Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (1): 46-60     CSTR: 32134.14.1005.4537.2024.259      DOI: 10.11902/1005.4537.2024.259
  综合评述 本期目录 | 过刊浏览 |
固体氧化物燃料电池金属连接体研究进展
董子烨1, 吴毅恒1, 卢翀2(), 沈朝1(), 曾小勤1
1 上海交通大学材料科学与工程学院 上海 200240
2 上海交通大学分析测试中心 上海 200240
Research Progress in Metallic Interconnectors for Solid Oxide Fuel Cells (SOFCs)
DONG Ziye1, WU Yiheng1, LU Chong2(), SHEN Zhao1(), ZENG Xiaoqin1
1 School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2 Instrument Analysis Center, Shanghai Jiao Tong University, Shanghai 200240, China
引用本文:

董子烨, 吴毅恒, 卢翀, 沈朝, 曾小勤. 固体氧化物燃料电池金属连接体研究进展[J]. 中国腐蚀与防护学报, 2025, 45(1): 46-60.
Ziye DONG, Yiheng WU, Chong LU, Zhao SHEN, Xiaoqin ZENG. Research Progress in Metallic Interconnectors for Solid Oxide Fuel Cells (SOFCs)[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(1): 46-60.

全文: PDF(18520 KB)   HTML
摘要: 

固体氧化物燃料电池(SOFC)是一种全固态燃料电池,连接体作为其中的关键组成部分,显著影响电池的性能。早期的连接体采用陶瓷材料制作,其高昂的成本和较高的电阻阻碍了电池的发展。随着电池工作温度的降低(550~800 ℃),金属材料取代陶瓷材料成为可能。铁素体不锈钢(FSS)凭借其低成本、良好的机械加工性能、高温下较好的耐腐蚀能力等优点,成为连接体候选材料,但其性能仍需进一步优化。本文综述了550~800 ℃ SOFC连接体材料研究现状,重点介绍了FSS以及表面改性FSS的研究情况,比较了预氧化和各类涂层改性FSS的优缺点,并对连接体材料的研究方向进行了展望。

关键词 固体氧化物燃料电池金属连接体抗氧化性能表面涂层    
Abstract

Solid oxide fuel cell (SOFC) is a type of all-solid-state fuel cell, in which the interconnector, as a key component, significantly affects the performance of the cell. Earlier interconnects were made of ceramic materials, whose high cost and high resistance hindered the development of SOFCs. As the operating temperature of SOFCs has decreased to a range from 550 oC to 800 oC, the possibility of replacing ceramic materials with metallic alternatives has emerged. Ferritic stainless steel (FSS) has been identified as a promising candidate for interconnectors due to its low cost, good machinability and good corrosion resistance at elevated temperatures, etc. But its properties still need to be further optimized. This paper introduces the research status of SOFC interconnectors at 550-800 oC with emphasis on the research status of FSS and surface-modified FSS. The advantages and disadvantages of pre-oxidation and various coating-modified FSS are compared, and the potential research direction of interconnecting materials is prospected.

Key wordssolid oxide fuel cell    metallic interconnector    oxidation resistance    surface coating
收稿日期: 2024-08-17      32134.14.1005.4537.2024.259
ZTFLH:  TG174  
基金资助:中核集团领创基金项目(23GFCJJ12-941; 22GFC-JJ12-477);中核集团青年英才项目(24GFC-JJ12-131)
通讯作者: 沈朝,E-mail:shenzhao081@sjtu.edu.cn,研究方向为金属高温腐蚀;
卢翀,E-mail:luchong@sjtu.edu.cn,研究方向为透射电子显微学
Corresponding author: SHEN Zhao, E-mail: shenzhao081@sjtu.edu.cn;
LU Chong, E-mail: luchong@sjtu.edu.cn
作者简介: 董子烨,男,2004年生,本科生
图1  SUS 430[33],AISI 441[36]和Crofer 22 APU[20]在800 ℃空气中氧化1000 h后的横截面SEM和EDS图像
图2  Crofer 22 APU在800 ℃空气中以及在双气氛中空气侧氧化300 h后的SEM-EDS图像[41]
图3  AISI 441钢以及涂覆CeO2涂层样品的SEM显微形貌[63]
图4  涂层合金横截面SEM/EDS像,涂层SEM像和涂层烧结前后高分辨率SEM图像[72]
图5  TiC/TNSC涂层样品在800 ℃空气中氧化500 h后的横截面SEM和相应的EDS元素分布图[94]
ElementMgMnCoNiCuZn
AlMgAl2O4MnAl2O4CoAl2O4NiAl2O4CuAl2O4ZnAl2O4
σ = 10-6σ = 10-3σ = 10-5σ = 10-4σ = 0.05σ = 10-6
α = 9.0α = 7.9α = 8.7α = 8.1α = /α = 8.7
CrMgCr2O4Mn1.2Cr1.8O4CoCr2O4NiCr2O4CuCr2O4ZnCr2O4
σ = 0.02σ = 0.02σ = 7.4σ = 0.73σ = 0.40σ = 0.01
α = 7.2α = 6.8α = 7.5α = 7.3α = /α = 7.1
MnMgMn2O4Mn3O4CoMn2O4NiMn2O4Cu1.3Mn1.7O4ZnMn2O4
σ = 0.97σ = 0.10σ = 6.4σ = 1.4σ = 225(750 oC)σ = /
α = 8.7α = 8.8α = 7.0α = 8.5α = 12.2α = /
FeMgFe2O4MnFe2O4CoFe2O4NiFe2O4CuFe2O4ZnFe2O4
σ = 0.08σ = 8.0σ = 0.93σ = 0.26σ = 9.1σ = 0.07
α = 12.3α = 12.5α = 12.1α = 10.8α = 11.2α = 7.0
CoMgCo2O4MnCo2O4Co3O4NiCo2O4CuCo2O4ZnCo2O4
σ = /σ = 60σ = 6.7σ = /σ = /σ = /
α = /α = 9.7α = 9.3α = /α = /α = /
表1  各种尖晶石的电导率及热膨胀系数[76]
1 Sun K N. Solid Oxide Fuel Cell [M]. Beijing: Science Press, 2019
1 孙克宁. 固体氧化物燃料电池 [M]. 北京: 科学出版社, 2019
2 Li J. Oxidation behavior, Cr evaporation feature and surface modification of metallic interconnect for intermediate temperature solid oxide fuel cells [D]. Wuhan: Huazhong University of Science and Technology, 2018
2 李 俊. 中温固体氧化物燃料电池金属连接体的氧化行为和Cr挥发特性及其表面改性 [D]. 武汉: 华中科技大学, 2018
3 Liu Y, Ren Y J, Chen J, et al. Preparation and corrosion resistance of ternary layered compound Cr2AlC coating on 304 stainless steel for bipolar plates of PEMFC [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 62
3 刘 云, 任延杰, 陈 荐 等. 质子交换膜燃料电池不锈钢双极板表面Cr2AlC涂层的制备与耐蚀性能 [J]. 中国腐蚀与防护学报, 2023, 43: 62
4 Yamamoto O. Solid oxide fuel cells: fundamental aspects and prospects [J]. Electrochim. Acta, 2000, 45: 2423
5 Podhurska V, Kuprin O, Prikhna T, et al. Development of oxidation-resistant and electrically conductive coating of Ti-Al-C system for the lightweight interconnects of solid oxide fuel cells [J]. Heliyon, 2024, 10: e23275
6 Evans A, Bieberle-Hütter A, Rupp J L M, et al. Review on microfabricated micro-solid oxide fuel cell membranes [J]. J. Power Sources, 2009, 194: 119
7 Laosiripojana N. Reviews on solid oxide fuel cell technology [J]. Eng. J., 2009, 13: 65
8 Wang B H, Xiao B, Pan P Y, et al. Research progress on corrosion of metal interconnector for solid oxide fuel cells [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 6
8 王碧辉, 肖 博, 潘佩媛 等. 固体氧化物燃料电池金属连接体腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 6
doi: 10.11902/1005.4537.2022.049
9 Cheng Q, Han D, Shi J, et al. Research progress of new interconnect materials used for solid oxide fuel cell [J]. J. Funct. Mater., 2023, 54(2): 18
9 程 强, 韩 东, 时 婧 等. 固体氧化物燃料电池新型连接体材料的研究进展 [J]. 功能材料, 2023, 54(2): 18
10 Yokokawa H, Sakai N, Horita T, et al. Recent developments in solid oxide fuel cell materials [J]. Fuel Cells, 2001, 1: 117
11 Singhal S C. Solid oxide fuel cells: past, present and future [A]. IrvineJT S, ConnorP. Solid Oxide Fuels Cells: Facts and Figures [M]. London: Springer, 2013: 1
12 Minh N Q, Horne C R, Liu F S, et al. Proceedings of the Twenty Fifth Intersociety Energy Conversion Engineering Conference [C]. New York: American Institute of Chemical Engineers, 1990: 256
13 Zhu W Z, Deevi S C. Development of interconnect materials for solid oxide fuel cells [J]. Mater. Sci. Eng., 2003, 348A: 227
14 Wu J W, Liu X B. Recent development of SOFC metallic interconnect [J]. J. Mater. Sci. Technol., 2010, 26: 293
15 Fontana S, Amendola R, Chevalier S, et al. Metallic interconnects for SOFC: characterisation of corrosion resistance and conductivity evaluation at operating temperature of differently coated alloys [J]. J. Power Sources, 2007, 171: 652
16 Kendall K. Progress in solid oxide fuel cell materials [J]. Int. Mater. Rev., 2005, 50: 257
17 Mah J C W, Muchtar A, Somalu M R, et al. Metallic interconnects for solid oxide fuel cell: a review on protective coating and deposition techniques [J]. Int. J. Hydrog. Energy, 2017, 42: 9219
18 Singhal S C. Science and technology of solid- oxide fuel cells [J]. MRS Bull., 2000, 25: 16
19 Shaigan N, Qu W, Ivey D G, et al. A review of recent progress in coatings, surface modifications and alloy developments for solid oxide fuel cell ferritic stainless steel interconnects [J]. J. Power Sources, 2010, 195: 1529
20 Miguel-Pérez V, Martínez-Amesti A, Nó M L, et al. Oxide scale formation on different metallic interconnects for solid oxide fuel cells [J]. Corros. Sci., 2012, 60: 38
21 Hilpert K, Das D, Miller M, et al. Chromium vapor species over solid oxide fuel cell interconnect materials and their potential for degradation processes [J]. J. Electrochem. Soc., 1996, 143: 3642
22 Konysheva E, Seeling U, Besmehn A, et al. Chromium vaporization of the ferritic steel Crofer22APU and ODS Cr5Fe1Y2O3 alloy [J]. J. Mater. Sci., 2007, 42: 5778
23 Zhang W Y, Yan D, Yang J, et al. A novel low Cr-containing Fe-Cr-Co alloy for metallic interconnects in planar intermediate temperature solid oxide fuel cells [J]. J. Power Sources, 2014, 271: 25
24 Jiang S P, Chen X B. Chromium deposition and poisoning of cathodes of solid oxide fuel cells-a review [J]. Int. J. Hydrog. Energy, 2014, 39: 505
25 Chen X B, Jin C, Zhao L, et al. Study on the Cr deposition and poisoning phenomenon at (La0.6Sr0.4)(Co0.2Fe0.8)O3- δ electrode of solid oxide fuel cells by transmission X-ray microscopy [J]. Int. J. Hydrog. Energy, 2014, 39: 15728
26 Martinz H P, Köck W, Sakaki T. Ducropur Ducrolloy-New chromium materials [J]. J. Phys. IV, 1993, 3: 205
27 Shaigan N. Protective/conductive coatings for ferritic stainless steel interconnects used in solid oxide fuel cells [D]. Alberta: University of Alberta, 2009
28 Fergus J W. Metallic interconnects for solid oxide fuel cells [J]. Mater. Sci. Eng., 2005, 397A: 271
29 Li J, Pu J, Xiao J Z, et al. Oxidation of Haynes 230 alloy in reduced temperature solid oxide fuel cell environments [J]. J. Power Sources, 2005, 139: 182
30 Zhu W Z, Deevi S C. Opportunity of metallic interconnects for solid oxide fuel cells: a status on contact resistance [J]. Mater. Res. Bull., 2003, 38: 957
31 Yang Z G. Recent advances in metallic interconnects for solid oxide fuel cells [J]. Int. Mater. Rev., 2008, 53: 39
32 Sun Q Q, Jia X Q, Xu Z L, et al. Study on structure and adhesion of oxide scales of 304 and 430 stainless steel billets [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1649
32 孙琼琼, 贾玺泉, 徐震霖 等. 304和430不锈钢铸坯氧化皮结构及结合力研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1649
doi: 10.11902/1005.4537.2023.397
33 Jia C, Wang Y H, Molin S, et al. High temperature oxidation behavior of SUS430 SOFC interconnects with Mn-Co spinel coating in air [J]. J. Alloy. Compd., 2019, 787: 1327
34 Mehran M T, Kim T H, Khan M Z, et al. Highly durable nano-oxide dispersed ferritic stainless steel interconnects for intermediate temperature solid oxide fuel cells [J]. J. Power Sources, 2019, 439: 227109
35 Mehran M T, Song R H, Lee J W, et al. Nano-oxide dispersed ferritic stainless steel for metallic interconnects of solid oxide fuel cells [J]. ECS Trans., 2017, 78: 1575
36 Wang Z Q, Li C, Si X Q, et al. Oxidation behavior of ferritic stainless steel interconnect coated by a simple diffusion bonded cobalt protective layer for solid oxide fuel cells [J]. Corros. Sci., 2020, 172: 108739
37 Reddy M J, Svensson J E, Froitzheim J. Evaluating candidate materials for balance of plant components in SOFC: oxidation and Cr evaporation properties [J]. Corros. Sci., 2021, 190: 109671
38 Yang Z, Xia G, Wang C, et al. Investigation of AISI 441 ferritic stainless steel and development of spinel coatings for SOFC interconnect applications [R]. Richland: Pacific Northwest National Laboratory, 2008
39 Goebel C, Berger R, Bernuy-Lopez C, et al. Long-term (4 year) degradation behavior of coated stainless steel 441 used for solid oxide fuel cell interconnect applications [J]. J. Power Sources, 2020, 449: 227480
40 Yang Z G, Xia G G, Wang C M, et al. Investigation of iron-chromium-niobium-titanium ferritic stainless steel for solid oxide fuel cell interconnect applications [J]. J. Power Sources, 2008, 183: 660
41 Yang Z G, Xia G G, Walker M S, et al. High temperature oxidation/corrosion behavior of metals and alloys under a hydrogen gradient [J]. Int. J. Hydrog. Energy, 2007, 32: 3770
42 Park B K, Lee J W, Lee S B, et al. Cu- and Ni-doped Mn1.5Co1.5O4 spinel coatings on metallic interconnects for solid oxide fuel cells [J]. Int. J. Hydrog. Energy, 2013, 38: 12043
43 Hosseini S N, Karimzadeh F, Enayati M H, et al. Oxidation and electrical behavior of CuFe2O4 spinel coated Crofer 22 APU stainless steel for SOFC interconnect application [J]. Solid State Ionics, 2016, 289: 95
44 Sabato A G, Molin S, Javed H, et al. In-situ Cu-doped MnCo-spinel coatings for solid oxide cell interconnects processed by electrophoretic deposition [J]. Ceram. Int., 2019, 45: 19148
doi: 10.1016/j.ceramint.2019.06.161
45 Lee S I, Hong J, Kim H, et al. Highly dense Mn-Co spinel coating for protection of metallic interconnect of solid oxide fuel cells [J]. J. Electrochem. Soc., 2014, 161: F1389
46 Yang Z G, Walker M S, Singh P, et al. Anomalous corrosion behavior of stainless steels under SOFC interconnect exposure conditions [J]. Electrochem. Solid-State Lett., 2003, 6: B35
47 Alnegren P, Sattari M, Svensson J E, et al. Severe dual atmosphere effect at 600 oC for stainless steel 441 [J]. J. Power Sources, 2016, 301: 170
48 Gunduz K O, Chyrkin A, Goebel C, et al. The effect of hydrogen on the breakdown of the protective oxide scale in solid oxide fuel cell interconnects [J]. Corros. Sci., 2021, 179: 109112
49 Amendola R, Gannon P, Ellingwood B, et al. Oxidation behavior of coated and preoxidized ferritic steel in single and dual atmosph-ere exposures at 800 oC [J]. Surf. Coat. Technol., 2012, 206: 2173
50 Stygar M, Matsuda K, Lee S, et al. Corrosion behavior of crofer 22APU for metallic interconnects in single and dual atmosphere exposures at 1073 K [J]. Acta Phys. Pol., 2017, 131A: 1394
51 Li J, Yan D, Gong Y P, et al. Investigation of anomalous oxidation behavior of SUS430 alloy in solid oxide fuel cell dual atmosphere [J]. J. Electrochem. Soc., 2017, 164: C945
52 Alnegren P, Sattari M, Svensson J E, et al. Temperature dependence of corrosion of ferritic stainless steel in dual atmosphere at 600-800 oC [J]. J. Power Sources, 2018, 392: 129
53 Skilbred A W B, Haugsrud R. The effect of dual atmosphere conditions on the corrosion of Sandvik Sanergy HT [J]. Int. J. Hydrog. Energy, 2012, 37: 8095
54 Rufner J, Gannon P, White P, et al. Oxidation behavior of stainless steel 430 and 441 at 800 oC in single (air/air) and dual atmosphere (air/hydrogen) exposures [J]. Int. J. Hydrog. Energy, 2008, 33: 1392
55 Goebel C, Alnegren P, Faust R, et al. The effect of pre-oxidation parameters on the corrosion behavior of AISI 441 in dual atmosphere [J]. Int. J. Hydrog. Energy, 2018, 43: 14665
56 Essuman E, Meier G H, Żurek J, et al. The effect of water vapor on selective oxidation of Fe-Cr alloys [J]. Oxid. Met., 2008, 69: 143
57 Chyrkin A, Gunduz K O, Asokan V, et al. High temperature oxidation of AISI 441 in simulated solid oxide fuel cell anode side conditions [J]. Corros. Sci., 2022, 203: 110338
58 Yang Z G, Walker M S, Singh P, et al. Oxidation behavior of ferritic stainless steels under SOFC interconnect exposure conditions [J]. J. Electrochem. Soc., 2004, 151: B669
59 Talic B, Molin S, Hendriksen P V, et al. Effect of pre-oxidation on the oxidation resistance of Crofer 22 APU [J]. Corros. Sci., 2018, 138: 189
60 Sachitanand R, Sattari M, Svensson J E, et al. The oxidation of coated SOFC interconnects in fuel side environments [J]. Fuel Cells, 2016, 16: 32
61 Sattari M, Sachitanand R, Froitzheim J, et al. The effect of Ce on the high temperature oxidation properties of a Fe-22%Cr steel: microstructural investigation and EELS analysis [J]. Mater. High Temp., 2015, 32: 118
62 Fontana S, Chevalier S, Caboche G. Metallic interconnects for solid oxide fuel cell: performance of reactive element oxide coating during long time exposure [J]. Mater. Corros., 2011, 62: 650
63 Tomas M, Svensson J E, Froitzheim J. Hydrogen-barrier coatings against dual-atmosphere corrosion for IT-SOFC interconnect applications [J]. Int. J. Hydrog. Energy, 2024, 58: 852
64 Ko Y S, Kim S, Park S, et al. Effect of the simultaneous addition of lanthanum and nickel on the oxidation behavior and related area-specific resistance of ferritic stainless steels for solid oxide fuel cell interconnects [J]. Corros. Sci., 2024, 233: 112098
65 Qu W, Jian L, Ivey D G, et al. Yttrium, cobalt and yttrium/cobalt oxide coatings on ferritic stainless steels for SOFC interconnects [J]. J. Power Sources, 2006, 157: 335
66 Falk-Windisch H, Claquesin J, Sattari M, et al. Co-and Ce/Co-coated ferritic stainless steel as interconnect material for intermediate temperature solid oxide fuel cells [J]. J. Power Sources, 2017, 343: 1
67 Jiang S P, Liu L, Ong K P, et al. Electrical conductivity and performance of doped LaCrO3 perovskite oxides for solid oxide fuel cells [J]. J. Power Sources, 2008, 176: 82
68 Fergus J W. Lanthanum chromite-based materials for solid oxide fuel cell interconnects [J]. Solid State Ionics, 2004, 171: 1
69 Brylewski T, Dabek J, Przybylski K, et al. Screen-printed (La, Sr)CrO3 coatings on ferritic stainless steel interconnects for solid oxide fuel cells using nanopowders prepared by means of ultrasonic spray pyrolysis [J]. J. Power Sources, 2012, 208: 86
70 Kim J H, Peck D H, Song R H, et al. Synthesis and sintering properties of (La0.8Ca0.2- x Sr x ) CrO3 perovskite materials for SOFC interconnect [J]. J. Electroceram., 2006, 17: 729
71 Yang Z G, Xia G G, Maupin G D, et al. Conductive protection layers on oxidation resistant alloys for SOFC interconnect applications [J]. Surf. Coat. Technol., 2006, 201: 4476
72 Waluyo N S, Song R H, Lee S B, et al. Electrophoretically deposited LaNi0.6Fe0.4O3 perovskite coatings on metallic interconnects for solid oxide fuel cells [J]. J. Electrochem. Soc., 2016, 163: F1245
73 Waluyo N S, Park B K, Song R H, et al. Lanthanum nickelates with a perovskite structure as protective coatings on metallic interconnects for solid oxide fuel cells [J]. J. Korean Ceram. Soc., 2015, 52: 344
74 Chu C L, Wang J Y, Lee S. Effects of La0.67Sr0.33MnO3 protective coating on SOFC interconnect by plasma-sputtering [J]. Int. J. Hydrog. Energy, 2008, 33: 2536
75 Shaigan N, Ivey D G, Chen W X. Co/LaCrO3 composite coatings for AISI 430 stainless steel solid oxide fuel cell interconnects [J]. J. Power Sources, 2008, 185: 331
76 Petric A, Ling H. Electrical conductivity and thermal expansion of spinels at elevated temperatures [J]. J. Am. Ceram. Soc., 2007, 90: 1515
77 Zhao Q Q, Geng S J, Chen G, et al. Comparison of electroplating and sputtering Ni for Ni/NiFe2 dual layer coating on ferritic stainless steel interconnect [J]. Corros. Sci., 2021, 192: 109837
78 Acharya N, Chaitra U, Vijeth H, et al. Highly dense Mn3O4 and CuMn2O4 spinels as efficient protective coatings on solid oxide fuel cell interconnect and their chromium diffusion studies [J]. J. Alloy. Compd., 2022, 918: 165377
79 Shen Z J, Rong J, Yu X H. Mn x Co3- x O4 spinel coatings: controlled synthesis and high temperature oxidation resistance behavior [J]. Ceram. Int., 2020, 46: 5821
80 Wang B H, Liu J, Cui Z X, et al. Long-term stability of MnCo spinel coatings prepared by electrophoretic deposition at high temperatures [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 972
80 王碧辉, 刘 聚, 崔志翔 等. 电泳沉积制备MnCo尖晶石涂层的高温长期稳定性研究 [J]. 中国腐蚀与防护学报, 2024, 44: 972
doi: 10.11902/1005.4537.2023.310
81 Hosseini N, Abbasi M H, Karimzadeh F, et al. Development of Cu1.3Mn1.7O4 spinel coating on ferritic stainless steel for solid oxide fuel cell interconnects [J]. J. Power Sources, 2015, 273: 1073
82 Pan Y, Liu Y T, Shi D Y, et al. Fabrication and oxidation behavior of the Cu-Fe spinel coating for SOFC steel interconnect applications [J]. ACS Appl. Energy Mater., 2024, 7: 4950
83 Zhao M S, Geng S J, Chen G, et al. Thermal conversion and evolution behavior of surface scale on SOFC interconnect steel with sputtered FeCoNi coating [J]. Corros. Sci., 2020, 168: 108561
84 Zhou J T, Hu X W, Li J L, et al. Cu doped Ni-Co spinel protective coatings for solid oxide fuel cell interconnects application [J]. Int. J. Hydrog. Energy, 2021, 46: 33580
85 Xiao J H, Zhang W Y, Xiong C Y, et al. Oxidation behavior of Cu-doped MnCo2O4 spinel coating on ferritic stainless steels for solid oxide fuel cell interconnects [J]. Int. J. Hydrog. Energy, 2016, 41: 9611
86 Zhou J T, Hu X W, Li J L. Effect of Cu on the diffusion behavior and electrical properties of Ni-Co conversion coating for metallic interconnects in solid oxide fuel cells [J]. J. Alloy. Compd., 2021, 887: 161358
87 Jiang Z, Wen K, Song C, et al. Highly conductive Mn-Co spinel powder prepared by Cu-doping used for interconnect protection of SOFC [J]. Coatings, 2021, 11: 1298
88 Saeidpour F, Ebrahimifar H. Effect of nanostructure Fe-Ni-Co spinel oxides/Y2O3 coatings on the high-temperature oxidation behavior of Crofer 22 APU stainless steel interconnect [J]. Corros. Sci., 2021, 182: 109280
89 Tseng H P, Yung T Y, Liu C K, et al. Oxidation characteristics and electrical properties of La-or Ce-doped MnCo2O4 as protective layer on SUS441 for metallic interconnects in solid oxide fuel cells [J]. Int. J. Hydrog. Energy, 2020, 45: 12555
90 Shahbaznejad H, Ebrahimifar H. A study on the oxidation and electrical behavior of crofer 22 APU solid oxide fuel cell interconnects with Ni-Co-CeO2 composite coating [J]. J. Mater. Sci.: Mater. Electron., 2021, 32: 7550
91 Wang B H, Li K Y, Liu J, et al. Promoting electric conductivity of MnCo spinel coating by doping transition metals (Cu, Fe) or rare-earth elements (La, Y) for solid oxide fuel cell interconnect [J]. Int. J. Hydrog. Energy, 2024, 61: 216
92 Jin Y Q, Hao G Z, Guo M Y, et al. Ce-doped (Mn, Co)3O4 coatings for solid oxide fuel cell interconnect applications [J]. Ceram. Int., 2022, 48: 34931
93 Li X C, Chi Y C, Wei S L, et al. The preparation and properties of Ti(Nb)-Si-C coating on the pre-oxidized ferritic stainless steel for solid oxide fuel cell interconnect [J]. Materials, 2024, 17: 632
94 Li X C, Wang Z K, Wei S L, et al. TiC and (Ti, Nb)3SiC2 based dual-layer coating on SUS430 for solid oxide fuel cell interconnects [J]. Int. J. Hydrog. Energy, 2024, 63: 19
95 Gan L, Yamamoto T, Murakami H. Microstructure and diffusion behavior in the multilayered oxides formed on a Co-W electroplated ferritic stainless steel followed by oxidation treatment [J]. Acta Mater., 2020, 194: 295
doi: 10.1016/j.actamat.2020.04.048
96 Gan L, Murakami H, Saeki I. High temperature oxidation of Co-W electroplated type 430 stainless steel for the interconnect of solid oxide fuel cells [J]. Corros. Sci., 2018, 134: 162
97 Safikhani A, Aminfard M. Effect of W and Ti addition on oxidation behavior and area-specific resistance of Fe-22Cr-0.5Mn ferritic stainless steel for SOFCs interconnect [J]. Int. J. Hydrog. Energy, 2014, 39: 2286
[1] 王碧辉, 刘聚, 崔志翔, 肖博, 杨天让, 张乃强. 电泳沉积制备MnCo尖晶石涂层的高温长期稳定性研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 972-978.
[2] 宇波, 李彰, 周凯旋, 田浩亮, 房永超, 张晓敏, 金国. MoSi2 改性YGYZ作为陶瓷面层的多层热障涂层体系的抗高温氧化性能研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 812-820.
[3] 王碧辉, 肖博, 潘佩媛, 刘聚, 张乃强. 固体氧化物燃料电池金属连接体腐蚀研究进展[J]. 中国腐蚀与防护学报, 2023, 43(1): 6-12.
[4] 安亮, 高昌琦, 贾建刚, 马勤. 金属硅化物抗氧化涂层的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(3): 298-306.
[5] 艾鹏,刘礼祥,李晓罡,姜文涛. TiAlSiN涂层对γ-TiAl基合金抗高温氧化性能的影响[J]. 中国腐蚀与防护学报, 2019, 39(4): 306-312.
[6] 张辉,王安祺,武俊伟. 固体氧化物燃料电池金属连接体保护膜层研究进展[J]. 中国腐蚀与防护学报, 2012, 32(5): 357-363.
[7] 金光熙, 潘凤红,郎成,乔利杰. SOFC连接体用STS444/Y合金的高温导电性能研究[J]. 中国腐蚀与防护学报, 2011, 31(5): 367-370.
[8] 邓畅光; 邝子奇 . 稀土硅铁对TBCs梯度热障涂层组织与性能影响的研究[J]. 中国腐蚀与防护学报, 2002, 22(3): 176-179 .
[9] 向兴华; 尹钟大; 朱景川 . 激光重熔对等离子喷涂ZrO2-NiCoCrAlY梯度涂层组织与性能的影响[J]. 中国腐蚀与防护学报, 1999, 19(3): 173-178 .