|
|
固体氧化物燃料电池金属连接体研究进展 |
董子烨1, 吴毅恒1, 卢翀2( ), 沈朝1( ), 曾小勤1 |
1 上海交通大学材料科学与工程学院 上海 200240 2 上海交通大学分析测试中心 上海 200240 |
|
Research Progress in Metallic Interconnectors for Solid Oxide Fuel Cells (SOFCs) |
DONG Ziye1, WU Yiheng1, LU Chong2( ), SHEN Zhao1( ), ZENG Xiaoqin1 |
1 School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China 2 Instrument Analysis Center, Shanghai Jiao Tong University, Shanghai 200240, China |
引用本文:
董子烨, 吴毅恒, 卢翀, 沈朝, 曾小勤. 固体氧化物燃料电池金属连接体研究进展[J]. 中国腐蚀与防护学报, 2025, 45(1): 46-60.
Ziye DONG,
Yiheng WU,
Chong LU,
Zhao SHEN,
Xiaoqin ZENG.
Research Progress in Metallic Interconnectors for Solid Oxide Fuel Cells (SOFCs)[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(1): 46-60.
1 |
Sun K N. Solid Oxide Fuel Cell [M]. Beijing: Science Press, 2019
|
1 |
孙克宁. 固体氧化物燃料电池 [M]. 北京: 科学出版社, 2019
|
2 |
Li J. Oxidation behavior, Cr evaporation feature and surface modification of metallic interconnect for intermediate temperature solid oxide fuel cells [D]. Wuhan: Huazhong University of Science and Technology, 2018
|
2 |
李 俊. 中温固体氧化物燃料电池金属连接体的氧化行为和Cr挥发特性及其表面改性 [D]. 武汉: 华中科技大学, 2018
|
3 |
Liu Y, Ren Y J, Chen J, et al. Preparation and corrosion resistance of ternary layered compound Cr2AlC coating on 304 stainless steel for bipolar plates of PEMFC [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 62
|
3 |
刘 云, 任延杰, 陈 荐 等. 质子交换膜燃料电池不锈钢双极板表面Cr2AlC涂层的制备与耐蚀性能 [J]. 中国腐蚀与防护学报, 2023, 43: 62
|
4 |
Yamamoto O. Solid oxide fuel cells: fundamental aspects and prospects [J]. Electrochim. Acta, 2000, 45: 2423
|
5 |
Podhurska V, Kuprin O, Prikhna T, et al. Development of oxidation-resistant and electrically conductive coating of Ti-Al-C system for the lightweight interconnects of solid oxide fuel cells [J]. Heliyon, 2024, 10: e23275
|
6 |
Evans A, Bieberle-Hütter A, Rupp J L M, et al. Review on microfabricated micro-solid oxide fuel cell membranes [J]. J. Power Sources, 2009, 194: 119
|
7 |
Laosiripojana N. Reviews on solid oxide fuel cell technology [J]. Eng. J., 2009, 13: 65
|
8 |
Wang B H, Xiao B, Pan P Y, et al. Research progress on corrosion of metal interconnector for solid oxide fuel cells [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 6
|
8 |
王碧辉, 肖 博, 潘佩媛 等. 固体氧化物燃料电池金属连接体腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 6
doi: 10.11902/1005.4537.2022.049
|
9 |
Cheng Q, Han D, Shi J, et al. Research progress of new interconnect materials used for solid oxide fuel cell [J]. J. Funct. Mater., 2023, 54(2): 18
|
9 |
程 强, 韩 东, 时 婧 等. 固体氧化物燃料电池新型连接体材料的研究进展 [J]. 功能材料, 2023, 54(2): 18
|
10 |
Yokokawa H, Sakai N, Horita T, et al. Recent developments in solid oxide fuel cell materials [J]. Fuel Cells, 2001, 1: 117
|
11 |
Singhal S C. Solid oxide fuel cells: past, present and future [A]. IrvineJT S, ConnorP. Solid Oxide Fuels Cells: Facts and Figures [M]. London: Springer, 2013: 1
|
12 |
Minh N Q, Horne C R, Liu F S, et al. Proceedings of the Twenty Fifth Intersociety Energy Conversion Engineering Conference [C]. New York: American Institute of Chemical Engineers, 1990: 256
|
13 |
Zhu W Z, Deevi S C. Development of interconnect materials for solid oxide fuel cells [J]. Mater. Sci. Eng., 2003, 348A: 227
|
14 |
Wu J W, Liu X B. Recent development of SOFC metallic interconnect [J]. J. Mater. Sci. Technol., 2010, 26: 293
|
15 |
Fontana S, Amendola R, Chevalier S, et al. Metallic interconnects for SOFC: characterisation of corrosion resistance and conductivity evaluation at operating temperature of differently coated alloys [J]. J. Power Sources, 2007, 171: 652
|
16 |
Kendall K. Progress in solid oxide fuel cell materials [J]. Int. Mater. Rev., 2005, 50: 257
|
17 |
Mah J C W, Muchtar A, Somalu M R, et al. Metallic interconnects for solid oxide fuel cell: a review on protective coating and deposition techniques [J]. Int. J. Hydrog. Energy, 2017, 42: 9219
|
18 |
Singhal S C. Science and technology of solid- oxide fuel cells [J]. MRS Bull., 2000, 25: 16
|
19 |
Shaigan N, Qu W, Ivey D G, et al. A review of recent progress in coatings, surface modifications and alloy developments for solid oxide fuel cell ferritic stainless steel interconnects [J]. J. Power Sources, 2010, 195: 1529
|
20 |
Miguel-Pérez V, Martínez-Amesti A, Nó M L, et al. Oxide scale formation on different metallic interconnects for solid oxide fuel cells [J]. Corros. Sci., 2012, 60: 38
|
21 |
Hilpert K, Das D, Miller M, et al. Chromium vapor species over solid oxide fuel cell interconnect materials and their potential for degradation processes [J]. J. Electrochem. Soc., 1996, 143: 3642
|
22 |
Konysheva E, Seeling U, Besmehn A, et al. Chromium vaporization of the ferritic steel Crofer22APU and ODS Cr5Fe1Y2O3 alloy [J]. J. Mater. Sci., 2007, 42: 5778
|
23 |
Zhang W Y, Yan D, Yang J, et al. A novel low Cr-containing Fe-Cr-Co alloy for metallic interconnects in planar intermediate temperature solid oxide fuel cells [J]. J. Power Sources, 2014, 271: 25
|
24 |
Jiang S P, Chen X B. Chromium deposition and poisoning of cathodes of solid oxide fuel cells-a review [J]. Int. J. Hydrog. Energy, 2014, 39: 505
|
25 |
Chen X B, Jin C, Zhao L, et al. Study on the Cr deposition and poisoning phenomenon at (La0.6Sr0.4)(Co0.2Fe0.8)O3- δ electrode of solid oxide fuel cells by transmission X-ray microscopy [J]. Int. J. Hydrog. Energy, 2014, 39: 15728
|
26 |
Martinz H P, Köck W, Sakaki T. Ducropur Ducrolloy-New chromium materials [J]. J. Phys. IV, 1993, 3: 205
|
27 |
Shaigan N. Protective/conductive coatings for ferritic stainless steel interconnects used in solid oxide fuel cells [D]. Alberta: University of Alberta, 2009
|
28 |
Fergus J W. Metallic interconnects for solid oxide fuel cells [J]. Mater. Sci. Eng., 2005, 397A: 271
|
29 |
Li J, Pu J, Xiao J Z, et al. Oxidation of Haynes 230 alloy in reduced temperature solid oxide fuel cell environments [J]. J. Power Sources, 2005, 139: 182
|
30 |
Zhu W Z, Deevi S C. Opportunity of metallic interconnects for solid oxide fuel cells: a status on contact resistance [J]. Mater. Res. Bull., 2003, 38: 957
|
31 |
Yang Z G. Recent advances in metallic interconnects for solid oxide fuel cells [J]. Int. Mater. Rev., 2008, 53: 39
|
32 |
Sun Q Q, Jia X Q, Xu Z L, et al. Study on structure and adhesion of oxide scales of 304 and 430 stainless steel billets [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1649
|
32 |
孙琼琼, 贾玺泉, 徐震霖 等. 304和430不锈钢铸坯氧化皮结构及结合力研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1649
doi: 10.11902/1005.4537.2023.397
|
33 |
Jia C, Wang Y H, Molin S, et al. High temperature oxidation behavior of SUS430 SOFC interconnects with Mn-Co spinel coating in air [J]. J. Alloy. Compd., 2019, 787: 1327
|
34 |
Mehran M T, Kim T H, Khan M Z, et al. Highly durable nano-oxide dispersed ferritic stainless steel interconnects for intermediate temperature solid oxide fuel cells [J]. J. Power Sources, 2019, 439: 227109
|
35 |
Mehran M T, Song R H, Lee J W, et al. Nano-oxide dispersed ferritic stainless steel for metallic interconnects of solid oxide fuel cells [J]. ECS Trans., 2017, 78: 1575
|
36 |
Wang Z Q, Li C, Si X Q, et al. Oxidation behavior of ferritic stainless steel interconnect coated by a simple diffusion bonded cobalt protective layer for solid oxide fuel cells [J]. Corros. Sci., 2020, 172: 108739
|
37 |
Reddy M J, Svensson J E, Froitzheim J. Evaluating candidate materials for balance of plant components in SOFC: oxidation and Cr evaporation properties [J]. Corros. Sci., 2021, 190: 109671
|
38 |
Yang Z, Xia G, Wang C, et al. Investigation of AISI 441 ferritic stainless steel and development of spinel coatings for SOFC interconnect applications [R]. Richland: Pacific Northwest National Laboratory, 2008
|
39 |
Goebel C, Berger R, Bernuy-Lopez C, et al. Long-term (4 year) degradation behavior of coated stainless steel 441 used for solid oxide fuel cell interconnect applications [J]. J. Power Sources, 2020, 449: 227480
|
40 |
Yang Z G, Xia G G, Wang C M, et al. Investigation of iron-chromium-niobium-titanium ferritic stainless steel for solid oxide fuel cell interconnect applications [J]. J. Power Sources, 2008, 183: 660
|
41 |
Yang Z G, Xia G G, Walker M S, et al. High temperature oxidation/corrosion behavior of metals and alloys under a hydrogen gradient [J]. Int. J. Hydrog. Energy, 2007, 32: 3770
|
42 |
Park B K, Lee J W, Lee S B, et al. Cu- and Ni-doped Mn1.5Co1.5O4 spinel coatings on metallic interconnects for solid oxide fuel cells [J]. Int. J. Hydrog. Energy, 2013, 38: 12043
|
43 |
Hosseini S N, Karimzadeh F, Enayati M H, et al. Oxidation and electrical behavior of CuFe2O4 spinel coated Crofer 22 APU stainless steel for SOFC interconnect application [J]. Solid State Ionics, 2016, 289: 95
|
44 |
Sabato A G, Molin S, Javed H, et al. In-situ Cu-doped MnCo-spinel coatings for solid oxide cell interconnects processed by electrophoretic deposition [J]. Ceram. Int., 2019, 45: 19148
doi: 10.1016/j.ceramint.2019.06.161
|
45 |
Lee S I, Hong J, Kim H, et al. Highly dense Mn-Co spinel coating for protection of metallic interconnect of solid oxide fuel cells [J]. J. Electrochem. Soc., 2014, 161: F1389
|
46 |
Yang Z G, Walker M S, Singh P, et al. Anomalous corrosion behavior of stainless steels under SOFC interconnect exposure conditions [J]. Electrochem. Solid-State Lett., 2003, 6: B35
|
47 |
Alnegren P, Sattari M, Svensson J E, et al. Severe dual atmosphere effect at 600 oC for stainless steel 441 [J]. J. Power Sources, 2016, 301: 170
|
48 |
Gunduz K O, Chyrkin A, Goebel C, et al. The effect of hydrogen on the breakdown of the protective oxide scale in solid oxide fuel cell interconnects [J]. Corros. Sci., 2021, 179: 109112
|
49 |
Amendola R, Gannon P, Ellingwood B, et al. Oxidation behavior of coated and preoxidized ferritic steel in single and dual atmosph-ere exposures at 800 oC [J]. Surf. Coat. Technol., 2012, 206: 2173
|
50 |
Stygar M, Matsuda K, Lee S, et al. Corrosion behavior of crofer 22APU for metallic interconnects in single and dual atmosphere exposures at 1073 K [J]. Acta Phys. Pol., 2017, 131A: 1394
|
51 |
Li J, Yan D, Gong Y P, et al. Investigation of anomalous oxidation behavior of SUS430 alloy in solid oxide fuel cell dual atmosphere [J]. J. Electrochem. Soc., 2017, 164: C945
|
52 |
Alnegren P, Sattari M, Svensson J E, et al. Temperature dependence of corrosion of ferritic stainless steel in dual atmosphere at 600-800 oC [J]. J. Power Sources, 2018, 392: 129
|
53 |
Skilbred A W B, Haugsrud R. The effect of dual atmosphere conditions on the corrosion of Sandvik Sanergy HT [J]. Int. J. Hydrog. Energy, 2012, 37: 8095
|
54 |
Rufner J, Gannon P, White P, et al. Oxidation behavior of stainless steel 430 and 441 at 800 oC in single (air/air) and dual atmosphere (air/hydrogen) exposures [J]. Int. J. Hydrog. Energy, 2008, 33: 1392
|
55 |
Goebel C, Alnegren P, Faust R, et al. The effect of pre-oxidation parameters on the corrosion behavior of AISI 441 in dual atmosphere [J]. Int. J. Hydrog. Energy, 2018, 43: 14665
|
56 |
Essuman E, Meier G H, Żurek J, et al. The effect of water vapor on selective oxidation of Fe-Cr alloys [J]. Oxid. Met., 2008, 69: 143
|
57 |
Chyrkin A, Gunduz K O, Asokan V, et al. High temperature oxidation of AISI 441 in simulated solid oxide fuel cell anode side conditions [J]. Corros. Sci., 2022, 203: 110338
|
58 |
Yang Z G, Walker M S, Singh P, et al. Oxidation behavior of ferritic stainless steels under SOFC interconnect exposure conditions [J]. J. Electrochem. Soc., 2004, 151: B669
|
59 |
Talic B, Molin S, Hendriksen P V, et al. Effect of pre-oxidation on the oxidation resistance of Crofer 22 APU [J]. Corros. Sci., 2018, 138: 189
|
60 |
Sachitanand R, Sattari M, Svensson J E, et al. The oxidation of coated SOFC interconnects in fuel side environments [J]. Fuel Cells, 2016, 16: 32
|
61 |
Sattari M, Sachitanand R, Froitzheim J, et al. The effect of Ce on the high temperature oxidation properties of a Fe-22%Cr steel: microstructural investigation and EELS analysis [J]. Mater. High Temp., 2015, 32: 118
|
62 |
Fontana S, Chevalier S, Caboche G. Metallic interconnects for solid oxide fuel cell: performance of reactive element oxide coating during long time exposure [J]. Mater. Corros., 2011, 62: 650
|
63 |
Tomas M, Svensson J E, Froitzheim J. Hydrogen-barrier coatings against dual-atmosphere corrosion for IT-SOFC interconnect applications [J]. Int. J. Hydrog. Energy, 2024, 58: 852
|
64 |
Ko Y S, Kim S, Park S, et al. Effect of the simultaneous addition of lanthanum and nickel on the oxidation behavior and related area-specific resistance of ferritic stainless steels for solid oxide fuel cell interconnects [J]. Corros. Sci., 2024, 233: 112098
|
65 |
Qu W, Jian L, Ivey D G, et al. Yttrium, cobalt and yttrium/cobalt oxide coatings on ferritic stainless steels for SOFC interconnects [J]. J. Power Sources, 2006, 157: 335
|
66 |
Falk-Windisch H, Claquesin J, Sattari M, et al. Co-and Ce/Co-coated ferritic stainless steel as interconnect material for intermediate temperature solid oxide fuel cells [J]. J. Power Sources, 2017, 343: 1
|
67 |
Jiang S P, Liu L, Ong K P, et al. Electrical conductivity and performance of doped LaCrO3 perovskite oxides for solid oxide fuel cells [J]. J. Power Sources, 2008, 176: 82
|
68 |
Fergus J W. Lanthanum chromite-based materials for solid oxide fuel cell interconnects [J]. Solid State Ionics, 2004, 171: 1
|
69 |
Brylewski T, Dabek J, Przybylski K, et al. Screen-printed (La, Sr)CrO3 coatings on ferritic stainless steel interconnects for solid oxide fuel cells using nanopowders prepared by means of ultrasonic spray pyrolysis [J]. J. Power Sources, 2012, 208: 86
|
70 |
Kim J H, Peck D H, Song R H, et al. Synthesis and sintering properties of (La0.8Ca0.2- x Sr x ) CrO3 perovskite materials for SOFC interconnect [J]. J. Electroceram., 2006, 17: 729
|
71 |
Yang Z G, Xia G G, Maupin G D, et al. Conductive protection layers on oxidation resistant alloys for SOFC interconnect applications [J]. Surf. Coat. Technol., 2006, 201: 4476
|
72 |
Waluyo N S, Song R H, Lee S B, et al. Electrophoretically deposited LaNi0.6Fe0.4O3 perovskite coatings on metallic interconnects for solid oxide fuel cells [J]. J. Electrochem. Soc., 2016, 163: F1245
|
73 |
Waluyo N S, Park B K, Song R H, et al. Lanthanum nickelates with a perovskite structure as protective coatings on metallic interconnects for solid oxide fuel cells [J]. J. Korean Ceram. Soc., 2015, 52: 344
|
74 |
Chu C L, Wang J Y, Lee S. Effects of La0.67Sr0.33MnO3 protective coating on SOFC interconnect by plasma-sputtering [J]. Int. J. Hydrog. Energy, 2008, 33: 2536
|
75 |
Shaigan N, Ivey D G, Chen W X. Co/LaCrO3 composite coatings for AISI 430 stainless steel solid oxide fuel cell interconnects [J]. J. Power Sources, 2008, 185: 331
|
76 |
Petric A, Ling H. Electrical conductivity and thermal expansion of spinels at elevated temperatures [J]. J. Am. Ceram. Soc., 2007, 90: 1515
|
77 |
Zhao Q Q, Geng S J, Chen G, et al. Comparison of electroplating and sputtering Ni for Ni/NiFe2 dual layer coating on ferritic stainless steel interconnect [J]. Corros. Sci., 2021, 192: 109837
|
78 |
Acharya N, Chaitra U, Vijeth H, et al. Highly dense Mn3O4 and CuMn2O4 spinels as efficient protective coatings on solid oxide fuel cell interconnect and their chromium diffusion studies [J]. J. Alloy. Compd., 2022, 918: 165377
|
79 |
Shen Z J, Rong J, Yu X H. Mn x Co3- x O4 spinel coatings: controlled synthesis and high temperature oxidation resistance behavior [J]. Ceram. Int., 2020, 46: 5821
|
80 |
Wang B H, Liu J, Cui Z X, et al. Long-term stability of MnCo spinel coatings prepared by electrophoretic deposition at high temperatures [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 972
|
80 |
王碧辉, 刘 聚, 崔志翔 等. 电泳沉积制备MnCo尖晶石涂层的高温长期稳定性研究 [J]. 中国腐蚀与防护学报, 2024, 44: 972
doi: 10.11902/1005.4537.2023.310
|
81 |
Hosseini N, Abbasi M H, Karimzadeh F, et al. Development of Cu1.3Mn1.7O4 spinel coating on ferritic stainless steel for solid oxide fuel cell interconnects [J]. J. Power Sources, 2015, 273: 1073
|
82 |
Pan Y, Liu Y T, Shi D Y, et al. Fabrication and oxidation behavior of the Cu-Fe spinel coating for SOFC steel interconnect applications [J]. ACS Appl. Energy Mater., 2024, 7: 4950
|
83 |
Zhao M S, Geng S J, Chen G, et al. Thermal conversion and evolution behavior of surface scale on SOFC interconnect steel with sputtered FeCoNi coating [J]. Corros. Sci., 2020, 168: 108561
|
84 |
Zhou J T, Hu X W, Li J L, et al. Cu doped Ni-Co spinel protective coatings for solid oxide fuel cell interconnects application [J]. Int. J. Hydrog. Energy, 2021, 46: 33580
|
85 |
Xiao J H, Zhang W Y, Xiong C Y, et al. Oxidation behavior of Cu-doped MnCo2O4 spinel coating on ferritic stainless steels for solid oxide fuel cell interconnects [J]. Int. J. Hydrog. Energy, 2016, 41: 9611
|
86 |
Zhou J T, Hu X W, Li J L. Effect of Cu on the diffusion behavior and electrical properties of Ni-Co conversion coating for metallic interconnects in solid oxide fuel cells [J]. J. Alloy. Compd., 2021, 887: 161358
|
87 |
Jiang Z, Wen K, Song C, et al. Highly conductive Mn-Co spinel powder prepared by Cu-doping used for interconnect protection of SOFC [J]. Coatings, 2021, 11: 1298
|
88 |
Saeidpour F, Ebrahimifar H. Effect of nanostructure Fe-Ni-Co spinel oxides/Y2O3 coatings on the high-temperature oxidation behavior of Crofer 22 APU stainless steel interconnect [J]. Corros. Sci., 2021, 182: 109280
|
89 |
Tseng H P, Yung T Y, Liu C K, et al. Oxidation characteristics and electrical properties of La-or Ce-doped MnCo2O4 as protective layer on SUS441 for metallic interconnects in solid oxide fuel cells [J]. Int. J. Hydrog. Energy, 2020, 45: 12555
|
90 |
Shahbaznejad H, Ebrahimifar H. A study on the oxidation and electrical behavior of crofer 22 APU solid oxide fuel cell interconnects with Ni-Co-CeO2 composite coating [J]. J. Mater. Sci.: Mater. Electron., 2021, 32: 7550
|
91 |
Wang B H, Li K Y, Liu J, et al. Promoting electric conductivity of MnCo spinel coating by doping transition metals (Cu, Fe) or rare-earth elements (La, Y) for solid oxide fuel cell interconnect [J]. Int. J. Hydrog. Energy, 2024, 61: 216
|
92 |
Jin Y Q, Hao G Z, Guo M Y, et al. Ce-doped (Mn, Co)3O4 coatings for solid oxide fuel cell interconnect applications [J]. Ceram. Int., 2022, 48: 34931
|
93 |
Li X C, Chi Y C, Wei S L, et al. The preparation and properties of Ti(Nb)-Si-C coating on the pre-oxidized ferritic stainless steel for solid oxide fuel cell interconnect [J]. Materials, 2024, 17: 632
|
94 |
Li X C, Wang Z K, Wei S L, et al. TiC and (Ti, Nb)3SiC2 based dual-layer coating on SUS430 for solid oxide fuel cell interconnects [J]. Int. J. Hydrog. Energy, 2024, 63: 19
|
95 |
Gan L, Yamamoto T, Murakami H. Microstructure and diffusion behavior in the multilayered oxides formed on a Co-W electroplated ferritic stainless steel followed by oxidation treatment [J]. Acta Mater., 2020, 194: 295
doi: 10.1016/j.actamat.2020.04.048
|
96 |
Gan L, Murakami H, Saeki I. High temperature oxidation of Co-W electroplated type 430 stainless steel for the interconnect of solid oxide fuel cells [J]. Corros. Sci., 2018, 134: 162
|
97 |
Safikhani A, Aminfard M. Effect of W and Ti addition on oxidation behavior and area-specific resistance of Fe-22Cr-0.5Mn ferritic stainless steel for SOFCs interconnect [J]. Int. J. Hydrog. Energy, 2014, 39: 2286
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|