|
|
X80管线钢氢渗透行为及氢脆敏感性研究 |
陈锴, 杜一帆, 徐浩昀, 吕良, 党桂铭, 王玉金, 郑树启( ) |
中国石油大学(北京)新能源与材料学院 北京 102249 |
|
Hydrogen Permeation and Hydrogen Embrittlement Sensitivity of X80 Pipeline Steel |
CHEN Kai, DU Yifan, XU Haoyun, LV Liang, DANG Guiming, WANG Yujin, ZHENG Shuqi( ) |
College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China |
引用本文:
陈锴, 杜一帆, 徐浩昀, 吕良, 党桂铭, 王玉金, 郑树启. X80管线钢氢渗透行为及氢脆敏感性研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 388-396.
Kai CHEN,
Yifan DU,
Haoyun XU,
Liang LV,
Guiming DANG,
Yujin WANG,
Shuqi ZHENG.
Hydrogen Permeation and Hydrogen Embrittlement Sensitivity of X80 Pipeline Steel[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(2): 388-396.
1 |
Yang T R, Zhao H L, Yu J G. Key component of future energy systems: hydrogen energy [J]. J. Chin. Ceram. Soc., 2024, 52: 1789
|
1 |
杨天让, 赵海雷, 余家国. 未来能源体系重要组成——氢能 [J]. 硅酸盐学报, 2024, 52: 1789
|
2 |
Li J F, Li J L, Wang Y S, et al. Research progress and development trends of key technologies for hydrogen energy storage and transportation [J]. Oil Gas Storage Trans., 2023, 42: 856
|
2 |
李敬法, 李建立, 王玉生 等. 氢能储运关键技术研究进展及发展趋势探讨 [J]. 油气储运, 2023, 42: 856
|
3 |
Gao Y, Zhu H J, Tang T, et al. Research status and analysis of hydrogen-blended natural gas transportation in natural gas pipelines [J]. Low-Carbon Chem. Chem. Eng., 2024, 49(3): 118
|
3 |
高 岳, 朱红钧, 唐 堂 等. 天然气管道掺氢输送研究现状与分析 [J]. 低碳化学与化工, 2024, 49(3): 118
|
4 |
Wang L, Xie Q Y, Chen J, et al. Numerical analysis of the effect of hydrogen doping ratio on gas transmission in low-pressure pipeline network [J]. Int. J. Hydrog. Energy, 2024, 73: 868
|
5 |
Xing X, Pang Z W, Zhang H, et al. Study of temperature effect on hydrogen embrittlement in X70 pipeline steel [J]. Corros. Sci., 2024, 230: 111939
|
6 |
Wang C L, Zhang J X, Liu C W, et al. Study on hydrogen embrittlement susceptibility of X80 steel through in-situ gaseous hydrogen permeation and slow strain rate tensile tests [J]. Int. J. Hydrog. Energy, 2023, 48: 243
|
7 |
Yan C Y, Zhou Q W, Zhang H, et al. Investigation of hydrogen-induced cracking susceptibility of X90 pipeline steel welded joints [J]. J. Mech. Eng., 2023, 59(24): 83
|
7 |
严春妍, 周倩雯, 张 浩 等. X90管线钢焊接接头氢致开裂敏感性研究 [J]. 机械工程学报, 2023, 59(24): 83
|
8 |
Han Y D, Wang R Z, Wang H, et al. Hydrogen embrittlement sensitivity of X100 pipeline steel under different pre-strain [J]. Int. J. Hydrog. Energy, 2019, 44: 22380
|
9 |
Liu Y, Dong F T, Qi C W, et al. Progress of hydrogen embrittlement in pipeline steel [J]. China Metall., 2024, 34(7): 11
|
9 |
刘 祎, 董福涛, 齐程伟 等. 管线钢氢脆的研究进展 [J]. 中国冶金, 2024, 34(7): 11
|
10 |
Zhang P, Laleh M, Hughes A E, et al. Effect of microstructure on hydrogen embrittlement and hydrogen-induced cracking behaviour of a high-strength pipeline steel weldment [J]. Corros. Sci., 2024, 227: 111764
|
11 |
Koren E, Hagen C M H, Wang D, et al. Experimental comparison of gaseous and electrochemical hydrogen charging in X65 pipeline steel using the permeation technique [J]. Corros. Sci., 2023, 215: 111025
|
12 |
Du Y F, Lv L, Chen K, et al. Investigating variations in hydrogen-assisted crack propagation of X52 pipeline steel with different microstructural characteristics [J]. Corros. Sci., 2024, 239: 112417
|
13 |
Li J Q, Wu Z Y, Zhu L J, et al. Investigations of temperature effects on hydrogen diffusion and hydrogen embrittlement of X80 pipeline steel under electrochemical hydrogen charging environment [J]. Corros. Sci., 2023, 223: 111460
|
14 |
Yao C, Chen J, Ming H L, et al. Research progress on hydrogen permeability behavior of pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 209
|
14 |
姚 婵, 陈 健, 明洪亮 等. 管线钢氢渗透行为的研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 209
|
15 |
Chen K, Zhao W, Xiao G C, et al. Study on corrosion resistance and hydrogen permeation behavior in inter-critically reheated coarse-grained heat-affected zone of X80 pipeline steel [J]. Metals, 2022, 12: 1203
|
16 |
Qin M, Hu Q, Cheng Y F. Passivation of X80 pipeline steel in a carbonate/bicarbonate solution and the effect of oxide film on hydrogen atom permeation into the steel [J]. Int. J. Hydrog. Energy, 2024, 70: 1
|
17 |
Cheng W S, Song B, Lu K, et al. The effect of V8C7 size on hydrogen diffusion behavior and hydrogen induced cracking in pipeline steel [J]. Int. J. Hydrog. Energy, 2024, 50: 94
|
18 |
Zhang S, Li J, An T, et al. Investigating the influence mechanism of hydrogen partial pressure on fracture toughness and fatigue life by in-situ hydrogen permeation [J]. Int. J. Hydrog. Energy, 2021, 46: 20621
|
19 |
Yuan W, Huang F, Gan L J, et al. Effect of microstructure on hydrogen induced cracking and hydrogen trapping behavior of X100 pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 536
|
19 |
袁 玮, 黄 峰, 甘丽君 等. 显微组织对X100管线钢氢致开裂及氢捕获行为影响 [J]. 中国腐蚀与防护学报, 2019, 39: 536
|
20 |
Zhou C S, Ye B G, Song Y Y, et al. Effects of internal hydrogen and surface-absorbed hydrogen on the hydrogen embrittlement of X80 pipeline steel [J]. Int. J. Hydrog. Energy, 2019, 44: 22547
|
21 |
Zhuo J X, Zhang C, Zhang S, et al. Influence of hydrogen environment on fatigue fracture morphology of X80 pipeline steel [J]. J. Mater. Res. Technol., 2023, 22: 1039
|
22 |
Wang D, Hagen A B, Fathi P U, et al. Investigation of hydrogen embrittlement behavior in X65 pipeline steel under different hydrogen charging conditions [J]. Mater. Sci. Eng., 2022, 860A: 144262
|
23 |
Zhang P, Laleh M, Hughes A E, et al. A systematic study on the influence of electrochemical charging conditions on the hydrogen embrittlement behaviour of a pipeline steel [J]. Int. J. Hydrog. Energy, 2023, 48: 16501
|
24 |
Chen K, Zhao W, Xiao G C, et al. Corrosion characteristics of simulated reheated heat-affected-zone of X80 pipeline steel in carbonate/bicarbonate solution [J]. Corros. Sci., 2023, 210: 110856
|
25 |
Huang F, Liu J, Deng Z J, et al. Effect of microstructure and inclusions on hydrogen induced cracking susceptibility and hydrogen trapping efficiency of X120 pipeline steel [J]. Mater. Sci. Eng., 2010, 527A: 6997
|
26 |
Wang D, Xie F, Wu M, et al. The effect of sulfate-reducing bacteria on hydrogen permeation of X80 steel under cathodic protection potential [J]. Int. J. Hydrog. Energy, 2017, 42: 27206
|
27 |
Han Y D, Jing H Y, Xu L Y. Welding heat input effect on the hydrogen permeation in the X80 steel welded joints [J]. Mater. Chem. Phys., 2012, 132: 216
|
28 |
Wang S H, Luu W C, Ho K F, et al. Hydrogen permeation in a submerged arc weldment of TMCP steel [J]. Mater. Chem. Phys., 2003, 77: 447
|
29 |
Xing Y Y, Yang Z L, Yao X C, et al. Comparative study on hydrogen induced cracking sensitivity of two commercial API 5L X80 steels [J]. Int. J. Press. Vessels Pip., 2022, 196: 104620
|
30 |
Wang B, Liu Q, Feng Q S, et al. Influence of welding defects on hydrogen embrittlement sensitivity of girth welds in X80 pipelines [J]. Int. J. Electrochem. Sci., 2024, 19: 100661
|
31 |
Campari A, Konert F, Sobol O, et al. A comparison of vintage and modern X65 pipeline steel using hollow specimen technique for in-situ hydrogen testing [J]. Eng. Fail. Anal., 2024, 163: 108530
|
32 |
Liu X X. Researches on large volume layered high-pressure hydrogen vessels and hydrogen accumulation characteristics in metal [D]. Hangzhou: Zhejiang University, 2012
|
32 |
刘贤信. 大容积全多层高压储氢容器及氢在金属中的富集特性研究 [D]. 杭州: 浙江大学, 2012
|
33 |
Yaktiti A, Dreano A, Gass R, et al. Modelling of hydrogen diffusion in a steel containing micro-porosity. application to the permeation experiment [J]. Int. J. Hydrog. Energy, 2023, 48: 14079
|
34 |
Haq A J, Muzaka K, Dunne D P, et al. Effect of microstructure and composition on hydrogen permeation in X70 pipeline steels [J]. Int. J. Hydrog. Energy, 2013, 38: 2544
|
35 |
Serebrinsky S, Carter E A, Ortiz M. A quantum-mechanically informed continuum model of hydrogen embrittlement [J]. J. Mech. Phys. Solids, 2004, 52: 2403
|
36 |
Huang S, Zhang Y L, Yang C, et al. Fracture strain model for hydrogen embrittlement based on hydrogen enhanced localized plasticity mechanism [J]. Int. J. Hydrog. Energy, 2020, 45: 25541
|
37 |
Oriani R A, Josephic P H. Equilibrium and kinetic studies of the hydrogen-assisted cracking of steel [J]. Acta Metall., 1977, 25: 979
|
38 |
Kumar R, Arora A, Mahajan D K. Hydrogen-assisted intergranular fatigue crack initiation in metals: role of grain boundaries and triple junctions [J]. Int. J. Hydrog. Energy, 2023, 48: 16481
|
39 |
Wang Y F, Han J N, Zhao Y H, et al. Grain refinement's effect on hydrogen embrittlement of 304 austenitic stainless steel: a comparative investigation of hydrogen in-situ charging vs. pre-charging [J]. Int. J. Hydrog. Energy, 2024, 78: 22
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|