Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (2): 388-396     CSTR: 32134.14.1005.4537.2024.278      DOI: 10.11902/1005.4537.2024.278
  临氢关键材料服役行为研究专刊 本期目录 | 过刊浏览 |
X80管线钢氢渗透行为及氢脆敏感性研究
陈锴, 杜一帆, 徐浩昀, 吕良, 党桂铭, 王玉金, 郑树启()
中国石油大学(北京)新能源与材料学院 北京 102249
Hydrogen Permeation and Hydrogen Embrittlement Sensitivity of X80 Pipeline Steel
CHEN Kai, DU Yifan, XU Haoyun, LV Liang, DANG Guiming, WANG Yujin, ZHENG Shuqi()
College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
引用本文:

陈锴, 杜一帆, 徐浩昀, 吕良, 党桂铭, 王玉金, 郑树启. X80管线钢氢渗透行为及氢脆敏感性研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 388-396.
Kai CHEN, Yifan DU, Haoyun XU, Liang LV, Guiming DANG, Yujin WANG, Shuqi ZHENG. Hydrogen Permeation and Hydrogen Embrittlement Sensitivity of X80 Pipeline Steel[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(2): 388-396.

全文: PDF(6576 KB)   HTML
摘要: 

研究了不同厚度的X80管线钢在电化学充氢条件下的氢渗透行为及预充氢时间对材料力学性能的影响,并通过有限元分析对不同预充氢时间下材料内部的氢浓度进行了模拟。结果表明,随着试样厚度增加,X80管线钢的稳态电流密度和氢扩散通量减小,穿透和滞后时间增加,表明增大试样厚度增加了材料内部的氢陷阱数量和氢扩散路径。此外,预充氢对材料的氢脆敏感性影响显著,表现为屈服强度的提升和延伸率的下降。断口形貌表明,原位充氢慢拉伸的试样脆性断裂特征明显,韧性断裂特征随预充氢时间增加而减少,这是由于材料内部的氢原子浓度增加造成的。

关键词 X80管线钢氢渗透原位充氢拉伸氢脆敏感性有限元仿真    
Abstract

The hydrogen permeation behavior of X80 pipeline steel with different thicknesses was studied by means of electrochemical hydrogen permeation test, and the influence of hydrogen pre-charging time on the mechanical properties of X80 pipeline steel was also assessed via slow strain rate tensile test. Meanwhile, finite element analysis was used to simulate hydrogen concentration within the steels, which were hydrogen pre-charged for different times. The results indicate that as the thickness increases, the steady-state current density and steady-state hydrogen permeation flux of X80 pipeline steel decrease. Moreover, the penetration time and lag time of hydrogen diffusion increase, suggesting that the increase in steel thickness enhances both the quantity of hydrogen traps and the pathways for hydrogen diffusion of the steel. Additionally, pre-charging time significantly impacts the susceptibility to hydrogen embrittlement of the steel, resulting in a slight increase in yield strength and a notable decrease in elongation with the increasing pre-charging time. Macroscopic and microscopic fracture surface analyses reveal that steels subjected to in-situ hydrogen charging exhibit distinct brittle fracture characteristics. As the pre-charging time increases, the ductile fracture features diminishing, while the number of secondary cracks increased gradually, which may be attributed to the increased concentration of hydrogen atoms within the steel. The fitting results show that the internal hydrogen concentration is negatively correlated with the elongation and positively correlated with hydrogen embrittlement sensitivity.

Key wordsX80 pipeline steel    hydrogen permeation    in-situ hydrogen charging and stretching    hydrogen embrittlement sensitivity    finite element simulation
收稿日期: 2024-08-30      32134.14.1005.4537.2024.278
ZTFLH:  TG174  
通讯作者: 郑树启,E-mail:zhengsq09@163.com,研究方向为纯氢/掺氢天然气输送管道氢脆行为研究
Corresponding author: ZHENG Shuqi, E-mail: zhengsq09@163.com
作者简介: 陈 锴,男,1997年生,博士生
图1  X80管线钢的金相组织
图2  试样尺寸示意图
图3  不同厚度X80管线钢的电化学氢渗透曲线
δ / mmI / μA·cm-2J / 10-10 mol·cm-2·s-1tb / stδ / sDeff / 10-6 cm2·s-1C0 / 10-5 mol·cm-3Nt / 1020 cm-3
1.086.078.922705463.052.922.4
1.556.435.8540010363.622.421.67
2.043.534.5177018293.642.481.69
2.533.533.48120027923.732.331.56
3.027.152.81225044953.342.531.9
表1  不同厚度X80管线钢的氢渗透动力学参数
图4  稳态电流密度和氢扩散穿透时间同试样厚度之间的函数关系拟合结果
图5  X80管线钢在不同预充氢时间下的应力应变曲线
Sampleσs / MPaσb / MPad / mmL / %HE
Air6156906.41025.64-
06276842.0178.0680.685
tb6306831.8647.4560.709
t6446651.5346.1360.761
表2  X80管线钢的慢拉伸数据
图6  X80管线钢宏观、侧边、中心和边缘断口形貌
图7  试样在拉伸过程中的位移和塑性应变关系曲线
图8  慢拉伸终点时的氢浓度分布
SampleHydrogen concentration / 10-6 mol·cm-3
CentralEdge
06.4615.38
tb9.2315.38
t13.8515.38
表3  慢拉伸终点时的氢浓度值
图9  延伸率和氢脆敏感性与内部氢浓度的关系
图10  延伸率和氢脆敏感性同内部氢浓度之间的函数关系拟合结果
1 Yang T R, Zhao H L, Yu J G. Key component of future energy systems: hydrogen energy [J]. J. Chin. Ceram. Soc., 2024, 52: 1789
1 杨天让, 赵海雷, 余家国. 未来能源体系重要组成——氢能 [J]. 硅酸盐学报, 2024, 52: 1789
2 Li J F, Li J L, Wang Y S, et al. Research progress and development trends of key technologies for hydrogen energy storage and transportation [J]. Oil Gas Storage Trans., 2023, 42: 856
2 李敬法, 李建立, 王玉生 等. 氢能储运关键技术研究进展及发展趋势探讨 [J]. 油气储运, 2023, 42: 856
3 Gao Y, Zhu H J, Tang T, et al. Research status and analysis of hydrogen-blended natural gas transportation in natural gas pipelines [J]. Low-Carbon Chem. Chem. Eng., 2024, 49(3): 118
3 高 岳, 朱红钧, 唐 堂 等. 天然气管道掺氢输送研究现状与分析 [J]. 低碳化学与化工, 2024, 49(3): 118
4 Wang L, Xie Q Y, Chen J, et al. Numerical analysis of the effect of hydrogen doping ratio on gas transmission in low-pressure pipeline network [J]. Int. J. Hydrog. Energy, 2024, 73: 868
5 Xing X, Pang Z W, Zhang H, et al. Study of temperature effect on hydrogen embrittlement in X70 pipeline steel [J]. Corros. Sci., 2024, 230: 111939
6 Wang C L, Zhang J X, Liu C W, et al. Study on hydrogen embrittlement susceptibility of X80 steel through in-situ gaseous hydrogen permeation and slow strain rate tensile tests [J]. Int. J. Hydrog. Energy, 2023, 48: 243
7 Yan C Y, Zhou Q W, Zhang H, et al. Investigation of hydrogen-induced cracking susceptibility of X90 pipeline steel welded joints [J]. J. Mech. Eng., 2023, 59(24): 83
7 严春妍, 周倩雯, 张 浩 等. X90管线钢焊接接头氢致开裂敏感性研究 [J]. 机械工程学报, 2023, 59(24): 83
8 Han Y D, Wang R Z, Wang H, et al. Hydrogen embrittlement sensitivity of X100 pipeline steel under different pre-strain [J]. Int. J. Hydrog. Energy, 2019, 44: 22380
9 Liu Y, Dong F T, Qi C W, et al. Progress of hydrogen embrittlement in pipeline steel [J]. China Metall., 2024, 34(7): 11
9 刘 祎, 董福涛, 齐程伟 等. 管线钢氢脆的研究进展 [J]. 中国冶金, 2024, 34(7): 11
10 Zhang P, Laleh M, Hughes A E, et al. Effect of microstructure on hydrogen embrittlement and hydrogen-induced cracking behaviour of a high-strength pipeline steel weldment [J]. Corros. Sci., 2024, 227: 111764
11 Koren E, Hagen C M H, Wang D, et al. Experimental comparison of gaseous and electrochemical hydrogen charging in X65 pipeline steel using the permeation technique [J]. Corros. Sci., 2023, 215: 111025
12 Du Y F, Lv L, Chen K, et al. Investigating variations in hydrogen-assisted crack propagation of X52 pipeline steel with different microstructural characteristics [J]. Corros. Sci., 2024, 239: 112417
13 Li J Q, Wu Z Y, Zhu L J, et al. Investigations of temperature effects on hydrogen diffusion and hydrogen embrittlement of X80 pipeline steel under electrochemical hydrogen charging environment [J]. Corros. Sci., 2023, 223: 111460
14 Yao C, Chen J, Ming H L, et al. Research progress on hydrogen permeability behavior of pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 209
14 姚 婵, 陈 健, 明洪亮 等. 管线钢氢渗透行为的研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 209
15 Chen K, Zhao W, Xiao G C, et al. Study on corrosion resistance and hydrogen permeation behavior in inter-critically reheated coarse-grained heat-affected zone of X80 pipeline steel [J]. Metals, 2022, 12: 1203
16 Qin M, Hu Q, Cheng Y F. Passivation of X80 pipeline steel in a carbonate/bicarbonate solution and the effect of oxide film on hydrogen atom permeation into the steel [J]. Int. J. Hydrog. Energy, 2024, 70: 1
17 Cheng W S, Song B, Lu K, et al. The effect of V8C7 size on hydrogen diffusion behavior and hydrogen induced cracking in pipeline steel [J]. Int. J. Hydrog. Energy, 2024, 50: 94
18 Zhang S, Li J, An T, et al. Investigating the influence mechanism of hydrogen partial pressure on fracture toughness and fatigue life by in-situ hydrogen permeation [J]. Int. J. Hydrog. Energy, 2021, 46: 20621
19 Yuan W, Huang F, Gan L J, et al. Effect of microstructure on hydrogen induced cracking and hydrogen trapping behavior of X100 pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 536
19 袁 玮, 黄 峰, 甘丽君 等. 显微组织对X100管线钢氢致开裂及氢捕获行为影响 [J]. 中国腐蚀与防护学报, 2019, 39: 536
20 Zhou C S, Ye B G, Song Y Y, et al. Effects of internal hydrogen and surface-absorbed hydrogen on the hydrogen embrittlement of X80 pipeline steel [J]. Int. J. Hydrog. Energy, 2019, 44: 22547
21 Zhuo J X, Zhang C, Zhang S, et al. Influence of hydrogen environment on fatigue fracture morphology of X80 pipeline steel [J]. J. Mater. Res. Technol., 2023, 22: 1039
22 Wang D, Hagen A B, Fathi P U, et al. Investigation of hydrogen embrittlement behavior in X65 pipeline steel under different hydrogen charging conditions [J]. Mater. Sci. Eng., 2022, 860A: 144262
23 Zhang P, Laleh M, Hughes A E, et al. A systematic study on the influence of electrochemical charging conditions on the hydrogen embrittlement behaviour of a pipeline steel [J]. Int. J. Hydrog. Energy, 2023, 48: 16501
24 Chen K, Zhao W, Xiao G C, et al. Corrosion characteristics of simulated reheated heat-affected-zone of X80 pipeline steel in carbonate/bicarbonate solution [J]. Corros. Sci., 2023, 210: 110856
25 Huang F, Liu J, Deng Z J, et al. Effect of microstructure and inclusions on hydrogen induced cracking susceptibility and hydrogen trapping efficiency of X120 pipeline steel [J]. Mater. Sci. Eng., 2010, 527A: 6997
26 Wang D, Xie F, Wu M, et al. The effect of sulfate-reducing bacteria on hydrogen permeation of X80 steel under cathodic protection potential [J]. Int. J. Hydrog. Energy, 2017, 42: 27206
27 Han Y D, Jing H Y, Xu L Y. Welding heat input effect on the hydrogen permeation in the X80 steel welded joints [J]. Mater. Chem. Phys., 2012, 132: 216
28 Wang S H, Luu W C, Ho K F, et al. Hydrogen permeation in a submerged arc weldment of TMCP steel [J]. Mater. Chem. Phys., 2003, 77: 447
29 Xing Y Y, Yang Z L, Yao X C, et al. Comparative study on hydrogen induced cracking sensitivity of two commercial API 5L X80 steels [J]. Int. J. Press. Vessels Pip., 2022, 196: 104620
30 Wang B, Liu Q, Feng Q S, et al. Influence of welding defects on hydrogen embrittlement sensitivity of girth welds in X80 pipelines [J]. Int. J. Electrochem. Sci., 2024, 19: 100661
31 Campari A, Konert F, Sobol O, et al. A comparison of vintage and modern X65 pipeline steel using hollow specimen technique for in-situ hydrogen testing [J]. Eng. Fail. Anal., 2024, 163: 108530
32 Liu X X. Researches on large volume layered high-pressure hydrogen vessels and hydrogen accumulation characteristics in metal [D]. Hangzhou: Zhejiang University, 2012
32 刘贤信. 大容积全多层高压储氢容器及氢在金属中的富集特性研究 [D]. 杭州: 浙江大学, 2012
33 Yaktiti A, Dreano A, Gass R, et al. Modelling of hydrogen diffusion in a steel containing micro-porosity. application to the permeation experiment [J]. Int. J. Hydrog. Energy, 2023, 48: 14079
34 Haq A J, Muzaka K, Dunne D P, et al. Effect of microstructure and composition on hydrogen permeation in X70 pipeline steels [J]. Int. J. Hydrog. Energy, 2013, 38: 2544
35 Serebrinsky S, Carter E A, Ortiz M. A quantum-mechanically informed continuum model of hydrogen embrittlement [J]. J. Mech. Phys. Solids, 2004, 52: 2403
36 Huang S, Zhang Y L, Yang C, et al. Fracture strain model for hydrogen embrittlement based on hydrogen enhanced localized plasticity mechanism [J]. Int. J. Hydrog. Energy, 2020, 45: 25541
37 Oriani R A, Josephic P H. Equilibrium and kinetic studies of the hydrogen-assisted cracking of steel [J]. Acta Metall., 1977, 25: 979
38 Kumar R, Arora A, Mahajan D K. Hydrogen-assisted intergranular fatigue crack initiation in metals: role of grain boundaries and triple junctions [J]. Int. J. Hydrog. Energy, 2023, 48: 16481
39 Wang Y F, Han J N, Zhao Y H, et al. Grain refinement's effect on hydrogen embrittlement of 304 austenitic stainless steel: a comparative investigation of hydrogen in-situ charging vs. pre-charging [J]. Int. J. Hydrog. Energy, 2024, 78: 22
[1] 程凯源, 彭杨, 黄峰, 程向龙, 徐云峰, 彭志贤, 刘静. 典型无缝钢管钢掺氢天然气环境适应性及氢致损伤机理[J]. 中国腐蚀与防护学报, 2025, 45(2): 397-406.
[2] 王慧玲, 明洪亮, 王俭秋, 韩恩厚. 掺氢天然气管线钢氢渗透行为研究进展[J]. 中国腐蚀与防护学报, 2025, 45(2): 249-260.
[3] 赵杰, 徐广旭, 张烘玮, 李敬法, 吕冉, 王嘉龙, 闫东雷. X80掺氢天然气管道的氢脆与腐蚀耦合作用研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 407-415.
[4] 白云龙, 冷冰, 韦博鑫, 董立谨, 于长坤, 许进, 孙成. 掺氢天然气管材及焊缝的氢损伤行为研究进展[J]. 中国腐蚀与防护学报, 2025, 45(2): 283-295.
[5] 刘天乐, 韦博鑫, 付安庆, 苏航, 陈廷枢, 王超明, 王邃. 掺氢环境下X80管线钢气相氢损伤研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 423-430.
[6] 张慧云, 郑留伟, 梁伟. 退火工艺对304奥氏体不锈钢的组织演变及氢脆行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(2): 438-448.
[7] 李新城, 李兆南, 王海锋, 徐云泽, 王明昱, 甄兴伟. DH36海洋工程钢焊接结构的氢脆敏感性研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 416-422.
[8] 王娅利, 管方, 段继周, 张丽娜, 杨政险, 侯保荣. 鼠李糖脂与2,2-二溴-3-次氮基丙酰胺协同抑制X80管线钢的微生物腐蚀[J]. 中国腐蚀与防护学报, 2024, 44(6): 1412-1422.
[9] 徐云峰, 王少峰, 何龙, 刘冬, 黄峰, 刘静. EPS处理对QStE700TM钢氢脆敏感性影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 691-699.
[10] 姚婵, 陈健, 明洪亮, 王俭秋. 管线钢氢渗透行为的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(2): 209-219.
[11] 王贞, 刘静, 张施琦, 黄峰. 应变速率对预充氢DP780钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2022, 42(1): 106-112.
[12] 张慧云, 郑留伟, 孟宪明, 梁伟. 电化学充氢对Cr15铁素体不锈钢和304奥氏体不锈钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 202-208.
[13] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[14] 朱丽霞, 贾海东, 罗金恒, 李丽锋, 金剑, 武刚, 胥聪敏. 外加电位对X80管线钢在轮南土壤模拟溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[15] 柯书忠, 刘静, 黄峰, 王贞, 毕云杰. 预应变对DP600钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2018, 38(5): 424-430.