Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (1): 61-68     CSTR: 32134.14.1005.4537.2024.280      DOI: 10.11902/1005.4537.2024.280
  综合评述 本期目录 | 过刊浏览 |
高温超临界CO2 结构材料环境致裂研究进展
李开洋, 吴悠, 张冠霖, 张乃强()
华北电力大学 能源动力与机械工程学院 北京 102206
Research Progress of Environmental Cracking of Structural Metallic Materials for High Temperature Supercritical CO2 System
LI Kaiyang, WU You, ZHANG Guanlin, ZHANG Naiqiang()
College of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China
引用本文:

李开洋, 吴悠, 张冠霖, 张乃强. 高温超临界CO2 结构材料环境致裂研究进展[J]. 中国腐蚀与防护学报, 2025, 45(1): 61-68.
Kaiyang LI, You WU, Guanlin ZHANG, Naiqiang ZHANG. Research Progress of Environmental Cracking of Structural Metallic Materials for High Temperature Supercritical CO2 System[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(1): 61-68.

全文: PDF(1143 KB)   HTML
摘要: 

作为能量传递介质,超临界CO2 (S-CO2)在能源领域表现出广阔的应用前景。但S-CO2可以引起高温氧化、碳化腐蚀。腐蚀与应力协同作用下,材料腐蚀加剧,力学性能下降,加速衰退,进而发生环境致裂,引发严重后果。本文梳理S-CO2引起氧化、碳化的耦合腐蚀机制,总结高温高压S-CO2系统环境致裂的评估手段,分析材料在腐蚀和力学协同作用下的环境致裂行为,包括腐蚀后材料力学性能的改变、应力腐蚀、蠕变、腐蚀疲劳、热循环、表面残余应力对腐蚀行为影响等,总结材料环境致裂的行为和机理。相关研究旨在为S-CO2系统的材料选择和环境致裂防护提供理论基础和技术指导。

关键词 超临界CO2环境致裂应力腐蚀碳化    
Abstract

As a new energy transfer medium, supercritical CO2 (S-CO2) has shown broad application prospects in the field of energy. However, supercritical CO2 can induce high temperature corrosion of structural metallic materials as high-temperature oxidation and carburization. The synergistic effect of corrosion and stress can aggravate the corrosion of metallic materials and deteriorate their mechanical property, accelerate their degradation, and even induce environmental cracking, all of which result in serious consequences. Therefore, this article elucidates the supercritical CO2-induced oxidation and carburization, and their coupled effect; summarizes the methods to evaluate the environmental cracking induced by synergistic effect of corrosion and stress in high-temperature high-pressure supercritical CO2 environments; analyzes metallic material performances under the synergistic effect of corrosion and stress, including the change of mechanical property after corrosion, stress corrosion cracking, creep, corrosion fatigue, thermal cycling and effect of surface residual stress on corrosion, etc.; and sums up the behavior and mechanisms of environmental cracking of metallic materials. It is intended to provide theoretical guidance and technical support for the material selection and environmental cracking prevention in supercritical CO2 systems.

Key wordssupercritical CO2    environmental cracking    stress corrosion    carburization
收稿日期: 2024-08-30      32134.14.1005.4537.2024.280
ZTFLH:  TG171  
基金资助:国家自然科学基金(52071140; 52401089);北京市自然科学基金(2244104)
通讯作者: 张乃强,E-mail:zhnq@ncepu.edu.cn,研究方向为金属高温腐蚀与防护
Corresponding author: ZHANG Naiqiang, E-mail: zhnq@ncepu.edu.cn
作者简介: 李开洋,男,1989年生,博士,讲师
图1  不同合金S-CO2腐蚀后断裂强度UTS和延伸率EL变化[20~22]
1 White M T, Bianchi G, Chai L, et al. Review of supercritical CO2 technologies and systems for power generation [J]. Appl. Therm. Eng., 2021, 185: 116447
2 Ahn Y, Bae S J, Kim M, et al. Review of supercritical CO2 power cycle technology and current status of research and development [J]. Nucl. Eng. Technol., 2015, 47: 647
3 Xiang Y, Xu M H, Choi Y S. State-of-the-art overview of pipeline steel corrosion in impure dense CO2 for CCS transportation: mechanisms and models [J]. Corros. Eng. Sci. Technol., 2017, 52: 485
4 Sun C, Wang Y, Sun J B, et al. Investigation progress on corrosion behavior of supercritical CO2 transmission pipelines containing impurities in CCS [J]. J.Chin. Soc. Corros. Prot., 2015, 35: 379
4 孙 冲, 王 勇, 孙建波 等. 含杂质超临界CO2输送管线腐蚀的研究进展 [J]. 中国腐蚀与防护学报, 2015, 35: 379
5 Gui Y, Liang Z Y, Guo T S, et al. Corrosion behavior of heat-resistant materials in supercritical carbon dioxide environment [J]. J. Chin. Soc. Power Eng., 2021, 41: 602
5 桂 雍, 梁志远, 郭亭山 等. 超临界二氧化碳环境中耐热材料的腐蚀行为研究 [J]. 动力工程学报, 2021, 41: 602
6 Xiao B, Li K Y, Wang B H, et al. Corrosion behavior of various high-temperature materials in supercritical carbon dioxide [J]. Proc. CSEE, 2023, 43: 4198
6 肖 博, 李开洋, 王碧辉 等. 多种高温金属材料在超临界二氧化碳中的腐蚀行为 [J]. 中国电机工程学报, 2023, 43: 4198
7 Liang Z Y, Gui Y, Zhao Q X. Research progress on corrosion of high-temperature materials in supercritical CO2 power cycle [J]. J. Chin. Soc. Power Eng., 2021, 41: 910
7 梁志远, 桂 雍, 赵钦新. 超临界CO2动力循环高温材料腐蚀研究进展 [J]. 动力工程学报, 2021, 41: 910
doi: 10.19805/j.cnki.jcspe.2021.11.002
8 Xiao B, Zhu Z L, Li R T, et al. Research status of high temperature corrosion of candidate materials for power generation system using supercritical carbon dioxide as working fluid [J]. Therm. Power Gener., 2020, 49(10): 30
8 肖 博, 朱忠亮, 李瑞涛 等. 超临界二氧化碳工质发电系统候选材料高温腐蚀研究现状与进展 [J]. 热力发电, 2020, 49(10): 30
9 Li K Y, Zhu Z L, Xiao B, et al. State of the art overview material degradation in high-temperature supercritical CO2 environments [J]. Prog. Mater. Sci., 2023, 136: 101107
10 Liu Z, Long J C, Su H Z, et al. Understanding the stress corrosion cracking growth mechanism of a cold worked alumina-forming austenitic steel in supercritical carbon dioxide [J]. Corros. Sci., 2022, 199: 110179
11 Gheno T, Monceau D, Zhang J Q, et al. Carburisation of ferritic Fe-Cr alloys by low carbon activity gases [J]. Corros. Sci., 2011, 53: 2767
12 Sarrade S, Féron D, Rouillard F, et al. Overview on corrosion in supercritical fluids [J]. J. Supercrit. Fluids, 2017, 120: 335
13 Liu B P, Zhang Z M, Wang J Q, et al. Review of stress corrosion crack initiation of nuclear structural materials in high temperature and high pressure water [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 513
13 刘保平, 张志明, 王俭秋 等. 核用结构材料在高温高压水中应力腐蚀裂纹萌生研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 513
doi: 10.11902/1005.4537.2021.130
14 Zhang N Q, Yue G Q, Lv F B, et al. Crack growth rate of stress corrosion cracking of Inconel625 in high temperature steam [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 9
14 张乃强, 岳国强, 吕法彬 等. Inconel625合金在高温水蒸气环境中应力腐蚀开裂裂纹扩展速率研究 [J]. 中国腐蚀与防护学报, 2017, 37: 9
doi: 10.11902/1005.4537.2016.088
15 Seifert H P, Ritter S, Shoji T, et al. Environmentally-assisted cracking behaviour in the transition region of an Alloy182/SA 508 Cl.2 dissimilar metal weld joint in simulated boiling water reactor normal water chemistry environment [J]. J. Nucl. Mater., 2008, 378: 197
16 Khan H I, Zhang N Q, Yue G Q, et al. Environmentally assisted crack growth rate of an austenitic steel TP347HFG in high-temperature medium [J]. Mater. Corros., 2018, 69: 1064
17 Shen Z, Zhang L F, Tang R, et al. The effect of temperature on the SSRT behavior of austenitic stainless steels in SCW [J]. J. Nucl. Mater., 2014, 454: 274
18 Khan H I, Zhang N Q, Zhu Z L, et al. Behavior and susceptibility to stress corrosion cracking of a nickel-based alloy in superheated steam and supercritical water [J]. Mater. Corros., 2019, 70: 48
19 Peng Q J, Teysseyre S, Andresen P L, et al. Stress corrosion crack growth in type 316 stainless steel in supercritical water [J]. Corrosion, 2007, 63: 1033
20 Lee H J, Kim H, Kim S H, et al. Corrosion and carburization behavior of chromia-forming heat resistant alloys in a high-temperature supercritical-carbon dioxide environment [J]. Corros. Sci., 2015, 99: 227
21 Pint B A, Brese R G, Keiser J R. Effect of pressure on supercritical CO2 compatibility of structural alloys at 750  oC [J]. Mater. Corros., 2017, 68: 151
22 Kim S H, Kim C, Subramanian G O, et al. Corrosion and carburization behaviour of Ni-Cr-Mo-Nb superalloys in a high temperature supercritical-CO2 environment [A]. OttE, LiuX B, AnderssonJ, et al. Proceedings of the 9th International Symposium on Superalloy 718 & Derivatives: Energy, Aerospace, and Industrial Applications [M]. Cham: Springer, 2018: 179
23 Gui Y, Liang Z Y, Wang S, et al. Corrosion behavior of T91 tubing in high temperature supercritical carbon dioxide environment [J]. Corros. Sci., 2023, 211: 110857
24 Behnamian Y, Mostafaei A, Kohandehghan A, et al. Internal oxidation and crack susceptibility of alloy 310S stainless steel after long term exposure to supercritical water at 500 oC [J]. J. Supercrit. Fluids, 2017, 120: 161
25 Delkasar Maher S, Sarvghad M, Olivares R, et al. Critical components in supercritical CO2 Brayton cycle power blocks for solar power systems: degradation mechanisms and failure consequences [J]. Sol. Energy Mater. Sol. Cells, 2022, 242: 111768
26 Keiser J R, Mcdowell M, Leonard D N. Corrosion of Fe-and Ni-base alloys in 200 bar, 750 oC supercritical carbon dioxide [A]. Proceedings of the Corrosion 2017 [C]. New Orleans, 2017
27 Lv Z P. Mechanisms and growth rate models for stress corrosion cracking in high temperature water [J]. Mater. China, 2019, 38: 651
27 吕战鹏. 高温水中应力腐蚀开裂机理及扩展模型 [J]. 中国材料进展, 2019, 38: 651
28 Chen K, Wang J M, Shen Z, et al. Effect of intergranular carbides on the cracking behavior of cold worked alloy 690 in subcritical and supercritical water [J]. Corros. Sci., 2020, 164: 108313
29 Dai Z Y, Su Y H, Yang T S, et al. Study on the high temperature creep deformation and fracture behaviors of Inconel 625 deposited metal [J]. Mater. Sci. Eng., 2022, 854A: 143626
30 Kim S H, Cha J H, Jang C. Corrosion and creep behavior of a Ni-base alloy in supercritical-carbon dioxide environment at 650 oC [J]. Corros. Sci., 2020, 174: 108843
31 Chopra O K, Stevens G L, Tregoning R, et al. Effect of light water reactor water environments on the fatigue life of reactor materials [J]. J. Press. Vessel Technol., 2017, 139: 060801
32 ASTM. Standard Terminology Relating to Fatigue and Fracture Testing [M]. 2000: 19428
33 Larrosa N O, Akid R, Ainsworth R A. Corrosion-fatigue: a review of damage tolerance models [J]. Int. Mater. Rev., 2018, 63: 283
34 Zhang Z Y, Wu X Q, Han E-H, et al. A review on corrosion fatigue crack growth behavior of structural materials in nuclear power plants [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 9
34 张兹瑜, 吴欣强, 韩恩厚 等. 核电结构材料腐蚀疲劳裂纹扩展行为研究现状与进展 [J]. 中国腐蚀与防护学报, 2022, 42: 9
doi: 10.11902/1005.4537.2021.094
35 Song Y D, Ling C, Zhang L C, et al. Research progress on hot corrosion-fatigue of aero-engine and gas turbine hot-section components [J]. J. Nanjing Univ. Aeronaut. Astronaut., 2022, 54: 771
35 宋迎东, 凌 晨, 张磊成 等. 航空发动机和燃气轮机热端部件热腐蚀-疲劳研究进展 [J]. 南京航空航天大学学报, 2022, 54: 771
36 Xu S, Wu X Q, Han E-H, et al. A review of corrosion fatigue of steels for lwr plant in high temperature and high pressure water [J]. Corros. Sci. Prot. Technol., 2007, 19: 345
36 徐 松, 吴欣强, 韩恩厚 等. 核电站用钢的高温高压水腐蚀疲劳研究进展 [J]. 腐蚀科学与防护技术, 2007, 19: 345
37 Rozman K A, Holcomb G R, Carney C S, et al. Effect of 730 oC supercritical fluid exposure on the fatigue threshold of Ni-based superalloy haynes 282 [J]. J. Mater. Eng. Perform., 2019, 28: 4335
doi: 10.1007/s11665-019-04164-2
38 Thatte A, Martin E, Hanlon T. A novel experimental method for LCF measurement of nickel base super alloys in high pressure high temperature supercritical CO2 [A]. Proceedings of the ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition [C]. Charlotte, 2017
39 Chen H Z, Li B R, Wen B, et al. Corrosion resistance of iron-chromium-aluminium steel in eutectic molten salts under thermal cycling conditions [J]. Corros. Sci., 2020, 173: 108798
40 Zhang N Q, Zhu Z L, Yue G Q, et al. The oxidation behaviour of an austenitic steel in deaerated supercritical water at 600-700 oC [J]. Mater. Charact., 2017, 132: 119
41 Pint B A, Raiman S S, Keiser J R. Lifetime modeling for a supercritical CO2-molten salt CSP power block [A]. Proceedings of the SOLARPACES 2018: International Conference on Concentrating Solar Power and Chemical Energy Systems [C]. Casablanca, 2019
42 Bian W W, Lu Y H, Zhang X F, et al. Effect of fretting wear regimes on stress corrosion cracking of Alloy 690TT in high-temperature pressurized water [J]. Corros. Sci., 2024, 237: 112320
43 Chen K, Wang J, Zhang L, et al. A high-resolution study of the different surface state effects on the corrosion behaviors of a ferritic steel and an austenitic steel in supercritical water [J]. Corros. Sci., 2022, 209: 110757
44 Wang Y, Shen Z, Jia H D, et al. The effect of surface grinding and Si addition on the corrosion of Fe-12Cr ODS steels in supercritical CO2 [J]. Corros. Sci., 2023, 224: 111533
45 Qian H C, Yang L J, Feng X Y, et al. The effect of surface grinding on the stress corrosion cracking initiation of 316LN stainless steel in 600  oC supercritical CO2 [J]. Corros. Sci., 2024, 234: 112147
46 Chen K, Liu Z, Guo X L, et al. Effect of surface finishing on the oxidation characteristics of a Fe-21Cr-32Ni alloy in supercritical carbon dioxide [J]. Corros. Sci., 2022, 195: 110019
47 Wang Y, Li K X, Zhou Z J, et al. The surface grinding-induced oxide scale exfoliation of an austenitic alloy in supercritical CO2 [J]. Corros. Sci., 2023, 225: 111615
[1] 张颛利, 戴海龙, 张喆, 石守稳, 陈旭. HF溶液中316L应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1633-1640.
[2] 苏志诚, 张弦, 程焱, 刘静, 吴开明. 同成分的超细贝氏体钢和Q&P钢在海水中应力腐蚀开裂行为对比研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1495-1506.
[3] 赵骞, 张洁, 毛锐锐, 缪春辉, 卞亚飞, 滕越, 汤文明. Q235钢结构件表面热镀锌层的应力腐蚀及其机理[J]. 中国腐蚀与防护学报, 2024, 44(5): 1305-1315.
[4] 刘广胜, 王卫军, 周佩, 谭金颢, 丁宏鑫, 张伟, 向勇. 含杂CO2 封存条件下13CrN80套管钢腐蚀规律研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1200-1212.
[5] 刘久云, 董立谨, 张言, 王勤英, 刘丽. 油气田异种金属焊接接头硫化物应力腐蚀开裂研究进展[J]. 中国腐蚀与防护学报, 2024, 44(4): 863-873.
[6] 胡丽华, 衣华磊, 杨维健, 孙冲, 孙建波. 水含量对超临界CO2 输送管道腐蚀的影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 576-584.
[7] 李禅, 王庆田, 杨承刚, 张宪伟, 韩冬傲, 刘雨薇, 刘智勇. 904L超级奥氏体不锈钢在模拟核电一回路环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 716-724.
[8] 岑远遥, 廖光萌, 朱玉琴, 赵方超, 刘聪, 何建新, 周堃. 基于布拉格光纤光栅的铝合金应力腐蚀裂纹扩展监测技术[J]. 中国腐蚀与防护学报, 2024, 44(3): 815-822.
[9] 原玉, 向勇, 李晨, 赵雪会, 闫伟, 姚二冬. CCUS系统中CO2 注入井管材腐蚀研究进展[J]. 中国腐蚀与防护学报, 2024, 44(1): 15-26.
[10] 郭昭, 李晗, 崔中雨, 王昕, 崔洪芝. A100钢在动态薄液膜和人工海水环境中的应力腐蚀行为对比研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1303-1311.
[11] 李双, 董立谨, 郑淮北, 吴铖川, 王洪利, 凌东, 王勤英. 飞机起落架用超高强钢应力腐蚀开裂研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1178-1188.
[12] 李佳媛, 曾天昊, 刘友通, 吴晓春. 加铜4Cr16Mo马氏体不锈钢在应力作用下的腐蚀研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1094-1100.
[13] 黄锦阳, 鲁金涛, 邢瑞华, 张醒兴, 黄春林, 徐雅欣. 传热管用Incoloy800H合金在模拟石墨粉尘环境中的碳化行为研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 365-370.
[14] 李文桔, 张慧霞, 张宏泉, 郝福耀, 仝宏韬. 温度对钛合金应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(1): 111-118.
[15] 李柯萱, 宋龙飞, 李晓荣. pH值对X100管线钢在CO32-/HCO3-溶液中的电化学与应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(5): 779-784.