressurized water reactor primary coolant [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 197
|
1 |
廖家鹏, 毛玉龙, 金德升 等. 锆合金包壳在模拟压水堆一回路冷却剂中的表面污垢沉积行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 197
doi: 10.11902/1005.4537.2022.022
|
2 |
Ru X, Staehle R W. Historical experience providing bases for predicting corrosion and stress corrosion in emerging supercritical water nuclear technology: part 1—review [J]. Corrosion, 2013, 69: 211
|
3 |
Grade A M. Effects of irradiation and hydriding on the mechanical properties of zircaloy-4 at high fluence [A]. Zirconium in the Nuclear Industry: Eighth International Symposium [M]. Philadelphia: ASTM, 1989
|
4 |
Daunys M, Dundulis R, Grybenas A, et al. Hydrogen influence on mechanical and fracture mechanics characteristics of zirconium Zr-2.5Nb alloy at ambient and elevated temperatures [J]. Nucl. Eng. Des., 2008, 238: 2536
|
5 |
Moan G D, Coleman C E, Price E G, et al. Leak-before-break in the pressure tubes of CANDU reactors [J]. Int. J. Pressure Vessels Piping, 1990, 43: 1
|
6 |
Wang M J, Qiu S Z, Su G H, et al. Research on the leak-rate characteristics of leak-before-break (LBB) in pressurized water reactor (PWR) [J]. Appl. Therm. Eng., 2014, 62: 133
|
7 |
Puls M P. Delayed hydride cracking: theory and experiment [A]. The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components. Engineering Materials [M]. London: Springer, 2012: 333
|
8 |
Shi S Q, Puls M P. Criteria for fracture initiation at hydrides in zirconium alloys I. Sharp crack tip [J]. J. Nucl. Mater., 1994, 208: 232
|
9 |
Liu Y Z, Zhao W J, Peng Q, et al. Study on electrolytic hydrogen infiltration and determination of hydrogen content of Zr-Sn-Nb alloy [A]. China Materials Seminar [C]. Beijing, 2002: 4
|
9 |
刘彦章, 赵文金, 彭 倩 等. Zr-Sn-Nb合金电解渗氢及氢含量确定研究 [A]. 中国材料研讨会 [C]. 北京, 2002: 4
|
10 |
Yao C, Chen J, Ming H L, et al. Research progress on hydrogen permeability behavior of pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 209
|
10 |
姚 婵, 陈 健, 明洪亮 等. 管线钢氢渗透行为的研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 209
|
11 |
Zhou X, Wu D K, Cheng X, et al. Research progress of detection techniques for permeated hydrogen [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1203
|
11 |
周 欣, 吴大康, 成 旭 等. 渗透氢检测方法研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 1203
|
12 |
Mieza J I, Vigna G L, Domizzi G. Evaluation of variables affecting crack propagation by delayed hydride cracking in Zr-2.5Nb with different heat treatments [J]. J. Nucl. Mater., 2011, 411: 150
|
13 |
Pan C T, Zhao G N, Bao Y C, et al. Effect of temperature on the delayed hydride cracking rate of Zr-2.5Nb alloy pressure tubes [J]. J. Nucl. Mater., 2024, 588: 154778
|
14 |
Kim Y S, Cheong Y M. Anisotropic delayed hydride cracking velocity of CANDU Zr-2.5Nb pressure tubes [J]. J. Nucl. Mater., 2008, 373: 179
|
15 |
Sun C, Tan J, Ying S H, et al. Threshold stress intensity factor for delayed hydride cracking of a recrystallized N18 alloy plate along the rolling direction [J]. J. Nucl. Mater., 2010, 406: 212
|
16 |
Kim Y S, Park S S, Kwun S I. Threshold stress intensity factor, KIH for delayed hydride cracking of a Zr-2.5Nb tube with loading mode [J]. J. Alloy. Compd., 2008, 462: 367
|
17 |
Shmakov A A, Singh R N, Yan D, et al. A combined SIF and temperature model of delayed hydride cracking in zirconium materials [J]. Comput. Mater. Sci., 2007, 39: 237
|
18 |
Simpson L A, Puls M P. The effects of stress, temperature and hydrogen content on hydride-induced crack growth in Zr-2.5 pct Nb [J]. Metall. Trans., 1979, 10A: 1093
|
19 |
Coleman C E. Simulating the behavior of zirconium-alloy components in nuclear reactors [A]. MoanG D, RudlingP. Zirconium in the Nuclear Industry: Thirteenth International Symposium [M]. West Conshohocken: ASTM, 2002: 3
|
20 |
Lumley S C, Grimes R W, Murphy S T, et al. The thermodynamics of hydride precipitation: the importance of entropy, enthalpy and disorder [J]. Acta Mater., 2014, 79: 351
|
21 |
Ma Y, Lan Y N, Chen J W. A novel cross-sectional metallography method for determining hydrogen absorption concentration and hydrogen absorption amount of Zr-Sn-Nb alloy cladding caused by high temperature water corrosion [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 261
|
21 |
马 雁, 蓝宇宁, 陈嘉威. Zr-Sn-Nb包壳管腐蚀吸氢中氢浓度测算的截面金相法 [J]. 中国腐蚀与防护学报, 2024, 44: 261
|
22 |
Kim J S, Kim S D, Yoon J. Hydride formation on deformation twin in zirconium alloy [J]. J. Nucl. Mater., 2016, 482: 88
|
23 |
Une K, Nogita K, Ishimoto S, et al. Crystallography of zirconium hydrides in recrystallized Zircaloy-2 fuel cladding by electron backscatter diffraction [J]. J. Nucl. Sci. Technol., 2004, 41(7): 731
|
24 |
Nath B, Lorimer G W, Ridley N. Effect of hydrogen concentration and cooling rate on hydride precipitation in α-zirconium [J]. J. Nucl. Mater., 1975, 58(2): 153
|
25 |
Roy C, Jacques J G. {1017} Hydride habit planes in single crystal zirconium [J]. J. Nucl. Mater., 1969, 31: 233
|
26 |
Lin X H, Beyerlein I J, Han W Z. Annealing cracking in Zr and a Zr-alloy with low hydrogen concentration [J]. J. Mater. Sci. Technol., 2024, 182: 165
doi: 10.1016/j.jmst.2023.09.039
|
27 |
Maimaitiyili T, Steuwer A, Blomquist J, et al. In-situ hydrogen charging of zirconium powder to study isothermal percipitation of hydrides and determination of Zr-hydride crystal structure [A]. Proceedings of the 16th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors [C]. Asheville, 2013: 8
|
28 |
Zhao Z, Blat-Yrieix M, Morniroli J P, et al. Characterization of zirconium hydrides and phase field approach to a mesoscopic-scale modeling of their precipitation [J]. J. ASTM Int., 2008, 5: 1
|
29 |
Perovic V, Weatherly G C, Simpson C J. Hydride precipitation in α/β zirconium alloys [A]. AshbyM F, HirthJ P. Perspectives in Hydrogen in Metals [M]. Oxford, New York: Pergamon, 1986: 469
|
30 |
Northwood D O, Gilbert R W. Hydrides in zirconium-2.5wt.% niobium alloy pressure tubing [J]. J. Nucl. Mater., 1978, 78: 112
|
31 |
Lee K W, Hong S I. Zirconium hydrides and their effect on the circumferential mechanical properties of Zr-Sn-Fe-Nb tubes [J]. J. Alloy. Compd., 2002, 346: 302
|
32 |
Xu C R, Zhao W J, Deng Z G, et al. Review of research on stress reorientation of hydrides in zirconium alloy cladding tube [J]. Hot Working Technol., 2016, 45(12): 19
|
32 |
徐春容, 赵文金, 邓治国 等. 锆合金包壳管氢化物应力再取向研究概述 [J]. 热加工工艺, 2016, 45(12): 19
|
33 |
Parodi S A, Ponzoni L M E, De Las Heras M E, et al. Study of variables that affect hydrogen solubility in α + β Zr-alloys [J]. J. Nucl. Mater., 2016, 477: 305
|
34 |
Fang Q. Characterization of hydrides and delayed hydride cracking in zirconium alloys [D]. Ontario: Queen's University, 2016
|
35 |
Motta A T, Capolungo L, Chen L Q, et al. Hydrogen in zirconium alloys: a review [J]. J. Nucl. Mater., 2019, 518: 440
doi: 10.1016/j.jnucmat.2019.02.042
|
36 |
Kim Y S. Driving force for delayed hydride cracking of zirconium alloys [J]. Met. Mater. Int., 2005, 11: 29
|
37 |
Khatamian D. Solubility and partitioning of hydrogen in metastable Zr-based alloys used in the nuclear industry [J]. J. Alloy. Compd., 1999, 293-295: 893
|
38 |
Khatamian D. Effect of β-Zr decomposition on the solubility limits for H in Zr-2.5Nb [J]. J. Alloy. Compd., 2003, 356-357: 22
|
39 |
Pan Z L, Ritchie I G, Puls M P. The terminal solid solubility of hydrogen and deuterium in Zr-2.5Nb alloys [J]. J. Nucl. Mater., 1996, 228: 227
|
40 |
Chu W Y, Qiao L J, Li J X. Hydrogen Embrittlement and Stress Corrosion Cracking: the Base Component [M]. Beijing: Science Press, 2013: 174
|
40 |
褚武扬, 乔利杰, 李金许. 氢脆和应力腐蚀: 基础部分 [M]. 北京: 科学出版社, 2013: 174
|
41 |
Dutton R, Nuttall K, Puls M P, et al. Mechanisms of hydrogen induced delayed cracking in hydride forming materials [J]. Metall. Trans., 1977, 8A: 1553
|
42 |
Puls M P. Effects of crack tip stress states and hydride-matrix interaction stresses on delayed hydride cracking [J]. Metall. Trans., 1990, 21A: 2905
|
43 |
McRae G A, Coleman C E, Leitch B W. The first step for delayed hydride cracking in zirconium alloys [J]. J. Nucl. Mater., 2010, 396: 130
|
44 |
Puls M P. Review of the thermodynamic basis for models of delayed hydride cracking rate in zirconium alloys [J]. J. Nucl. Mater., 2009, 393: 350
|
45 |
Thompson A W, Bernstein I M. Effect of hydrogen on behavior of materials [A]. Proceedings of Conference on effects of hydrogen on behavior of materials [C]. Moran, 1976: 717
|
46 |
Shi S Q, Shek G K, Puls M P. Hydrogen concentration limit and critical temperatures for delayed hydride cracking in zirconium alloys [J]. J. Nucl. Mater., 1995, 218: 189
|
47 |
De Las Heras M E, Parodi S A, Ponzoni L M E, et al. Effect of thermal cycles on delayed hydride cracking in Zr-2.5Nb alloy [J]. J. Nucl. Mater., 2018, 509: 600
|
48 |
MacEwen S R, Coleman C E, Ells C E, et al. Dilation of h.c.p. zirconium by interstitial deuterium [J]. Acta Metall., 1985, 33: 753
|
49 |
Eadie R L, Coleman C E. Effect of stress on hydride precipitation in zirconium-2.5% niobium and on delayed hydride cracking [J]. Scr. Metall., 1989, 23: 1865
|
50 |
Varias A G, Massih A R. Simulation of hydrogen embrittlement in zirconium alloys under stress and temperature gradients [J]. J. Nucl. Mater., 2000, 279: 273
|
51 |
Feng J L, Varias A G, Sui Y K. Finite element analysis for steady-state hydride-induced fracture in metals by composite model [J]. Int. J. Solids Struct., 2006, 43: 2174
|
52 |
Jernkvist L O, Massih A R. Multi-field modelling of hydride forming metals. Part I: model formulation and validation [J]. Comput. Mater. Sci., 2014, 85: 363
|
53 |
Jernkvist L O. Multi-field modelling of hydride forming metals part II: application to fracture [J]. Comput. Mater. Sci., 2014, 85: 383
|
54 |
Shmakov A A, Kalin B A, Ioltukhovskii A G. A theoretical study of the kinetics of hydride cracking in zirconium alloys [J]. Met. Sci. Heat Treat., 2003, 45: 315
|
55 |
Jovanović M T, Eadie R L, Ma Y, et al. The effect of annealing on hardness, microstructure and delayed hydride cracking in Zr-2.5Nb pressure tube material [J]. Mater. Charact., 2001, 47: 259
|
56 |
Shah P K, Dubey J S, Kumar A, et al. Delayed hydride crack growth study on irradiated Zr-2.5Nb pressure tube [J]. J. Nucl. Mater., 2015, 460: 1
|
57 |
Yan D, Eadie R L. An approach to explain the stage I/II behaviour of the delayed hydride cracking velocity vs. KI curve for Zr-2.5Nb [J]. Scr. Mater., 2000, 43: 89
|
58 |
Yan D, Eadie R L. The critical length of the hydride cluster in delayed hydride cracking of Zr-2.5wt%Nb [J]. J. Mater. Sci., 2000, 35: 5667
|
59 |
Rice J R, Rosengren G F. Plane strain deformation near a crack tip in a power-law hardening material [J]. J. Mech. Phys. Solids, 1968, 16: 1
|
60 |
Hutchinson J W. Singular behaviour at the end of a tensile crack in a hardening material [J]. J. Mech. Phys. Solids, 1968, 16: 13
|
61 |
Sagat S, Puls M P. Temperature limit for delayed hydride cracking in Zr-2.5Nb alloys [A]. Proceedings of the 17th International Conference on Structural Mechanics in Reactor Technology [C]. Prague, 2003: 17
|
62 |
Markelov V A, Kotov P V, Zheltkovskaya T N. Temperature dependence of the velocity of delayed hydride cracking in Zr-2.5%Nb alloy [J]. Inorg. Mater. Appl. Res., 2010, 1: 217
|
63 |
Kim Y S. Temperature dependency of delayed hydride cracking velocity in Zr-2.5Nb tubes [J]. Mater. Sci. Eng., 2007, 468-470: 281
|
64 |
Sunil S, Bind A K, Khandelwal H K, et al. Delayed hydride cracking behavior of Zr-2.5Nb alloy pressure tubes for phwr700 [J]. J. Nucl. Mater., 2015, 466: 208
|
65 |
Shi S Q, Puls M P. Fracture strength of hydride precipitates in Zr-2.5Nb alloys [J]. J. Nucl. Mater., 1999, 275: 312
|
66 |
Holston A M A, Stjärnsäter J. On the effect of temperature on the threshold stress intensity factor of delayed hydride cracking in light water reactor fuel cladding [J]. Nucl. Eng. Technol., 2017, 49: 663
|
67 |
Kim Y S, Ahn S B, Kim K S, et al. Temperature dependence of threshold stress intensity factor, KIH in Zr-2.5Nb alloy and its effect on temperature limit for delayed hydride cracking [J]. Key Eng. Mater., 2006, 326-328: 919
|
68 |
Sagat S, Coleman C E, Griffiths M, et al. The effect of fluence and irradiation temperature on delayed hydride cracking in Zr-2.5Nb [A]. Zirconium in the Nuclear Industry: Tenth International Symposium [M]. Philadelphia: ASTM, 1994: 35
|
69 |
Sun C, Tan J, Ying S H, et al. Study of the critical temperatures for delayed hydride cracking in N18 zirconium alloy [J]. Acta Metall. Sin., 2009, 45: 541
|
69 |
孙 超, 谭 军, 应诗浩 等. N18锆合金氢致裂纹延迟开裂临界温度研究 [J]. 金属学报, 2009, 45: 541
|
70 |
Sun C, Tan J, Ying S H, et al. Prediction of critical temperature for delayed hydride cracking in irradiated N18 zirconium alloy [J]. Acta Metall. Sin., 2010, 46: 805
doi: 10.3724/SP.J.1037.2009.00868
|
70 |
孙 超, 谭 军, 应诗浩 等. 辐照后N18锆合金氢致延迟开裂临界温度预测 [J]. 金属学报, 2010, 46: 805
|
71 |
Cheadle B A, Coleman C E, Ambler J F R. Prevention of delayed hydride cracking in zirconium alloys [A]. Zirconium in the Nuclear Industry [M]. Strasbourg: ASTM, 1987: 846
|
72 |
Choo K N, Kim Y S. Hydrogen uptake and corrosion behavior of Zr-2.5Nb pressure tubes in wolsong unit 1 [J]. J. Nucl. Mater., 2001, 297: 52
|
73 |
Bao Y C, Shi X Q, Zhao C L. Hydrogen corrosion-uptake analysis and modeling for heavy water reactor Zr-2.5Nb pressure tubes [J]. Corros. Prot., 2020, 41(11): 22
|
73 |
鲍一晨, 石秀强, 赵传礼. 重水堆Zr-2.5Nb压力管腐蚀吸氢分析与建模 [J]. 腐蚀与防护, 2020, 41(11): 22
|
74 |
Coleman C E, Ambler J F R. Solubility of hydrogen isotopes in stressed hydride-forming metals [J]. Scripta Metallurgica, 1983, 17: 77
|
75 |
Kim Y S, Kim S J, Im K S. Delayed hydride cracking in Zr-2.5Nb tube with the cooling rate and the notch tip shape [J]. J. Nucl. Mater., 2004, 335: 387
|
76 |
Kim Y S, Grybenas A. Effect of load ratio and hydrogen concentration on the crack growth rate in Zr-2.5Nb tubes [J]. Mater. Sci. Eng., 2009, 520: 147
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|