Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (1): 201-208     CSTR: 32134.14.1005.4537.2024.226      DOI: 10.11902/1005.4537.2024.226
  研究报告 本期目录 | 过刊浏览 |
氧化不同时间(Ni, Pt)Al涂层的退除及再涂覆行为研究
张彩云1,2, 李帅2, 鲍泽斌1,2(), 朱圣龙1,2, 王福会1
1 东北大学腐蚀与防护中心 沈阳 110819
2 中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
Stripping and Refurbishment of (Ni, Pt)Al Coating After Service for Different Oxidation Durations
ZHANG Caiyun1,2, LI Shuai2, BAO Zebin1,2(), ZHU Shenglong1,2, WANG Fuhui1
1 Corrosion and Protection Center, Northeastern University, Shenyang 110819, China
2 Shi -Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

张彩云, 李帅, 鲍泽斌, 朱圣龙, 王福会. 氧化不同时间(Ni, Pt)Al涂层的退除及再涂覆行为研究[J]. 中国腐蚀与防护学报, 2025, 45(1): 201-208.
Caiyun ZHANG, Shuai LI, Zebin BAO, Shenglong ZHU, Fuhui WANG. Stripping and Refurbishment of (Ni, Pt)Al Coating After Service for Different Oxidation Durations[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(1): 201-208.

全文: PDF(15278 KB)   HTML
摘要: 

本文研究了(Ni, Pt)Al涂层氧化不同时间后涂层退除及再涂覆,尤其不同服役时间氧化后涂层及下方基体合金组织结构的演变。采用电镀Pt层和化学气相渗铝的方法在镍基单晶高温合金上制备了(Ni, Pt)Al涂层,然后对涂层试样在1100 ℃中分别氧化300、1000和3000 h。表明不同时间氧化后涂层表面生成的氧化产物都为Al2O3;随着氧化时间的增长,涂层退化严重且涂层下方析出的TCP相增多。在HCl和C6H8O7·H2O的混合溶液中成功退除不同时间氧化后的(Ni, Pt)Al涂层,涂层的退除主要是沿晶界溶解,并随着Al含量的减少,溶解速率下降,而重新沉积的(Ni, Pt)Al涂层微观组织结构差异不大,长时间氧化后的试样单晶基体侧粗大TCP相析出增多。

关键词 高温合金(NiPt)Al涂层高温氧化涂层退除再涂覆    
Abstract

The stripping and refurbishment of single-phase (Ni, Pt)Al coating after oxidation for different times was investigated, especially in terms of the microstructure evolution of coating and substrate. The (Ni, Pt)Al coating was prepared on a Ni-based single crystal superalloy N5 firstly via electro-deposition of a thin Pt-film and followed by above-pack aluminizing. Afterwards, the prepared (Ni, Pt)Al coating/N5 alloy was oxidized in air at 1100 oC for 300, 1000 and 3000 h, respectively, where in all cases Al2O3 was the exclusive oxide product on all the test coatings. Moreover, with the increase of oxidation time, the coating degraded severely and coarse TCP precipitates emerged out beneath the coating. The (Ni, Pt)Al coatings after oxidation for various times were successfully removed with mixed solution of HCl and C6H8O7·H2O. Finally, a fresh (Ni, Pt)Al coating was refurbished again on the alloy of the deteriorated coating being removed. During the stripping with mixed acids, the dissolution of coating is mainly ascribed to corrosion of grain boundaries, while the dissolution rate decreases with the reduction of Al-content. However, the microstructure of the refurbished (Ni, Pt)Al coating is little different from those prepared on the as received alloy, nevertheless, it is observed that the coarse precipitates of TPC phase emerged on the alloy side after long time oxidation.

Key wordssuperalloy    (Ni, Pt)Al coating    high-temperature oxidation    stripping    refurbishment
收稿日期: 2024-07-26      32134.14.1005.4537.2024.226
ZTFLH:  TG172  
基金资助:国家自然科学基金(52301116; 51671202)
通讯作者: 鲍泽斌,E-mail:zbbao@imr.ac.cn,研究方向为高性能高温防护热障涂层体系
Corresponding author: BAO Zebin, E-mail: zbbao@imr.ac.cn
作者简介: 张彩云,女,1995年生,博士生
图1  (Ni, Pt)Al涂层的表面和截面形貌以及XRD图谱
图2  (Ni, Pt)Al-O300、(Ni, Pt)Al-O1000和(Ni, Pt)Al-O3000涂层样品的XRD图谱
图3  (Ni, Pt)Al-O300、(Ni, Pt)Al-O1000和(Ni, Pt)Al-O3000样品的表面形貌
图4  (Ni, Pt)Al-O300、(Ni, Pt)Al-O1000和(Ni, Pt)Al-O3000样品的截面形貌
AreaAlNiPtCrCo
131.6153.046.174.145.04
220.2162.117.373.207.11
330.6553.216.613.955.58
420.4761.857.193.916.58
518.3765.315.214.466.65
618.3465.335.534.716.09
表1  图4中所标记各区域中EDS分析结果 (atomic fraction / %)
图5  (Ni, Pt)Al-O300涂层退除后的表面和截面形貌图
AreaAlNiPtCrCoTaW
b11.1718.9364.48--5.42-
15.3116.2070.12-1.184.422.77
23.7112.1254.801.721.5916.549.52
表2  图5中标记点处的EDS分析结果 (atomic fraction / %)
图6  (Ni, Pt)Al涂层氧化后退除不同时间后的截面形貌图
图7  (Ni,Pt)Al-R300、(Ni,Pt)Al-R1000和(Ni,Pt)Al-R3000样品的XRD图谱
图8  (Ni,Pt)Al-R300、(Ni, Pt)Al-R1000和(Ni, Pt)Al-R3000涂层表面和截面形貌图
图9  (Ni, Pt)Al-R300、(Ni, Pt)Al-R1000和(Ni, Pt)Al-R3000涂层的EBSD图
1 Zheng L, Zhang M C, Dong J X. Hot corrosion behavior of powder metallurgy Rene95 nickel-based superalloy in molten NaCl-Na2SO4 salts [J]. Mater. Des., 2011, 32: 1981
2 Pei H Q, Li M, Wang P, et al. The effect of tensile stress on oxidation behavior of nickel-base single crystal superalloy [J]. Corros. Sci., 2021, 191: 109737
3 Zafir Alam M, Hazari N, Varma V K, et al. Effect of cyclic oxidation exposure on tensile properties of a Pt-Aluminide bond-coated Ni-base superalloy [J]. Metall. Mater. Trans., 2011, 42A: 4064
4 Shirvani K, Firouzi S, Rashidghamat A. Microstructures and cyclic oxidation behaviour of Pt-free and low-Pt NiAl coatings on the Ni-base superalloy Rene-80 [J]. Corros. Sci., 2012, 55: 378
5 Li Y Y, Huang D, Zhang C Y, et al. High-temperature corrosion behaviour of Pt-modified aluminide coating with solid NaCl deposit in O2 + 10vol%H2O and the influence of pre-oxidation treatment [J]. Corros. Sci., 2022, 204: 110421
6 Yang Y F, Jiang C Y, Yao H R, et al. Preparation and enhanced oxidation performance of a Hf-doped single-phase Pt-modified aluminide coating [J]. Corros. Sci., 2016, 113: 17
7 Poupard S, Martinez J F, Pedraza F. Soft chemical stripping of aluminide coatings and oxide products on Ni superalloys [J]. Surf. Coat. Technol., 2008, 202(13): 3100
8 Bouchaud B, Creus J, Rébéré C, et al. Controlled stripping of aluminide coatings on nickel superalloys through electrolytic techniques [J]. J. Appl. Electrochem., 2008, 38(6): 817
9 Le Guével Y, Grégoire B, Cristóbal M J, et al. Dissolution and passivation of aluminide coatings on model and Ni-based superalloy [J]. Surf. Coat. Technol., 2019, 357: 1037
10 Le Guevel Y, Grégoire B, Bouchaud B, et al. Influence of the oxide scale features on the electrochemical descaling and stripping of aluminide coatings [J]. Surf. Coat. Technol., 2016, 292: 1
11 Wang J L, Ji H Y, Chen M H, et al. High temperature oxidation and interdiffusion behavior of recoated NiCoCrAlY coating on a nickel-based superalloy [J]. Corros. Sci., 2020, 175: 108894
12 Li P, Jin X C, Lu P, et al. Comparative study on microstructure evolution and failure mechanisms of ordinary and refurbished EB-PVD TBC under cyclic oxidation [J]. J. Adv. Ceram., 2023, 12: 1805
13 Qin L. Study on the oxidation resistance of CoCrAlY metal coatings recoated by electron beam physical vapor Deposition [D]. Beijing: Beijing University of Aeronautics and Astronautics, 2012
13 秦 磊. 电子束物理气相沉积再涂覆CoCrAlY金属涂层及其抗氧化行为研究[D]. 北京: 北京航空航天大学, 2012
14 Liu Z Q. Research on removing nial and nicral coatings by plasma spraying technology and properties of recoated coatings [D]. Harbin: Harbin Institute of Technology, 2017
14 刘志强. 等离子喷涂NiAl、NiCrAl涂层去除工艺及再涂覆性能 [D]. 哈尔滨: 哈尔滨工业大学, 2017
15 Cai Y. Study on removal and repair technology of coated MCrAlX coating [D]. Beijing: Beijing Aeronautical Materials Research Institute, 2005
15 蔡 妍. 包覆型MCrAlX涂层的退除与修复技术研究 [D]. 北京: 北京航空材料研究院, 2005
16 Alam M Z, Sarkar S B, Das D K. Refurbishment of thermally degraded diffusion Pt-aluminide (PtAl) bond coat on a Ni-base superalloy [J]. Surf. Coat. Technol., 2018, 354: 101
17 Zhang C Y, Ma Z, Dong S Z, et al. High-temperature oxidation behaviour of refurbished (Ni, Pt)Al coating on Ni-based superalloy at 1100 oC [J]. Corros. Sci., 2021, 187: 109521
18 Yang Y F, Jiang C Y, Zhang Z Y, et al. Hot corrosion behaviour of single-phase platinum-modified aluminide coatings: Effect of Pt content and pre-oxidation [J]. Corros. Sci., 2017, 127: 82
19 Yang Y F, Jiang C Y, Yao H R, et al. Cyclic oxidation and rumpling behaviour of single phase β-(Ni, Pt)Al coatings with different thickness of initial Pt plating [J]. Corros. Sci., 2016, 111: 162
20 Liu H, Li S, Jiang C Y, et al. Oxidation performance and interdiffusion behavior of a Pt-Modified aluminide coating with pre-deposition of Ni [J]. Acta Metall. Sin. (Eng. Lett.), 2019, 32: 1490
21 Hong H U, Yoon J G, Choi B G, et al. On the mechanism of secondary reaction zone formation in a coated nickel-based single-crystal superalloy containing ruthenium [J]. Scr. Mater, 2013, 69: 33
22 Esin V A, Gaslain F. Experimental and thermodynamic analysis of differences in phase transformation of Pt-modified nickel aluminide coating during isothermal and cyclic oxidation [J]. Surf. Coat. Technol., 2016, 307: 915
23 Li W, Zhang W L, Li T, et al. Improvement of cyclic oxidation resistance of a β-(Ni, Pt)Al coating by the addition of Ni/Ni-Re layer at 1150 oC  [J]. Corros. Sci., 2022, 207: 110486
24 Li W, Li Y T, Zhang W L, et al. TEM and EBSD investigation of a Re-doped β-NiAl coating on a Ni-based single crystal superalloy [J]. Mater. Lett., 2022, 306: 130932
[1] 张晗, 刘轩溱, 黄爱辉, 赵晓峰, 陆杰. 热障涂层金属粘结层制备与研究进展[J]. 中国腐蚀与防护学报, 2025, 45(1): 20-32.
[2] 范春华, 吴钱林, 薛山, 葛佳璐. 添加CrSi对火驱N80碳钢注气井氧化行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(1): 231-236.
[3] 郭静波, 杨守华, 周子翼, 牟仁德, 谢云, 舒小勇, 戴建伟, 彭晓. 激光增材制造AlCoCrFeNiSi高熵合金的氧化行为[J]. 中国腐蚀与防护学报, 2025, 45(1): 217-223.
[4] 王粤, 耿树江, 王金龙, 王福会, 孙清云, 吴勇, 夏思瑶. K444合金表面CVD渗铝涂层耐高温95%Na2SO4 + 5%NaCl腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(1): 127-136.
[5] 许习文, 舒小勇, 陈智群, 何海瑞, 董舒赫, 房雨晴, 彭晓. DD6单晶Ni基高温合金表面CVDAl涂层的氧化行为[J]. 中国腐蚀与防护学报, 2025, 45(1): 148-154.
[6] 陈辉, 徐福斌, 方亚雄, 朱忠亮. Super304H不锈钢在605 ℃640 ℃超临界水中的氧化行为[J]. 中国腐蚀与防护学报, 2025, 45(1): 209-216.
[7] 裴海清, 肖竞博, 李微, 于昊玉, 温志勋, 岳珠峰. Al-O元素聚集对镍基单晶高温合金氧化影响的第一性原理研究[J]. 中国腐蚀与防护学报, 2025, 45(1): 173-181.
[8] 李开洋, 翟蕴龙, 胡新宇, 吴宏, 刘彬, 邢少华, 侯健, 张繁, 张乃强. 共晶高熵合金高温腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2024, 44(6): 1377-1388.
[9] 吴亮亮, 殷若展, 陈朝旭, 梁君岳, 孙擎擎, 伍廉奎, 曹发和. Ti45Al8.5Nb合金表面Zr-SiO2 复合涂层的制备及其抗高温氧化性能研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1423-1434.
[10] 李佳恒, 钱伟, 朱晶晶, 蔡杰, 花银群. 激光冲击强化对镍基单晶高温合金微观组织和抗高温氧化性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(5): 1295-1304.
[11] 吴铭, 任延杰, 马灼春, 张思甜, 陈荐, 牛焱. F55双相不锈钢在800~1000℃纯氧气中的高温氧化行为[J]. 中国腐蚀与防护学报, 2024, 44(5): 1332-1338.
[12] 张帮彦, 吴洪斌, 胡雪刚, 董家键, 郑世杰, 尹蔚蔚, 张方宇, 田礼熙, 刘光明. 机械合金化+放电等子烧结FeCrAl/La2Zr2O7 复合材料高温氧化行为研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 965-971.
[13] 朱慧文, 郑黎, 张昊, 于宝义, 崔志博. BeWE43镁合金高温氧化行为及阻燃性的影响[J]. 中国腐蚀与防护学报, 2024, 44(4): 1022-1028.
[14] 梁志远, 张超, 曲劲宇, 何建元, 郭亭山, 徐一鸣. 某燃气轮机燃烧室合金高温蒸汽氧化行为研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 355-364.
[15] 冯抗抗, 任延杰, 吕云蕾, 周梦妮, 陈荐, 牛焱. Si含量对四元Fe-20Ni-20Cr-ySi合金在900℃下氧化行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 100-106.