Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (2): 371-380     CSTR: 32134.14.1005.4537.2024.159      DOI: 10.11902/1005.4537.2024.159
  临氢关键材料服役行为研究专刊 本期目录 | 过刊浏览 |
H2O2CO掺杂对X52管线钢氢脆敏感性影响研究
万红江1,2, 明洪亮1,2(), 王俭秋1, 韩恩厚1,3
1.中国科学院金属研究所 沈阳 110016
2.中国科学技术大学材料科学与工程学院 沈阳 110016
3.广东腐蚀科学与技术创新研究院 广州 510530
Effect of Small Amount of O2 and CO on Hydrogen Embrittlement Susceptibility of X52 Pipeline Steel
WAN Hongjiang1,2, MING Hongliang1,2(), WANG Jianqiu1, HAN En-Hou1,3
1.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3.Institute of Corrosion Science and Technology, Guangzhou 510530, China
引用本文:

万红江, 明洪亮, 王俭秋, 韩恩厚. H2O2CO掺杂对X52管线钢氢脆敏感性影响研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 371-380.
Hongjiang WAN, Hongliang MING, Jianqiu WANG, En-Hou HAN. Effect of Small Amount of O2 and CO on Hydrogen Embrittlement Susceptibility of X52 Pipeline Steel[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(2): 371-380.

全文: PDF(33701 KB)   HTML
摘要: 

通过慢应变速率拉伸实验研究了纯氢气体中O2和CO含量对X52管线钢氢脆敏感性的影响,并采用扫描电子显微镜对试样的断口进行了观察。结果表明,X52管线钢的氢脆敏感性随H2中O2和CO含量的增大而降低,当H2中O2体积分数为0.01%或CO体积分数为0.02%时,X52管线钢的氢脆敏感性指数分别为0.83%和8.11%,仅分别为纯氢环境下的3.96%和38.66%。O2和CO与H2在金属表面的竞争吸附是导致管线钢氢脆敏感性降低的根本原因。

关键词 X52管线钢氢脆O2CO竞争吸附    
Abstract

The effect of small injected amount of O2 and CO on the hydrogen embrittlement susceptibility of X52 pipeline steel in pure gaseous hydrogen was investigated by slow strain rate tensile tests, while the fracture of the tested steel was characterized by scanning electron microscope. Results reveal that the hydrogen embrittlement susceptibility of X52 pipeline steel decreases with the increase of the injected amount of O2 and CO in the gaseous hydrogen. For the gaseous hydrogen with either 0.01% (volume fraction) O2 or 0.02% (volume fraction) CO, the acquired hydrogen embrittlement index of X52 pipeline steel is 0.83% and 8.11%, which correspond to 3.96% and 38.66% those in pure gaseous hydrogen, respectively. It follows that the competitive adsorption of O2 and CO with the presence of H2 leads to the reduction of hydrogen embrittlement sensitivity of the pipeline steel.

Key wordsX52 pipeline steel    hydrogen embrittlement    O2    CO    competitive adsorption
收稿日期: 2024-05-21      32134.14.1005.4537.2024.159
ZTFLH:  TG172  
基金资助:国家重点研发计划(2021YFB4001601);中国科学院青年创新促进会(2022187)
通讯作者: 明洪亮,E-mail:hlming12s@imr.ac.cn,研究方向为材料力学化学交互作用
Corresponding author: MING Hongliang, E-mail: hlming12s@imr.ac.cn
作者简介: 万红江,男,1999年生,硕士生
图1  管状试样尺寸图
NumberGas typePressure / MPaCharging time / h
1H2448
2CH440
3H2 + 0.001%O2448
4H2 + 0.005%O2448
5H2 + 0.01%O2448
6H2 + 0.005%CO448
7H2 + 0.01%CO448
8H2 + 0.02%CO448
表1  不同O2和CO含量H2中拉伸实验条件
图2  X52管线钢的金相组织
图3  在掺入不同含量O2的H2气氛中试样的工程应力-应变曲线
图4  在掺入不同含量O2的H2气氛中试样的拉伸数据和氢脆敏感性指数
图5  在掺入不同含量O2的H2气氛中试样的拉伸断口整体形貌
图6  在掺入0.001%O2的H2气氛中试样断口形貌
图7  在掺入0.005%O2的H2气氛中试样断口形貌
图8  在掺入0.01%O2的H2气氛中试样断口形貌
图9  在掺入不同含量CO的H2中试样的工程应力-应变曲线
图10  在掺入不同含量CO的H2中试样的拉伸数据和氢脆敏感性指数
图11  在掺入不同含量CO的H2中试样的断口形貌
图12  在掺入0.005%CO的H2气氛中试样断口形貌
图13  在掺入0.01%CO的H2气氛中试样断口形貌
图14  在掺入0.02%CO的H2气氛中试样断口形貌
1 Cheng M F. Study on hydrogen energy supply potential in China from perspective of renewable energy utilization and in-dustrial by-product hydrogen resources [J]. Shanghai Energy Conserv., 2022, (7): 785
1 成鸣峰. 从可再生能源利用和工业副产氢资源情况看我国氢能供给潜力 [J]. 上海节能, 2022, (7): 785
2 Chiari L, Zecca A. Constraints of fossil fuels depletion on global warming projections [J]. Energy Policy, 2011, 39: 5026
3 Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future [J]. Nature, 2012, 488: 294
4 Abe J O, Popoola A P I, Ajenifuja E, et al. Hydrogen energy, economy and storage: review and recommendation [J]. Int. J. Hydrog. Energy, 2019, 44: 15072
5 Miao B, Giordano L, Chan S H. Long-distance renewable hydrogen transmission via cables and pipelines [J]. Int. J. Hydrog. Energy, 2021, 46: 18699
6 Yao C, Chen J, Ming H L, et al. Research progress on hydrogen permeability behavior of pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 209
6 姚 婵, 陈 健, 明洪亮 等. 管线钢氢渗透行为的研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 209
7 Li J F, Su Y, Zhang H, et al. Research progresses on pipeline transportation of hydrogen-blended natural gas [J]. Nat. Gas Ind., 2021, 41(4): 137
7 李敬法, 苏 越, 张 衡 等. 掺氢天然气管道输送研究进展 [J]. 天然气工业, 2021, 41(4): 137
8 Abd A A, Naji S Z, Hashim A S. Effects of non-hydrocarbons impurities on the typical natural gas mixture flows through a pipeline [J]. J. Nat. Gas Sci. Eng., 2020, 76: 103218
9 Wang C L, Xu X S, Hua Y, et al. Inhibiting effect of carbon monoxide on gaseous hydrogen embrittlement of pipelines transporting hydrogen [J]. Corros. Sci., 2024, 227: 111789
10 Ogawa T, Yokoyama K, Asaoka K, et al. Effects of moisture and dissolved oxygen in methanol and ethanol solutions containing hydrochloric acid on hydrogen absorption and desorption behaviors of Ni-Ti superelastic alloy [J]. Mater. Sci. Eng., 2006, 422A: 218
11 Faramawy S, Zaki T, Sakr A A E. Natural gas origin, composition, and processing: a review [J]. J. Nat. Gas Sci. Eng., 2016, 34: 34
12 Frandsen J D, Marcus H L. Environmentally assisted fatigue crack propagation in steel [J]. Metall. Trans., 1977, 8A: 265
13 Liu C W, Yang H C, Wang C L, et al. Effects of CH4 and CO on hydrogen embrittlement susceptibility of X80 pipeline steel in hydrogen blended natural gas [J]. Int. J. Hydrog. Energy, 2023, 48: 27766
14 Komoda R, Yamada K, Kubota M, et al. The inhibitory effect of carbon monoxide contained in hydrogen gas environment on hydrogen-accelerated fatigue crack growth and its loading frequency dependency [J]. Int. J. Hydrog. Energy, 2019, 44: 29007
15 Komoda R, Kubota M, Staykov A, et al. Inhibitory effect of oxygen on hydrogen-induced fracture of A333 pipe steel [J]. Fatigue Fract. Eng. Mater. Struct., 2019, 42: 1387
16 Du J W, Ming H L, Wang J Q. Research status and progress of hydrogen embrittlement of hydrogen pipelines [J]. Oil Gas Storage Transp., 2023, 42: 1107
16 杜建伟, 明洪亮, 王俭秋. 输氢管道氢脆研究现状及进展 [J]. 油气储运, 2023, 42: 1107
17 Wan H J, Wu X Q, Ming H L, et al. Effects of hydrogen charging time and pressure on the hydrogen embrittlement susceptibility of X52 pipeline steel material [J]. Acta Metall. Sin. (Engl. Lett.), 2024, 37: 293
18 Kussmaul K, Deimel P, Fischer H, et al. Fracture mechanical behaviour of the steel 15 MnNi 6 3 in argon and in high pressure hydrogen gas with admixtures of oxygen [J]. Int. J. Hydrog. Energy, 1998, 23: 577
19 Staykov A, Yamabe J, Somerday B P. Effect of hydrogen gas impurities on the hydrogen dissociation on iron surface [J]. Int. J. Quantum Chem., 2014, 114: 626
20 Somerday B P, Sofronis P, Nibur K A, et al. Elucidating the variables affecting accelerated fatigue crack growth of steels in hydrogen gas with low oxygen concentrations [J]. Acta Mater., 2013, 61: 6153
21 Sun Y H, Cheng Y F. Thermodynamics of spontaneous dissociation and dissociative adsorption of hydrogen molecules and hydrogen atom adsorption and absorption on steel under pipelining conditions [J]. Int. J. Hydrog. Energy, 2021, 46: 34469
22 Moritz W, Imbihl R, Behm R J, et al. Adsorption geometry of hydrogen on Fe(110) [J]. J. Chem. Phys., 1985, 83(4): 1959
23 Hammer L, Landskron H, Nichtl-Pecher W, et al. Hydrogen-induced restructuring of close-packed metal surfaces: H/Ni(111) and H/Fe(110) [J]. Phys. Rev., 1993, 47B: 15969
24 Walch S P. Model studies of the interaction of h atoms with bcc iron [J]. Surf. Sci., 1984, 143: 188
[1] 刘天乐, 韦博鑫, 付安庆, 苏航, 陈廷枢, 王超明, 王邃. 掺氢环境下X80管线钢气相氢损伤研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 423-430.
[2] 张慧云, 郑留伟, 梁伟. 退火工艺对304奥氏体不锈钢的组织演变及氢脆行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(2): 438-448.
[3] 陈锴, 杜一帆, 徐浩昀, 吕良, 党桂铭, 王玉金, 郑树启. X80管线钢氢渗透行为及氢脆敏感性研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 388-396.
[4] 李新城, 李兆南, 王海锋, 徐云泽, 王明昱, 甄兴伟. DH36海洋工程钢焊接结构的氢脆敏感性研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 416-422.
[5] 崔博伦, 赵杰, 吕冉, 李敬法, 宇波, 闫东雷. 掺氢天然气输送管材氢脆与腐蚀复合防护技术研究进展[J]. 中国腐蚀与防护学报, 2025, 45(2): 327-337.
[6] 王明洋, 夏大海. 高强铝合金氢脆机理研究进展[J]. 中国腐蚀与防护学报, 2025, 45(2): 261-270.
[7] 张倩茹, 孙擎擎. 氢促进局部塑性变形理论的发展趋势[J]. 中国腐蚀与防护学报, 2025, 45(2): 271-282.
[8] 程凯源, 彭杨, 黄峰, 程向龙, 徐云峰, 彭志贤, 刘静. 典型无缝钢管钢掺氢天然气环境适应性及氢致损伤机理[J]. 中国腐蚀与防护学报, 2025, 45(2): 397-406.
[9] 严豪杰, 殷若展, 汪文君, 孙擎擎, 伍廉奎, 曹发和. TiAl合金表面电沉积SiO2 涂层抗循环氧化性能研究[J]. 中国腐蚀与防护学报, 2025, 45(1): 81-91.
[10] 李开洋, 吴悠, 张冠霖, 张乃强. 高温超临界CO2 结构材料环境致裂研究进展[J]. 中国腐蚀与防护学报, 2025, 45(1): 61-68.
[11] 郭静波, 杨守华, 周子翼, 牟仁德, 谢云, 舒小勇, 戴建伟, 彭晓. 激光增材制造AlCoCrFeNiSi高熵合金的氧化行为[J]. 中国腐蚀与防护学报, 2025, 45(1): 217-223.
[12] 张雅妮, 王思敏, 樊冰. TC4钛合金在O2 + CO2 气氛的高温高压模拟水沉积液中表面形成的钝化膜研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1518-1528.
[13] 吴亮亮, 殷若展, 陈朝旭, 梁君岳, 孙擎擎, 伍廉奎, 曹发和. Ti45Al8.5Nb合金表面Zr-SiO2 复合涂层的制备及其抗高温氧化性能研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1423-1434.
[14] 蒋泽, 翟晓凡, 张雨, 孙佳文, 蒋全通, 王优强, 段继周, 侯保荣. Co3O4-Zn复合镀层制备及其模拟酶催化防污活性研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1164-1176.
[15] 吕晓明, 王震宇, 韩恩厚. 纳米改性环氧隔热涂层的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1234-1242.