Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (5): 1177-1188     CSTR: 32134.14.1005.4537.2024.001      DOI: 10.11902/1005.4537.2024.001
  研究报告 本期目录 | 过刊浏览 |
新型环氧基极地船舶用破冰涂料低温耐磨耐蚀性能研究
孙士斌1, 史常伟1, 王东胜2, 常雪婷2, 李明春3()
1 上海海事大学物流工程学院 上海 201306
2 上海海事大学海洋科学与工程学院 上海 201306
3 海洋化工研究院有限公司 青岛 266001
Low Temperature Wear and Corrosion Resistance of Epoxy Based Polar Marine Ice Breaking Coatings
SUN Shibin1, SHI Changwei1, WANG Dongsheng2, CHANG Xueting2, LI Mingchun3()
1 School of Logistics Engineering, Shanghai Maritime University, Shanghai 201306, China
2 School of Marine Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
3 Ocean Chemical Research Institute Co., Ltd., Qingdao 266001, China
引用本文:

孙士斌, 史常伟, 王东胜, 常雪婷, 李明春. 新型环氧基极地船舶用破冰涂料低温耐磨耐蚀性能研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1177-1188.
Shibin SUN, Changwei SHI, Dongsheng WANG, Xueting CHANG, Mingchun LI. Low Temperature Wear and Corrosion Resistance of Epoxy Based Polar Marine Ice Breaking Coatings[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(5): 1177-1188.

全文: PDF(7481 KB)   HTML
摘要: 

将改性后的玄武岩粉(BP)和云母粉作为填料,以环氧树脂(EP)为基体开发了适用于极地船舶破冰区域使用的耐磨耐蚀复合涂层。鉴于冰区航行的海冰-海水摩擦腐蚀耦合作用使用条件要求,主要开展了涂层结合力、硬度测试,海水浸泡耐蚀性实验以及不同载荷和温度下低温模拟冰载荷摩擦磨损实验。实验结果表明:随着云母粉、玄武岩粉的骨料填料分别从10%(质量分数)增加到20%的变化,低温复合涂层与基体的结合力从1级降低为2级,维氏硬度提高约20%,耐腐蚀性能得到相应提升,摩擦系数也呈现出减小的趋势,耐磨性得到近50%的显著提升,体现出耐磨减阻效果。此外,随着温度的降低,极地船用低温涂层的磨损性能呈现先降低后增加的趋势,磨损率从0.3151 mm3/(N·m)降低到0.0962 mm3/(N·m)后又增加到0.1949 mm3/(N·m),在0℃环境时磨损率最小,耐磨性最好,说明温度对涂层的耐磨性能影响较大。更佳的骨料含量比可以显著的提升复合涂层的低温耐磨性,磨损量更低。

关键词 极地船舶涂料环氧树脂低温摩擦    
Abstract

A wear-resistant and corrosion-resistant composite coating designed for application in polar ship icebreaking areas was developed with modified basalt powder (BP) and mica powder as filler, while epoxy resin (EP) as the matrix, which was then applied on FH36 Marine low temperature steel plate. Considering the requirements related with the presence of ice-seawater friction-corrosion coupling effect in the ice zone navigation, tests such as coating adhesion, hardness, corrosion resistance by seawater immersion, as well as simulated low-temperature ice load friction and wear by varying ice-loads at different temperatures. The results show that as the filler content of mica powder and basalt powder increased from 10% to 20% (in mass fraction), the adhesion between the low-temperature composite coating and the substrate decreased from level 1 to level 2, whereas, its Vickers hardness increased by approximately 20%, corrosion resistance was improved accordingly, and the friction coefficient exhibited a decreasing trend, resulting in a significant improvement of wear resistance by nearly 50%, demonstrating the wear-reducing effect. Additionally, with the decrease in temperature, the wear performance of the low-temperature coating for polar ships showed a decreasing trend followed by an increasing trend.Meanwhile, the wear rate decreased successively from 0.3151 mm3/(N∙m) to 0.0962 mm3/(N∙m) and then increased to 0.1949 mm3/(N∙m). The lowest wear rate and the best wear resistance were observed at 0°C, indicating that temperature has a significant impact on the wear performance of the coating. In sum, the higher aggregate content can significantly improve the low-temperature wear resistance of the composite coating, resulting in lower wear volume.

Key wordspolar vessels    paints    epoxy resin    low temperature friction
收稿日期: 2024-01-01      32134.14.1005.4537.2024.001
ZTFLH:  TG172  
基金资助:国家重点研发计划(2022YFB3705303);上海市科委技术标准项目(21DZ2205700);上海市教委“曙光”计划(19SG46);科技部国际合作交流项目(CU03-29);上海深海材料工程技术中心资助项目(19DZ2253100)
通讯作者: 李明春,E-mail:limingchun0309@163.com,研究方向为环氧涂料重防腐性能研究
Corresponding author: LI Mingchun, E-mail: limingchun0309@163.com
作者简介: 孙士斌,男,1982年生,博士,教授
IngredientBP-1/EPBP-2/EP
Epoxy resin4530
Basalt powder1020
Mica powder1020
Curing agent1510
Iron red88
Teflon powder4.04.0
Ultraviolet absorber3.53.5
Dispersant2.52.5
Defoamer1.01.0
Anti-settling agent1.01.0
表1  2种极地破冰船用BP/EP涂料配方
图1  2种BP/EP涂层划痕测试后的表面形貌
图2  2种BP/EP涂层浸泡前后的维氏硬度
图3  BP/EP涂层电化学阻抗谱等效电路图
图4  2种BP/EP涂层在3.5%NaCl溶液中的Nyquist 图
图5  2种BP/EP涂层在3.5%NaCl溶液Bode图
SampleTime / dRc / Ω·cm2Yof / S·sec n ·cm-2nfRct/ Ω·cm2Yodl / S·sec n ·cm-2ndl
BP-1/EP01.13 × 1071.60 × 10-70.366---
101.99 × 1053.99 × 10-100.8511.09 × 10-31.99 × 10-70.092
BP-2/EP07.91 × 1063.72 × 10-90.97641.08 × 1075.56 × 10-80.522
101.69 × 1046.86 × 10-110.9722.47 × 1061.21 × 10-70.344
表2  2种BP/EP涂层电化学阻抗谱拟合参数
图6  不同载荷下2种涂层分别与海水和海冰的摩擦系数曲线
图7  2种BP/EP涂层与海水摩擦后的磨痕形貌
Load / NSampleWidth / µmDepth / µmWear volµme / µm3Attrition rate / mm3·(N·m)-1
80BP-1/EP3217252301540.47949
BP-2/EP2777151160400.24175
120BP-1/EP3514474326140.60085
BP-2/EP3379252399740.3333
表3  2种BP/EP涂层在海水环境中80和120 N下的摩擦磨损量
图8  2种BP/EP涂层湿摩擦后磨痕三维形貌图
图9  2种BP/EP涂层在-20℃~20℃范围的摩擦系数变化曲线
图10  2种BP/EP涂层在-20℃~20℃范围平均摩擦系数随温度的变化曲线
图11  2种BP/EP涂层在80 N载荷下-20℃~20℃范围磨痕轮廓图
Load / NSampleTemperature / oCWidth / μmDepth / μmVolµme / μm3
80BP-1/EP20315728287978
10309718190626
028231691932
-10316817118764
-20297820195014
BP-2/EP20318722151254
103358757888
02856846170
-1026681881256
-2030961393552
120BP-1/EP20355223363056
10338418231476
0320015168366
-10315618199813
-20305022261550
BP-2/EP20384910238590
1034567113954
02948482002
-10298210114762
-2030519192131
表4  不同条件下磨痕宽度和深度及磨损体积
图12  BP-2/EP涂层在-20℃~20℃温度范围磨痕的三维形貌图
图13  2种BP/EP涂层在-20℃~20℃温度范围80和120 N载荷下摩擦试验后的磨损率
1 Lan X J, Zhang X, Zhu N J, et al. Preparation and performance evaluation of polar low temperature high strength, toughness, wear resistance and ice breaking coating [J]. Surf. Technol., 2022, 51(6): 59
1 蓝席建, 张 馨, 朱能杰 等. 极地低温高强韧耐磨破冰涂层制备及性能评价 [J]. 表面技术, 2022, 51(6): 59
2 Liu W L, Chen H F, Shen Y Z, et al. Facilely fabricating superhydrophobic resin-based coatings with lower water freezing temperature and ice adhesion for anti-icing application [J]. J. Bionic Eng., 2019, 16: 794
3 Chen J, Dou R M, Cui D P, et al. Robust prototypical anti-icing coatings with a self-lubricating liquid water layer between ice and substrate [J]. ACS Appl. Mater. Interfaces, 2013, 5: 4026
4 Shen Q, Liu H J. Design and application of icebreaker coating in ice area [J]. Coat. Prot, 2020, 41(10): 24
4 沈 权, 刘洪娟. 破冰船冰区涂料的设计应用 [J]. 涂层与防护, 2020, 41(10): 24
5 Liu W S. Studies on toughening characteristics and mechanism of cryogenic epoxy resin [D]. Harbin: Harbin Engineering University, 2019
5 刘文松. 耐低温环氧树脂的增韧特性及机理研究 [D]. 哈尔滨: 哈尔滨工程大学, 2019
6 Singh G, Kumar D, Mohite P M. Damage modelling of epoxy material under uniaxial tension based on micromechanics and experimental analysis [J]. Arch. Appl. Mech., 2017, 87: 721
7 Baptista R, Mendão A, Rodrigues F, et al. Effect of high graphite filler contents on the mechanical and tribological failure behavior of epoxy matrix composites [J]. Theor. Appl. Fract. Mech., 2016, 85: 113
8 Chen K F, Qi H X, Zhang X Y, et al. Preparation and properties of low temperature wear resistant coatings for polar ships [J]. Paint Coat. Ind., 2020, 50(10): 27
8 陈凯锋, 亓海霞, 张心悦 等. 极地船舶用低温耐磨涂料的制备及性能研究 [J]. 涂料工业, 2020, 50(10): 27
9 Tian J, Gao L, Cai B, et al. Tribological behavior and wear mechanism of modified nano-SiO2 reinforced epoxy composites [J]. J. Mater. Eng., 2019, 47(11): 92
9 田 晋, 高 立, 蔡滨 等. 功能化纳米SiO2改性环氧树脂复合材料及其摩擦磨损行为与机制 [J]. 材料工程, 2019, 47(11): 92
10 Zhu J J, Pei L C, Yuan S C, et al. A unique graphene composite coating suitable for ultra-low temperature and thermal shock environments [J]. Prog. Org. Coat., 2024, 186: 107997
11 Sun Y X, Man C, Kong D C, et al. Correlation between low-temperature anticorrosion performance and mechanical properties of composite coatings reinforced by modified Fe3O4 [J]. Prog. Org. Coat., 2022, 165: 106737
12 Man C, Wang Y, Li W, et al. The anti-corrosion performance of the epoxy coating enhanced via 5-Amino-1, 3, 4-thiadiazole-2-thiol grafted graphene oxide at ambient and low temperatures [J]. Prog. Org. Coat., 2021, 159: 106441
13 Yan J, Shi J J, Zhang P G, et al. Preparation and properties of epoxy/basalt flakes anticorrosive coatings [J]. Mater. Corros., 2018, 69: 1669
14 Santos J J, Lopes J H, De Aguiar K M F R, et al. Hybrid Bisphenol A non-isocyanate polyurethane composite with Mica powder: A new insulating material [J]. J. CO2 Util., 2023, 67: 102303
15 Wang D S, Chang X T, Wang S Y, et al. Friction and wear properties of 10CrMn2NiSiCuAl icebreaker steel plates effected by temperature [J]. J. Chongqing Univ., 2018, 41(6): 66, 90
15 王东胜, 常雪婷, 王士月 等. 温度对10CrMn2NiSiCuAl极地破冰船用钢板干摩擦行为的影响 [J]. 重庆大学学报, 2018, 41(6): 66, 90
16 Ji W G, Hu J M, Liu L, et al. Water uptake of epoxy coatings modified with γ-APS silane monomer [J]. Prog. Org. Coat., 2006, 57: 439
17 Huang Y, Cai M, He C, et al. Basalt fiber as a skeleton to enhance the multi-conditional tribological properties of epoxy coating [J]. Tribol. Int., 2023, 183: 108390
18 Li G H, Xu H Y, Wan H Q, et al. Tribological properties and corrosion resistance of epoxy resin-polytetrafluoroethylene bonded solid lubricating coating filled with flake aluminum [J]. J. Appl. Polym. Sci., 2021, 138: 51003
19 Chen X H, Bai Y, Wang Z C, et al. Preparation and corrosion resistance of surface tolerant epoxy anti-corrosion primer [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1126
19 陈肖寒, 白 杨, 王志超 等. 低表面处理环氧防腐底漆的制备及其耐蚀性研究 [J]. 中国腐蚀与防护学报, 2023, 43: 1126
doi: 10.11902/1005.4537.2022.390
20 Wang H Y, Sun L Y, Wang R, et al. Dopamine modification of multiwalled carbon nanotubes and its influences on the thermal, mechanical, and tribological properties of epoxy resin composites [J]. Polym. Compos., 2017, 38: 116
21 Cao J Y, Zang B L, Cao B X, et al. Influence of chemical bonding interface of modified basalt/epoxy coating on its corrosion resistance [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1009
21 曹京宜, 臧勃林, 曹宝学 等. 改性玄武岩/环氧涂层化学键合界面对涂层防腐性能的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 1009
doi: 10.11902/1005.4537.2021.312
22 Saravanan D, Sollapur S B, Anjappa S B, et al. Tribological properties of filler and green filler reinforced polymer composites [J]. Mater. Today: Proc., 2022, 50: 2065
23 Liu J K. Preparation and anticorrosion properties of modified graphene oxide/SiO2/epoxy resin composite coatings [J]. J. Sichuan Normal Univ. (Nat. Sci.), 2023, 46: 780
23 刘军凯. 改性氧化石墨烯/二氧化硅/环氧树脂复合涂料的制备及性能研究 [J]. 四川师范大学学报(自然科学版), 2023, 46: 780
24 Lou B Y, Wang X J, Zhou Y, et al. Effect of temperature on friction and wear behavior of multi-component CrTiAlN coating [J]. Rare Metal Mater. Eng., 2018, 47: 949
24 楼白杨, 王肖璟, 周 艳 等. 温度对复合CrTiAlN涂层摩擦磨损性能的影响 [J]. 稀有金属材料与工程, 2018, 47: 949
25 Chang X T, Chen X Q, Zhang Q Y, et al. Alumina nanoparticles-reinforced graphene-containing waterborne polyurethane coating for enhancing corrosion and wear resistance [J]. Corros. Commun., 2021, 4: 1
26 Wang J K, Wu S H, Ma L W, et al. Corrosion resistant coating with passive protection and self-healing property based on Fe3O4-MBT nanoparticles [J]. Corros. Commun., 2022, 7: 1
27 Lei Y H, Liu N X, Zhang Y L, et al. Preparation, corrosion-and wear-resistance of polymethyl methacrylate coating modified with particles of basalt/cerium oxide composite [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 597
27 类延华, 刘宁轩, 张玉良 等. 玄武岩/氧化铈改性PMMA涂层的防腐及耐磨性能的研究 [J]. 中国腐蚀与防护学报, 2022, 42: 597
doi: 10.11902/1005.4537.2021.186
28 Makhovskaya Y Y. Modeling of stationary frictional heating of a coated body [J]. J. Frict. Wear, 2019, 40: 258
[1] 陈施润, 陈文革, 钱颖, 张辉. 稀土铈改性石墨烯/水性环氧树脂复合涂料涂装技术研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 107-118.
[2] 曹京宜, 李敬, 殷文昌, 孟凡帝, 刘莉. 组胺改性环氧树脂及其对有机涂层性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 151-158.
[3] 轩星雨, 屈少鹏, 赵行娅. CeO2@MWCNTs/EP复合涂层的制备与性能研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 992-1002.
[4] 邹文杰, 丁立, 张雪姣, 陈均. 环氧树脂/有机硅氧烷改性阳离子丙烯酸乳液复合涂层的研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 922-928.
[5] 于芳, 王翔, 张昭. 纳米填料在环氧防腐涂层中的应用研究进展[J]. 中国腐蚀与防护学报, 2023, 43(2): 220-230.
[6] 曹京宜, 臧勃林, 曹宝学, 李亮, 方志刚, 郑宏鹏, 刘莉, 王福会. 改性玄武岩/环氧涂层化学键合界面对涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(6): 1009-1015.
[7] 戈成岳, 罗祥平, 王静, 段继周, 王宁, 侯保荣. 硅烷偶联剂 (KH550) 和羟基硅油共同改性环氧树脂及配制富镁底漆性能研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 590-596.
[8] 王超逸, 夏呈祥, 王东胜, 强强, 赵子铭, 常雪婷. 新型F级船用低温钢表面氧化物对其耐磨性能影响研究[J]. 中国腐蚀与防护学报, 2022, 42(3): 395-402.
[9] 孙伟松, 于思荣, 高嵩, 姚新宽, 徐海亮, 钱冰, 王冰姿. 水分子在石墨烯增强环氧树脂防腐涂层扩散的分子动力学模拟[J]. 中国腐蚀与防护学报, 2021, 41(3): 411-416.
[10] 付海波, 刘晓茹, 孙媛, 曹大力. 环氧树脂/重结晶碳化硅复合材料的抗腐蚀性能[J]. 中国腐蚀与防护学报, 2020, 40(4): 373-380.
[11] 张娟,刘自强,冯涛,温世峰,陈瑞卿. 碳纳米管含量对环氧树脂涂层性能的影响研究[J]. 中国腐蚀与防护学报, 2017, 37(3): 254-260.
[12] 张心华,周仲康,徐群杰,陈晓春,闫爱军,廖强强,葛红花. 富镍导电涂层在模拟海水中的耐蚀性能研究[J]. 中国腐蚀与防护学报, 2017, 37(2): 189-194.
[13] 李庆鹏,许茜,刘建国,严川伟,张亮,殷跃军,韩长智. 水性无铬达克罗涂料的制备与性能研究[J]. 中国腐蚀与防护学报, 2016, 36(6): 559-565.
[14] 崔明君,任思明,张广安,刘栓,赵海超,王立平,薛群基. 六方氮化硼掺杂水性环氧树脂耐腐蚀性能的研究[J]. 中国腐蚀与防护学报, 2016, 36(6): 566-572.
[15] 王思齐,祝郦伟,刘福春,韩恩厚,王震宇,钱洲亥. 磷酸对氯乙烯-丙烯酸共聚物带锈涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(3): 281-286.