Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (2): 307-318     CSTR: 32134.14.1005.4537.2024.157      DOI: 10.11902/1005.4537.2024.157
  临氢关键材料服役行为研究专刊 本期目录 | 过刊浏览 |
重水堆压力管延迟氢化物开裂行为研究进展
潘春婷1,2, 明洪亮1,2(), 石秀强3, 鲍一晨3, 王俭秋1,2,4, 韩恩厚2,4
1.中国科学技术大学材料科学与工程学院 沈阳 110016
2.中国科学院金属研究所 沈阳 110016
3.上海核工程研究设计院股份有限公司 上海 200233
4.广东腐蚀科学与技术创新研究院 广州 510530
Research Progress on Delayed Hydrides Cracking Behavior of Heavy Water-Reactor Pressure Tube
PAN Chunting1,2, MING Hongliang1,2(), SHI Xiuqiang3, BAO Yichen3, WANG Jianqiu1,2,4, HAN En-Hou2,4
1.School of Materials of Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.Shanghai Nuclear engineering Research and Design Institute Co., Ltd., Shanghai 200233, China
4.Institute of Corrosion Science and Technology, Guangzhou 510530, China
引用本文:

潘春婷, 明洪亮, 石秀强, 鲍一晨, 王俭秋, 韩恩厚. 重水堆压力管延迟氢化物开裂行为研究进展[J]. 中国腐蚀与防护学报, 2025, 45(2): 307-318.
Chunting PAN, Hongliang MING, Xiuqiang SHI, Yichen BAO, Jianqiu WANG, En-Hou HAN. Research Progress on Delayed Hydrides Cracking Behavior of Heavy Water-Reactor Pressure Tube[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(2): 307-318.

全文: PDF(2070 KB)   HTML
摘要: 

压力管是重水堆中重要的结构部件,其服役性能是确保重水堆安全稳定运行的关键。延迟氢化物开裂(DHC)是压力管服役过程中最重要的潜在风险之一,因此研究压力管的DHC行为具有重要的意义。本文就DHC行为测试的实验方法、机理和模型以及DHC行为的影响因素等方面的研究进展进行综述,并指出目前研究存在的不足和未来的发展趋势。

关键词 重水堆压力管Zr-2.5Nb合金延迟氢化物开裂    
Abstract

Zr-2.5Nb alloy pressure tubes are important structural components in heavy-water reactor. During operation of a heavy-water reactor, a large amount of hydrogen isotopes is produced by the corrosion reaction between the pressure tubes and the heavy-water coolant. Some of the hydrogen isotopes can be absorbed into the pressure tube. When the concentration of hydrogen atoms exceeds the solid solubility of hydrogen in Zr-2.5Nb alloy, hydrides are precipitated. The precipitation of hydrides will lead to deterioration of mechanical properties of Zr-2.5Nb alloy, and then leads to the expansion of microcracks inside the pressure tubes. The phenomenon is called Delayed hydrides cracking (DHC) which is one of the most important potential risks during the service of pressure tubes. Therefore, it is of great significance to study the DHC behavior of pressure tube. In this paper, the research progress on the testing methods for DHC behavior, the relevant mechanisms and models as well as the influencing factors of DHC behavior are reviewed, and the shortcomings of current researches and the future development trends are pointed out.

Key wordsheavy-water reactor    pressure tubes    Zr-2.5Nb alloy    delayed hydrides cracking
收稿日期: 2024-05-18      32134.14.1005.4537.2024.157
ZTFLH:  TG174  
基金资助:中国科学院青年创新促进会(2022187)
通讯作者: 明洪亮,E-mail:hlming12s@imr.ac.cn,研究方向为材料力学化学交互作用
Corresponding author: MING Hongliang, E-mail: hlming12s@imr.ac.cn
作者简介: 潘春婷,女,1997年生,博士生
图1  试样取样及尺寸示意图
图2  试样加载示意图
图3  DHCR随KI变化规律[19]
图4  锆合金TSSP及TSSD汇总图[35]
图5  DHC裂纹扩展过程示意图[40]
图6  基于TSS曲线的热循环过程中氢含量变化示意图[36]
图7  裂纹尖端静水应力分布和稳态扩散条件下裂纹尖端氢浓度分布示意图[46]
1 Liao J P, Mao Y L, Jin D S, et al. Laboratory simulation of crud deposition on Zr-alloy fuel cladding in simulated pressurized water reactor primary coolant [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 197
1 廖家鹏, 毛玉龙, 金德升 等. 锆合金包壳在模拟压水堆一回路冷却剂中的表面污垢沉积行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 197
doi: 10.11902/1005.4537.2022.022
2 Ru X, Staehle R W. Historical experience providing bases for predicting corrosion and stress corrosion in emerging supercritical water nuclear technology: part 1—review [J]. Corrosion, 2013, 69: 211
3 Grade A M. Effects of irradiation and hydriding on the mechanical properties of zircaloy-4 at high fluence [A]. Zirconium in the Nuclear Industry: Eighth International Symposium [M]. Philadelphia: ASTM, 1989
4 Daunys M, Dundulis R, Grybenas A, et al. Hydrogen influence on mechanical and fracture mechanics characteristics of zirconium Zr-2.5Nb alloy at ambient and elevated temperatures [J]. Nucl. Eng. Des., 2008, 238: 2536
5 Moan G D, Coleman C E, Price E G, et al. Leak-before-break in the pressure tubes of CANDU reactors [J]. Int. J. Pressure Vessels Piping, 1990, 43: 1
6 Wang M J, Qiu S Z, Su G H, et al. Research on the leak-rate characteristics of leak-before-break (LBB) in pressurized water reactor (PWR) [J]. Appl. Therm. Eng., 2014, 62: 133
7 Puls M P. Delayed hydride cracking: theory and experiment [A]. The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components. Engineering Materials [M]. London: Springer, 2012: 333
8 Shi S Q, Puls M P. Criteria for fracture initiation at hydrides in zirconium alloys I. Sharp crack tip [J]. J. Nucl. Mater., 1994, 208: 232
9 Liu Y Z, Zhao W J, Peng Q, et al. Study on electrolytic hydrogen infiltration and determination of hydrogen content of Zr-Sn-Nb alloy [A]. China Materials Seminar [C]. Beijing, 2002: 4
9 刘彦章, 赵文金, 彭 倩 等. Zr-Sn-Nb合金电解渗氢及氢含量确定研究 [A]. 中国材料研讨会 [C]. 北京, 2002: 4
10 Yao C, Chen J, Ming H L, et al. Research progress on hydrogen permeability behavior of pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 209
10 姚 婵, 陈 健, 明洪亮 等. 管线钢氢渗透行为的研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 209
11 Zhou X, Wu D K, Cheng X, et al. Research progress of detection techniques for permeated hydrogen [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1203
11 周 欣, 吴大康, 成 旭 等. 渗透氢检测方法研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 1203
12 Mieza J I, Vigna G L, Domizzi G. Evaluation of variables affecting crack propagation by delayed hydride cracking in Zr-2.5Nb with different heat treatments [J]. J. Nucl. Mater., 2011, 411: 150
13 Pan C T, Zhao G N, Bao Y C, et al. Effect of temperature on the delayed hydride cracking rate of Zr-2.5Nb alloy pressure tubes [J]. J. Nucl. Mater., 2024, 588: 154778
14 Kim Y S, Cheong Y M. Anisotropic delayed hydride cracking velocity of CANDU Zr-2.5Nb pressure tubes [J]. J. Nucl. Mater., 2008, 373: 179
15 Sun C, Tan J, Ying S H, et al. Threshold stress intensity factor for delayed hydride cracking of a recrystallized N18 alloy plate along the rolling direction [J]. J. Nucl. Mater., 2010, 406: 212
16 Kim Y S, Park S S, Kwun S I. Threshold stress intensity factor, KIH for delayed hydride cracking of a Zr-2.5Nb tube with loading mode [J]. J. Alloy. Compd., 2008, 462: 367
17 Shmakov A A, Singh R N, Yan D, et al. A combined SIF and temperature model of delayed hydride cracking in zirconium materials [J]. Comput. Mater. Sci., 2007, 39: 237
18 Simpson L A, Puls M P. The effects of stress, temperature and hydrogen content on hydride-induced crack growth in Zr-2.5 pct Nb [J]. Metall. Trans., 1979, 10A: 1093
19 Coleman C E. Simulating the behavior of zirconium-alloy components in nuclear reactors [A]. MoanG D, RudlingP. Zirconium in the Nuclear Industry: Thirteenth International Symposium [M]. West Conshohocken: ASTM, 2002: 3
20 Lumley S C, Grimes R W, Murphy S T, et al. The thermodynamics of hydride precipitation: the importance of entropy, enthalpy and disorder [J]. Acta Mater., 2014, 79: 351
21 Ma Y, Lan Y N, Chen J W. A novel cross-sectional metallography method for determining hydrogen absorption concentration and hydrogen absorption amount of Zr-Sn-Nb alloy cladding caused by high temperature water corrosion [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 261
21 马 雁, 蓝宇宁, 陈嘉威. Zr-Sn-Nb包壳管腐蚀吸氢中氢浓度测算的截面金相法 [J]. 中国腐蚀与防护学报, 2024, 44: 261
22 Kim J S, Kim S D, Yoon J. Hydride formation on deformation twin in zirconium alloy [J]. J. Nucl. Mater., 2016, 482: 88
23 Une K, Nogita K, Ishimoto S, et al. Crystallography of zirconium hydrides in recrystallized Zircaloy-2 fuel cladding by electron backscatter diffraction [J]. J. Nucl. Sci. Technol., 2004, 41(7): 731
24 Nath B, Lorimer G W, Ridley N. Effect of hydrogen concentration and cooling rate on hydride precipitation in α-zirconium [J]. J. Nucl. Mater., 1975, 58(2): 153
25 Roy C, Jacques J G. {1017} Hydride habit planes in single crystal zirconium [J]. J. Nucl. Mater., 1969, 31: 233
26 Lin X H, Beyerlein I J, Han W Z. Annealing cracking in Zr and a Zr-alloy with low hydrogen concentration [J]. J. Mater. Sci. Technol., 2024, 182: 165
doi: 10.1016/j.jmst.2023.09.039
27 Maimaitiyili T, Steuwer A, Blomquist J, et al. In-situ hydrogen charging of zirconium powder to study isothermal percipitation of hydrides and determination of Zr-hydride crystal structure [A]. Proceedings of the 16th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors [C]. Asheville, 2013: 8
28 Zhao Z, Blat-Yrieix M, Morniroli J P, et al. Characterization of zirconium hydrides and phase field approach to a mesoscopic-scale modeling of their precipitation [J]. J. ASTM Int., 2008, 5: 1
29 Perovic V, Weatherly G C, Simpson C J. Hydride precipitation in α/β zirconium alloys [A]. AshbyM F, HirthJ P. Perspectives in Hydrogen in Metals [M]. Oxford, New York: Pergamon, 1986: 469
30 Northwood D O, Gilbert R W. Hydrides in zirconium-2.5wt.% niobium alloy pressure tubing [J]. J. Nucl. Mater., 1978, 78: 112
31 Lee K W, Hong S I. Zirconium hydrides and their effect on the circumferential mechanical properties of Zr-Sn-Fe-Nb tubes [J]. J. Alloy. Compd., 2002, 346: 302
32 Xu C R, Zhao W J, Deng Z G, et al. Review of research on stress reorientation of hydrides in zirconium alloy cladding tube [J]. Hot Working Technol., 2016, 45(12): 19
32 徐春容, 赵文金, 邓治国 等. 锆合金包壳管氢化物应力再取向研究概述 [J]. 热加工工艺, 2016, 45(12): 19
33 Parodi S A, Ponzoni L M E, De Las Heras M E, et al. Study of variables that affect hydrogen solubility in α + β Zr-alloys [J]. J. Nucl. Mater., 2016, 477: 305
34 Fang Q. Characterization of hydrides and delayed hydride cracking in zirconium alloys [D]. Ontario: Queen's University, 2016
35 Motta A T, Capolungo L, Chen L Q, et al. Hydrogen in zirconium alloys: a review [J]. J. Nucl. Mater., 2019, 518: 440
doi: 10.1016/j.jnucmat.2019.02.042
36 Kim Y S. Driving force for delayed hydride cracking of zirconium alloys [J]. Met. Mater. Int., 2005, 11: 29
37 Khatamian D. Solubility and partitioning of hydrogen in metastable Zr-based alloys used in the nuclear industry [J]. J. Alloy. Compd., 1999, 293-295: 893
38 Khatamian D. Effect of β-Zr decomposition on the solubility limits for H in Zr-2.5Nb [J]. J. Alloy. Compd., 2003, 356-357: 22
39 Pan Z L, Ritchie I G, Puls M P. The terminal solid solubility of hydrogen and deuterium in Zr-2.5Nb alloys [J]. J. Nucl. Mater., 1996, 228: 227
40 Chu W Y, Qiao L J, Li J X. Hydrogen Embrittlement and Stress Corrosion Cracking: the Base Component [M]. Beijing: Science Press, 2013: 174
40 褚武扬, 乔利杰, 李金许. 氢脆和应力腐蚀: 基础部分 [M]. 北京: 科学出版社, 2013: 174
41 Dutton R, Nuttall K, Puls M P, et al. Mechanisms of hydrogen induced delayed cracking in hydride forming materials [J]. Metall. Trans., 1977, 8A: 1553
42 Puls M P. Effects of crack tip stress states and hydride-matrix interaction stresses on delayed hydride cracking [J]. Metall. Trans., 1990, 21A: 2905
43 McRae G A, Coleman C E, Leitch B W. The first step for delayed hydride cracking in zirconium alloys [J]. J. Nucl. Mater., 2010, 396: 130
44 Puls M P. Review of the thermodynamic basis for models of delayed hydride cracking rate in zirconium alloys [J]. J. Nucl. Mater., 2009, 393: 350
45 Thompson A W, Bernstein I M. Effect of hydrogen on behavior of materials [A]. Proceedings of Conference on effects of hydrogen on behavior of materials [C]. Moran, 1976: 717
46 Shi S Q, Shek G K, Puls M P. Hydrogen concentration limit and critical temperatures for delayed hydride cracking in zirconium alloys [J]. J. Nucl. Mater., 1995, 218: 189
47 De Las Heras M E, Parodi S A, Ponzoni L M E, et al. Effect of thermal cycles on delayed hydride cracking in Zr-2.5Nb alloy [J]. J. Nucl. Mater., 2018, 509: 600
48 MacEwen S R, Coleman C E, Ells C E, et al. Dilation of h.c.p. zirconium by interstitial deuterium [J]. Acta Metall., 1985, 33: 753
49 Eadie R L, Coleman C E. Effect of stress on hydride precipitation in zirconium-2.5% niobium and on delayed hydride cracking [J]. Scr. Metall., 1989, 23: 1865
50 Varias A G, Massih A R. Simulation of hydrogen embrittlement in zirconium alloys under stress and temperature gradients [J]. J. Nucl. Mater., 2000, 279: 273
51 Feng J L, Varias A G, Sui Y K. Finite element analysis for steady-state hydride-induced fracture in metals by composite model [J]. Int. J. Solids Struct., 2006, 43: 2174
52 Jernkvist L O, Massih A R. Multi-field modelling of hydride forming metals. Part I: model formulation and validation [J]. Comput. Mater. Sci., 2014, 85: 363
53 Jernkvist L O. Multi-field modelling of hydride forming metals part II: application to fracture [J]. Comput. Mater. Sci., 2014, 85: 383
54 Shmakov A A, Kalin B A, Ioltukhovskii A G. A theoretical study of the kinetics of hydride cracking in zirconium alloys [J]. Met. Sci. Heat Treat., 2003, 45: 315
55 Jovanović M T, Eadie R L, Ma Y, et al. The effect of annealing on hardness, microstructure and delayed hydride cracking in Zr-2.5Nb pressure tube material [J]. Mater. Charact., 2001, 47: 259
56 Shah P K, Dubey J S, Kumar A, et al. Delayed hydride crack growth study on irradiated Zr-2.5Nb pressure tube [J]. J. Nucl. Mater., 2015, 460: 1
57 Yan D, Eadie R L. An approach to explain the stage I/II behaviour of the delayed hydride cracking velocity vs. KI curve for Zr-2.5Nb [J]. Scr. Mater., 2000, 43: 89
58 Yan D, Eadie R L. The critical length of the hydride cluster in delayed hydride cracking of Zr-2.5wt%Nb [J]. J. Mater. Sci., 2000, 35: 5667
59 Rice J R, Rosengren G F. Plane strain deformation near a crack tip in a power-law hardening material [J]. J. Mech. Phys. Solids, 1968, 16: 1
60 Hutchinson J W. Singular behaviour at the end of a tensile crack in a hardening material [J]. J. Mech. Phys. Solids, 1968, 16: 13
61 Sagat S, Puls M P. Temperature limit for delayed hydride cracking in Zr-2.5Nb alloys [A]. Proceedings of the 17th International Conference on Structural Mechanics in Reactor Technology [C]. Prague, 2003: 17
62 Markelov V A, Kotov P V, Zheltkovskaya T N. Temperature dependence of the velocity of delayed hydride cracking in Zr-2.5%Nb alloy [J]. Inorg. Mater. Appl. Res., 2010, 1: 217
63 Kim Y S. Temperature dependency of delayed hydride cracking velocity in Zr-2.5Nb tubes [J]. Mater. Sci. Eng., 2007, 468-470: 281
64 Sunil S, Bind A K, Khandelwal H K, et al. Delayed hydride cracking behavior of Zr-2.5Nb alloy pressure tubes for phwr700 [J]. J. Nucl. Mater., 2015, 466: 208
65 Shi S Q, Puls M P. Fracture strength of hydride precipitates in Zr-2.5Nb alloys [J]. J. Nucl. Mater., 1999, 275: 312
66 Holston A M A, Stjärnsäter J. On the effect of temperature on the threshold stress intensity factor of delayed hydride cracking in light water reactor fuel cladding [J]. Nucl. Eng. Technol., 2017, 49: 663
67 Kim Y S, Ahn S B, Kim K S, et al. Temperature dependence of threshold stress intensity factor, KIH in Zr-2.5Nb alloy and its effect on temperature limit for delayed hydride cracking [J]. Key Eng. Mater., 2006, 326-328: 919
68 Sagat S, Coleman C E, Griffiths M, et al. The effect of fluence and irradiation temperature on delayed hydride cracking in Zr-2.5Nb [A]. Zirconium in the Nuclear Industry: Tenth International Symposium [M]. Philadelphia: ASTM, 1994: 35
69 Sun C, Tan J, Ying S H, et al. Study of the critical temperatures for delayed hydride cracking in N18 zirconium alloy [J]. Acta Metall. Sin., 2009, 45: 541
69 孙 超, 谭 军, 应诗浩 等. N18锆合金氢致裂纹延迟开裂临界温度研究 [J]. 金属学报, 2009, 45: 541
70 Sun C, Tan J, Ying S H, et al. Prediction of critical temperature for delayed hydride cracking in irradiated N18 zirconium alloy [J]. Acta Metall. Sin., 2010, 46: 805
doi: 10.3724/SP.J.1037.2009.00868
70 孙 超, 谭 军, 应诗浩 等. 辐照后N18锆合金氢致延迟开裂临界温度预测 [J]. 金属学报, 2010, 46: 805
71 Cheadle B A, Coleman C E, Ambler J F R. Prevention of delayed hydride cracking in zirconium alloys [A]. Zirconium in the Nuclear Industry [M]. Strasbourg: ASTM, 1987: 846
72 Choo K N, Kim Y S. Hydrogen uptake and corrosion behavior of Zr-2.5Nb pressure tubes in wolsong unit 1 [J]. J. Nucl. Mater., 2001, 297: 52
73 Bao Y C, Shi X Q, Zhao C L. Hydrogen corrosion-uptake analysis and modeling for heavy water reactor Zr-2.5Nb pressure tubes [J]. Corros. Prot., 2020, 41(11): 22
73 鲍一晨, 石秀强, 赵传礼. 重水堆Zr-2.5Nb压力管腐蚀吸氢分析与建模 [J]. 腐蚀与防护, 2020, 41(11): 22
74 Coleman C E, Ambler J F R. Solubility of hydrogen isotopes in stressed hydride-forming metals [J]. Scripta Metallurgica, 1983, 17: 77
75 Kim Y S, Kim S J, Im K S. Delayed hydride cracking in Zr-2.5Nb tube with the cooling rate and the notch tip shape [J]. J. Nucl. Mater., 2004, 335: 387
76 Kim Y S, Grybenas A. Effect of load ratio and hydrogen concentration on the crack growth rate in Zr-2.5Nb tubes [J]. Mater. Sci. Eng., 2009, 520: 147
[1] 鲍一晨, 石秀强, 孟凡江, 潘春婷, 明洪亮. 重水堆压力管延迟氢化物开裂应力强度因子门槛值测试方法研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 381-387.
[2] 纪开强, 李光福, 赵亮. 两种不锈钢在模拟重水堆一回路溶液和3.5%NaCl溶液中的点蚀行为[J]. 中国腐蚀与防护学报, 2021, 41(5): 653-658.
[3] 曹辉; 宋光雄; 张峥 . 基于INTERNET的压力管道容器腐蚀失效案例库[J]. 中国腐蚀与防护学报, 2002, 22(5): 274-277 .