|
|
高温超临界CO2 结构材料环境致裂研究进展 |
李开洋, 吴悠, 张冠霖, 张乃强( ) |
华北电力大学 能源动力与机械工程学院 北京 102206 |
|
Research Progress of Environmental Cracking of Structural Metallic Materials for High Temperature Supercritical CO2 System |
LI Kaiyang, WU You, ZHANG Guanlin, ZHANG Naiqiang( ) |
College of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China |
引用本文:
李开洋, 吴悠, 张冠霖, 张乃强. 高温超临界CO2 结构材料环境致裂研究进展[J]. 中国腐蚀与防护学报, 2025, 45(1): 61-68.
Kaiyang LI,
You WU,
Guanlin ZHANG,
Naiqiang ZHANG.
Research Progress of Environmental Cracking of Structural Metallic Materials for High Temperature Supercritical CO2 System[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(1): 61-68.
1 |
White M T, Bianchi G, Chai L, et al. Review of supercritical CO2 technologies and systems for power generation [J]. Appl. Therm. Eng., 2021, 185: 116447
|
2 |
Ahn Y, Bae S J, Kim M, et al. Review of supercritical CO2 power cycle technology and current status of research and development [J]. Nucl. Eng. Technol., 2015, 47: 647
|
3 |
Xiang Y, Xu M H, Choi Y S. State-of-the-art overview of pipeline steel corrosion in impure dense CO2 for CCS transportation: mechanisms and models [J]. Corros. Eng. Sci. Technol., 2017, 52: 485
|
4 |
Sun C, Wang Y, Sun J B, et al. Investigation progress on corrosion behavior of supercritical CO2 transmission pipelines containing impurities in CCS [J]. J.Chin. Soc. Corros. Prot., 2015, 35: 379
|
4 |
孙 冲, 王 勇, 孙建波 等. 含杂质超临界CO2输送管线腐蚀的研究进展 [J]. 中国腐蚀与防护学报, 2015, 35: 379
|
5 |
Gui Y, Liang Z Y, Guo T S, et al. Corrosion behavior of heat-resistant materials in supercritical carbon dioxide environment [J]. J. Chin. Soc. Power Eng., 2021, 41: 602
|
5 |
桂 雍, 梁志远, 郭亭山 等. 超临界二氧化碳环境中耐热材料的腐蚀行为研究 [J]. 动力工程学报, 2021, 41: 602
|
6 |
Xiao B, Li K Y, Wang B H, et al. Corrosion behavior of various high-temperature materials in supercritical carbon dioxide [J]. Proc. CSEE, 2023, 43: 4198
|
6 |
肖 博, 李开洋, 王碧辉 等. 多种高温金属材料在超临界二氧化碳中的腐蚀行为 [J]. 中国电机工程学报, 2023, 43: 4198
|
7 |
Liang Z Y, Gui Y, Zhao Q X. Research progress on corrosion of high-temperature materials in supercritical CO2 power cycle [J]. J. Chin. Soc. Power Eng., 2021, 41: 910
|
7 |
梁志远, 桂 雍, 赵钦新. 超临界CO2动力循环高温材料腐蚀研究进展 [J]. 动力工程学报, 2021, 41: 910
doi: 10.19805/j.cnki.jcspe.2021.11.002
|
8 |
Xiao B, Zhu Z L, Li R T, et al. Research status of high temperature corrosion of candidate materials for power generation system using supercritical carbon dioxide as working fluid [J]. Therm. Power Gener., 2020, 49(10): 30
|
8 |
肖 博, 朱忠亮, 李瑞涛 等. 超临界二氧化碳工质发电系统候选材料高温腐蚀研究现状与进展 [J]. 热力发电, 2020, 49(10): 30
|
9 |
Li K Y, Zhu Z L, Xiao B, et al. State of the art overview material degradation in high-temperature supercritical CO2 environments [J]. Prog. Mater. Sci., 2023, 136: 101107
|
10 |
Liu Z, Long J C, Su H Z, et al. Understanding the stress corrosion cracking growth mechanism of a cold worked alumina-forming austenitic steel in supercritical carbon dioxide [J]. Corros. Sci., 2022, 199: 110179
|
11 |
Gheno T, Monceau D, Zhang J Q, et al. Carburisation of ferritic Fe-Cr alloys by low carbon activity gases [J]. Corros. Sci., 2011, 53: 2767
|
12 |
Sarrade S, Féron D, Rouillard F, et al. Overview on corrosion in supercritical fluids [J]. J. Supercrit. Fluids, 2017, 120: 335
|
13 |
Liu B P, Zhang Z M, Wang J Q, et al. Review of stress corrosion crack initiation of nuclear structural materials in high temperature and high pressure water [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 513
|
13 |
刘保平, 张志明, 王俭秋 等. 核用结构材料在高温高压水中应力腐蚀裂纹萌生研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 513
doi: 10.11902/1005.4537.2021.130
|
14 |
Zhang N Q, Yue G Q, Lv F B, et al. Crack growth rate of stress corrosion cracking of Inconel625 in high temperature steam [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 9
|
14 |
张乃强, 岳国强, 吕法彬 等. Inconel625合金在高温水蒸气环境中应力腐蚀开裂裂纹扩展速率研究 [J]. 中国腐蚀与防护学报, 2017, 37: 9
doi: 10.11902/1005.4537.2016.088
|
15 |
Seifert H P, Ritter S, Shoji T, et al. Environmentally-assisted cracking behaviour in the transition region of an Alloy182/SA 508 Cl.2 dissimilar metal weld joint in simulated boiling water reactor normal water chemistry environment [J]. J. Nucl. Mater., 2008, 378: 197
|
16 |
Khan H I, Zhang N Q, Yue G Q, et al. Environmentally assisted crack growth rate of an austenitic steel TP347HFG in high-temperature medium [J]. Mater. Corros., 2018, 69: 1064
|
17 |
Shen Z, Zhang L F, Tang R, et al. The effect of temperature on the SSRT behavior of austenitic stainless steels in SCW [J]. J. Nucl. Mater., 2014, 454: 274
|
18 |
Khan H I, Zhang N Q, Zhu Z L, et al. Behavior and susceptibility to stress corrosion cracking of a nickel-based alloy in superheated steam and supercritical water [J]. Mater. Corros., 2019, 70: 48
|
19 |
Peng Q J, Teysseyre S, Andresen P L, et al. Stress corrosion crack growth in type 316 stainless steel in supercritical water [J]. Corrosion, 2007, 63: 1033
|
20 |
Lee H J, Kim H, Kim S H, et al. Corrosion and carburization behavior of chromia-forming heat resistant alloys in a high-temperature supercritical-carbon dioxide environment [J]. Corros. Sci., 2015, 99: 227
|
21 |
Pint B A, Brese R G, Keiser J R. Effect of pressure on supercritical CO2 compatibility of structural alloys at 750 oC [J]. Mater. Corros., 2017, 68: 151
|
22 |
Kim S H, Kim C, Subramanian G O, et al. Corrosion and carburization behaviour of Ni-Cr-Mo-Nb superalloys in a high temperature supercritical-CO2 environment [A]. OttE, LiuX B, AnderssonJ, et al. Proceedings of the 9th International Symposium on Superalloy 718 & Derivatives: Energy, Aerospace, and Industrial Applications [M]. Cham: Springer, 2018: 179
|
23 |
Gui Y, Liang Z Y, Wang S, et al. Corrosion behavior of T91 tubing in high temperature supercritical carbon dioxide environment [J]. Corros. Sci., 2023, 211: 110857
|
24 |
Behnamian Y, Mostafaei A, Kohandehghan A, et al. Internal oxidation and crack susceptibility of alloy 310S stainless steel after long term exposure to supercritical water at 500 oC [J]. J. Supercrit. Fluids, 2017, 120: 161
|
25 |
Delkasar Maher S, Sarvghad M, Olivares R, et al. Critical components in supercritical CO2 Brayton cycle power blocks for solar power systems: degradation mechanisms and failure consequences [J]. Sol. Energy Mater. Sol. Cells, 2022, 242: 111768
|
26 |
Keiser J R, Mcdowell M, Leonard D N. Corrosion of Fe-and Ni-base alloys in 200 bar, 750 oC supercritical carbon dioxide [A]. Proceedings of the Corrosion 2017 [C]. New Orleans, 2017
|
27 |
Lv Z P. Mechanisms and growth rate models for stress corrosion cracking in high temperature water [J]. Mater. China, 2019, 38: 651
|
27 |
吕战鹏. 高温水中应力腐蚀开裂机理及扩展模型 [J]. 中国材料进展, 2019, 38: 651
|
28 |
Chen K, Wang J M, Shen Z, et al. Effect of intergranular carbides on the cracking behavior of cold worked alloy 690 in subcritical and supercritical water [J]. Corros. Sci., 2020, 164: 108313
|
29 |
Dai Z Y, Su Y H, Yang T S, et al. Study on the high temperature creep deformation and fracture behaviors of Inconel 625 deposited metal [J]. Mater. Sci. Eng., 2022, 854A: 143626
|
30 |
Kim S H, Cha J H, Jang C. Corrosion and creep behavior of a Ni-base alloy in supercritical-carbon dioxide environment at 650 oC [J]. Corros. Sci., 2020, 174: 108843
|
31 |
Chopra O K, Stevens G L, Tregoning R, et al. Effect of light water reactor water environments on the fatigue life of reactor materials [J]. J. Press. Vessel Technol., 2017, 139: 060801
|
32 |
ASTM. Standard Terminology Relating to Fatigue and Fracture Testing [M]. 2000: 19428
|
33 |
Larrosa N O, Akid R, Ainsworth R A. Corrosion-fatigue: a review of damage tolerance models [J]. Int. Mater. Rev., 2018, 63: 283
|
34 |
Zhang Z Y, Wu X Q, Han E-H, et al. A review on corrosion fatigue crack growth behavior of structural materials in nuclear power plants [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 9
|
34 |
张兹瑜, 吴欣强, 韩恩厚 等. 核电结构材料腐蚀疲劳裂纹扩展行为研究现状与进展 [J]. 中国腐蚀与防护学报, 2022, 42: 9
doi: 10.11902/1005.4537.2021.094
|
35 |
Song Y D, Ling C, Zhang L C, et al. Research progress on hot corrosion-fatigue of aero-engine and gas turbine hot-section components [J]. J. Nanjing Univ. Aeronaut. Astronaut., 2022, 54: 771
|
35 |
宋迎东, 凌 晨, 张磊成 等. 航空发动机和燃气轮机热端部件热腐蚀-疲劳研究进展 [J]. 南京航空航天大学学报, 2022, 54: 771
|
36 |
Xu S, Wu X Q, Han E-H, et al. A review of corrosion fatigue of steels for lwr plant in high temperature and high pressure water [J]. Corros. Sci. Prot. Technol., 2007, 19: 345
|
36 |
徐 松, 吴欣强, 韩恩厚 等. 核电站用钢的高温高压水腐蚀疲劳研究进展 [J]. 腐蚀科学与防护技术, 2007, 19: 345
|
37 |
Rozman K A, Holcomb G R, Carney C S, et al. Effect of 730 oC supercritical fluid exposure on the fatigue threshold of Ni-based superalloy haynes 282 [J]. J. Mater. Eng. Perform., 2019, 28: 4335
doi: 10.1007/s11665-019-04164-2
|
38 |
Thatte A, Martin E, Hanlon T. A novel experimental method for LCF measurement of nickel base super alloys in high pressure high temperature supercritical CO2 [A]. Proceedings of the ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition [C]. Charlotte, 2017
|
39 |
Chen H Z, Li B R, Wen B, et al. Corrosion resistance of iron-chromium-aluminium steel in eutectic molten salts under thermal cycling conditions [J]. Corros. Sci., 2020, 173: 108798
|
40 |
Zhang N Q, Zhu Z L, Yue G Q, et al. The oxidation behaviour of an austenitic steel in deaerated supercritical water at 600-700 oC [J]. Mater. Charact., 2017, 132: 119
|
41 |
Pint B A, Raiman S S, Keiser J R. Lifetime modeling for a supercritical CO2-molten salt CSP power block [A]. Proceedings of the SOLARPACES 2018: International Conference on Concentrating Solar Power and Chemical Energy Systems [C]. Casablanca, 2019
|
42 |
Bian W W, Lu Y H, Zhang X F, et al. Effect of fretting wear regimes on stress corrosion cracking of Alloy 690TT in high-temperature pressurized water [J]. Corros. Sci., 2024, 237: 112320
|
43 |
Chen K, Wang J, Zhang L, et al. A high-resolution study of the different surface state effects on the corrosion behaviors of a ferritic steel and an austenitic steel in supercritical water [J]. Corros. Sci., 2022, 209: 110757
|
44 |
Wang Y, Shen Z, Jia H D, et al. The effect of surface grinding and Si addition on the corrosion of Fe-12Cr ODS steels in supercritical CO2 [J]. Corros. Sci., 2023, 224: 111533
|
45 |
Qian H C, Yang L J, Feng X Y, et al. The effect of surface grinding on the stress corrosion cracking initiation of 316LN stainless steel in 600 oC supercritical CO2 [J]. Corros. Sci., 2024, 234: 112147
|
46 |
Chen K, Liu Z, Guo X L, et al. Effect of surface finishing on the oxidation characteristics of a Fe-21Cr-32Ni alloy in supercritical carbon dioxide [J]. Corros. Sci., 2022, 195: 110019
|
47 |
Wang Y, Li K X, Zhou Z J, et al. The surface grinding-induced oxide scale exfoliation of an austenitic alloy in supercritical CO2 [J]. Corros. Sci., 2023, 225: 111615
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|