Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (2): 480-488     CSTR: 32134.14.1005.4537.2023.206      DOI: 10.11902/1005.4537.2023.206
  研究报告 本期目录 | 过刊浏览 |
3Cr合金钢在尿素辅助稠油蒸汽吞吐环境中的初期腐蚀行为
张运军1, 蒋有伟1(), 张忠义1, 吕乃欣2, 陈君伟1, 连国锋1
1.中国石油勘探开发研究院热力采油研究所 提高油气采收率全国重点实验室 北京 100083
2.中国石油集团石油管工程技术研究院腐蚀与防护研究所 西安 710077
Initial Corrosion Behavior of 3Cr Alloy Steel in Urea Assisted Heavy Oil Steam Huff and Puff Environments
ZHANG Yunjun1, JIANG Youwei1(), ZHANG Zhongyi1, LV Naixin2, CHEN Junwei1, LIAN Guofeng1
1.State Key Laboratory of Enhanced Oil&Gas Recovery, Research Institute of Petroleum Exploration & Development, PetroChina Co., Ltd., Beijing 100083, China
2.Tubular Goods Research Institute, CNPC, Xi'an 710077, China
引用本文:

张运军, 蒋有伟, 张忠义, 吕乃欣, 陈君伟, 连国锋. 3Cr合金钢在尿素辅助稠油蒸汽吞吐环境中的初期腐蚀行为[J]. 中国腐蚀与防护学报, 2024, 44(2): 480-488.
Yunjun ZHANG, Youwei JIANG, Zhongyi ZHANG, Naixin LV, Junwei CHEN, Guofeng LIAN. Initial Corrosion Behavior of 3Cr Alloy Steel in Urea Assisted Heavy Oil Steam Huff and Puff Environments[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(2): 480-488.

全文: PDF(5907 KB)   HTML
摘要: 

采用挂片失重法、宏观形貌观察法、扫描电子显微镜(SEM)、能谱仪(EDS)、X射线衍射仪(XRD)、X射线光电子能谱(XPS)等分析手段对3Cr合金钢在尿素辅助稠油蒸汽吞吐环境中的初期腐蚀行为进行了研究。结果表明,3Cr合金钢在尿素辅助稠油蒸汽吞吐环境中的初期腐蚀为高温蒸汽中CO2(酸性气体)与NH3(碱性气体)相互耦合下的腐蚀,呈现出均匀腐蚀特征,表面腐蚀产物主要是FeCO3。当10%<尿素溶液浓度≤20%时,随着尿素溶液浓度的增大,腐蚀产物量越大,越加致密。当尿素溶液浓度≥30%时,随着尿素溶液浓度的增大,腐蚀产物膜与金属基体的附着力越弱,甚至会大面积剥落。在尿素辅助蒸汽吞吐采出井井筒环境中,没有原油存在下,由于当尿素溶液浓度大于10%时,3Cr合金钢平均腐蚀速率大于油田腐蚀控制指标0.076 mm/a,不推荐使用。有原油存在下,30%浓度尿素溶液中3Cr合金钢的腐蚀速率大于0.076 mm/a,耐腐蚀性较差,不能满足采出井井筒腐蚀控制要求,也不推荐使用。但当加入原油后,3Cr合金钢的平均腐蚀速率比不加原油的有所下降,原油的掺入,由于形成几何覆盖效应,具有一定的缓蚀作用。所以建议设计现场试验方案时,尿素溶液的浓度不要超过10%。

关键词 3Cr合金钢尿素腐蚀腐蚀产物稠油油藏蒸汽吞吐    
Abstract

The initial corrosion behavior of 3Cr alloy steel in urea assisted heavy oil steam huff and puff environments was studied by means of mass loss measurement, macroscopic morphology observation, SEM, EDS, XRD and XPS. The results show that the initial corrosion of 3Cr alloy steel in urea assisted heavy oil steam huff and puff environment is a synergistic corrosion of CO2 (acid gas) and NH3 (alkaline gas) in high temperature steam, showing uniform corrosion characteristics. The corrosion products are mainly FeCO3. When the concentration of urea solution is in the range between 10% and 20%, with the increase of the concentration of urea solution, the amount and compactness of corrosion products all increase. When the concentration of urea solution higher than 30%, the adhesion of the corrosion product scale to the steel substrate becomes weaker with the increase of the concentration of urea solution, as a result, obvious spallation of the formed scales may emerge. If there not crude oil exists in the wellbore environment of the urea assisted steam huff and puff production well, the average corrosion rate of 3Cr alloy steel is higher than the oilfield corrosion control index 0.076 mm/a when the concentration of urea solution is greater than 10%, so that this operating condition is not recommended. In the presence of crude oil, the corrosion rate of 3Cr alloy steel is greater than 0.076 mm/a for 30% urea solution, apparently which cannot meet the requirements of wellbore corrosion control in production wells, therefore, this operating condition is not recommended too. Anyhow, the average corrosion rate of 3Cr alloy steel with crude oil is lower than that without crude oil. The incorporation of crude oil has certain corrosion inhibition effect due to the geometric covering effect. Therefore, it is suggested that the concentration of urea solution should not exceed 10% when designing the site operation scheme.

Key words3Cr alloy steel    urea corrosion    corrosion product    heavy oil reservoir    steam huff and puff
收稿日期: 2023-06-29      32134.14.1005.4537.2023.206
ZTFLH:  TG172  
基金资助:国家科技重大专项(2016ZX05012-001)
通讯作者: 蒋有伟,E-mail:jiangyw@petrochina.com.cn,研究方向为油田开发
Corresponding author: JIANG Youwei, E-mail: jiangyw@petrochina.com.cn
作者简介: 张运军,男,1978年生,硕士,高级工程师
图1  高温高压动态腐蚀实验设备的结构示意图
图2  试样尺寸
NumberUrea solutionTemperature / ℃Decomposition pressure / MPaExperimental pressure / MPaTime / h
15%501.720.11240
210%502.540.11240
320%503.370.12240
430%504.620.14240
55%801.720.18240
610%802.540.19240
720%803.370.21240
830%804.620.23240
表1  高温高压动态腐蚀实验方案
图3  3Cr合金钢在50和80℃下不同浓度尿素溶液中的腐蚀速率
图4  3Cr合金钢在50和80℃下不同浓度尿素溶液中腐蚀后的宏观形貌
图5  3Cr合金钢在50℃不同浓度尿素溶液中腐蚀后的表面微观形貌
图6  3Cr合金钢在50℃不同浓度尿素溶液中表面腐蚀产物EDS分析
图7  3Cr合金钢在50℃不同浓度尿素溶液中腐蚀产物XRD谱
图8  3Cr合金钢在50℃下20%浓度尿素溶液中表面腐蚀产物XPS谱
图9  3Cr合金钢在不同比例原油与30%尿素溶液的混合液中腐蚀速率
图10  3Cr合金钢在50和80℃下不同比例原油与30%浓度尿素溶液的混合液中腐蚀后的宏观形貌
图11  不同温度下碳钢在Fe-H2O-CO2体系中的E-pH图
1 Ren S R, Niu B L, Wang G J, et al. Numerical simulation on urea-assisted steam flooding for heavy oil reservoir[J]. Spec. Oil Gas Reservoirs, 2012, 19(3): 111
1 任韶然, 牛保伦, 王冠杰 等. 稠油油藏尿素辅助蒸汽驱油数值模拟研究[J]. 特种油气藏, 2012, 19(3): 111
2 Li W H, Liu P C, Shen D H, et al. Three-dimension physical simulation experiment of urea-foam assisted steam flooding in heavy oil reservoir[J]. Pet. Geol. Recovery Effic., 2015, 22(4): 118
2 李文会, 刘鹏程, 沈德煌 等. 稠油油藏尿素泡沫辅助蒸汽驱三维物理模拟实验[J]. 油气地质与采收率, 2015, 22(4): 118
3 Shen D H, Xie J J, Wang X C. Experimental study and application of urea in steam flooding of heavy oil reservoir[J]. Spec. Oil Gas Reservoirs, 2005, 12(2): 85
3 沈德煌, 谢建军, 王晓春. 尿素在稠油油藏注蒸汽开发中的实验研究及应用[J]. 特种油气藏, 2005, 12(2): 85
4 Yu Q S, Muhe T, Dong H, et al. Urea-assisted steam stimulation based on orthogonal design of heavy oil reservoir in Xinjiang oilfield[J]. Pet. Geol. Eng., 2019, 33(6): 77
4 于庆森, 木合塔尔, 董宏 等. 新疆油田稠油油藏基于正交设计的尿素辅助蒸汽吞吐研究[J]. 石油地质与工程, 2019, 33(6): 77
5 Kermani M B, Morshed A B. Carbon dioxide corrosion in oil and gas production—A compendium[J]. Corrosion, 2003, 59: 659
doi: 10.5006/1.3277596
6 Abd El-Lateef H M, Abbasov V M, Aliyeva L I, et al. Corrosion protection of steel pipelines against CO2 corrosion-A review[J]. Chem. J., 2012, 2: 52
7 Sim S, Bocher F, Cole I S, et al. Investigating the effect of water content in supercritical CO2 as relevant to the corrosion of carbon capture and storage pipelines[J]. Corrosion, 2014, 70: 185
doi: 10.5006/0944
8 Shi S Z, Dong B J, Zeng D Z, et al. Simulation of the effect of corrosion performance of four types under CO2-assisted steam flooding conditions[J]. J. Southwest Pet. Univ. (Sci. Technol. Ed.), 2018, 40(4): 162
8 石善志, 董宝军, 曾德智 等. CO2辅助蒸汽驱对四种钢的腐蚀性能影响模拟[J]. 西南石油大学学报(自然科学版), 2018, 40(4):162
doi: 10.11885/j.issn.1674-5086.2017.05.02.02
9 Chen C F, Zhao G X, Yan M L, et al. Characteristics of CO2 corrosion scales on Cr-containing N80 steel[J]. J. Chin. Soc. Corros. Prot., 2002, 22: 335
9 陈长风, 赵国仙, 严密林 等. 含Cr油套管钢CO2腐蚀产物膜特征[J]. 中国腐蚀与防护学报, 2002, 22: 335
10 Jia Z J, Du C W, Liu Z Y, et al. Effect of pH on the corrosion and electrochemical behavior of 3Cr steel in CO2 saturated NaCl solution[J]. Chin. J. Mater. Res., 2011, 25: 39
10 贾志军, 杜翠薇, 刘智勇 等. 3Cr低合金钢在含饱和CO2的NaCl溶液中的腐蚀电化学行为[J]. 材料研究学报, 2011, 25: 39
11 Guo S Q, Xu L N, Chang W, et al. Experimental study of CO2 corrosion of 3Cr pipe line steel[J]. Acta Metall. Sin., 2011, 47: 1067
11 郭少强, 许立宁, 常 炜 等. 3Cr管线钢CO2腐蚀实验研究[J]. 金属学报, 2011, 47: 1067
doi: 10.3724/SP.J.1037.2011.00048
12 Wang K, Zhang Y Q, Yin Z F, et al. Corrosion behavior of N80 and 3Cr tubing steels in CO2 flooding environment[J]. Corros. Prot., 2015, 36: 706
12 王 珂, 张永强, 尹志福 等. N80和3Cr油管钢在CO2驱油环境中的腐蚀行为[J]. 腐蚀与防护, 2015, 36: 706
13 Wei L, Pang X L, Gao K W. Corrosion of low alloy steel and stainless steel in supercritical CO2/H2O/H2S systems[J]. Corros. Sci., 2016, 111: 637
doi: 10.1016/j.corsci.2016.06.003
14 Wu Y Y, Shi S Z, Huang J B, et al. Evaluation of corrosion resistance for low alloy steels in high temperature steam environment with CO2 [J]. Chem. Eng. Oil Gas, 2017, 46(4): 77
14 邬元月, 石善志, 黄建波 等. 含CO2高温蒸汽环境中低合金钢耐腐蚀性能评价[J]. 石油与天然气化工, 2017, 46(4): 77
15 Zou J N, Pang X L, Gao K W. Crevice corrosion of X70 and 3Cr low alloy steels under supercritical CO2 condition[J]. Acta Metall. Sin., 2018, 54: 537
15 邹佳男, 庞晓露, 高克玮. 低合金钢X70和3Cr在超临界CO2环境中的缝隙腐蚀[J]. 金属学报, 2018, 54: 537
doi: 10.11900/0412.1961.2017.00353
16 de Sanctis O, Gómez L, Pellegri N, et al. Behaviour in hot ammonia atmosphere of SiO2-coated stainless steels produced by a sol-gel procedure[J]. Surf. Coat. Technol., 1995, 70: 251
doi: 10.1016/0257-8972(94)02274-T
17 Al-Hashem A, Carew J. The use of electrochemical impedance spectroscopy to study the effect of chlorine and ammonia residuals on the corrosion of copper-based and nickel-based alloys in seawater[J]. Desalination, 2002, 150: 255
doi: 10.1016/S0011-9164(02)00981-5
18 Zhou W, Hua F, Gong C B, et al. Cause analysis of corrosion in rich ammonia system of sour water stripper and countermeasures[J]. Corros. Prot. Petrochem. Ind., 2013, 30(1): 40
18 周 威, 花 飞, 龚朝兵 等. 污水汽提装置富氨气系统腐蚀原因及对策[J]. 石油化工腐蚀与防护, 2013, 30(1): 40
19 Niu Z Y, Cheng B, Zhao L N. Corrosion law on lining of urea reactor[J]. China Spec. Equip. Saf., 2012, 28(10): 10
19 牛兆岩, 程 冰, 赵路宁. 尿素合成塔内衬腐蚀规律研究[J]. 中国特种设备安全, 2012, 28(10): 10
20 Tian L B, Zhu Z P, Zhang C L, et al. Urea induced corrosion of 15CrMo steel for water cooled wall tubes in coal-fired power plants[J]. J. Chin. Soc. Corros. Prot., 2019, 39: 114
20 田龙标, 朱志平, 张春雷 等. 尿素对燃煤电厂水冷壁管15CrMo钢腐蚀特性研究[J]. 中国腐蚀与防护学报, 2019, 39: 114
doi: 10.11902/1005.4537.2018.067
21 Huan Y Q. Corrosion and anti-corrosion measures of high-pressure urea equipment[J]. Chem. Fertil. Des., 2020, 58(1): 30
21 宦月庆. 尿素高压设备的腐蚀及防腐措施[J]. 化肥设计, 2020, 58(1): 30
22 Huang A R, Zhang W, WANG X L, et al. Corrosion behavior of ferritic stainless steel in high temperature urea environment[J]. Chin. J. Mater. Res., 2020, 34: 712
doi: 10.11901/1005.3093.2020.065
22 黄安然, 张 伟, 王学林 等. 铁素体不锈钢在高温尿素环境中的腐蚀行为研究[J]. 材料研究学报, 2020, 34: 712
doi: 10.11901/1005.3093.2020.065
23 Wang X L, Huang A R, Li M X, et al. The significant roles of Nb and Mo on enhancement of high temperature urea corrosion resistance in ferritic stainless steel[J]. Mater. Lett., 2020, 269: 127660
doi: 10.1016/j.matlet.2020.127660
24 Xu L N, Wang B, Zhu J Y, et al. Effect of Cr content on the corrosion performance of low-Cr alloy steel in a CO2 environment[J]. Appl. Surf. Sci., 2016, 379: 39
doi: 10.1016/j.apsusc.2016.04.049
25 Tian Y Q, Fu A Q, Hu J G, et al. Corrosion behavior of low Cr steel in CO2/H2S environment[J]. Surf. Technol., 2019, 48(5): 49
25 田永强, 付安庆, 胡建国 等. 低Cr钢在CO2/H2S环境中的腐蚀行为研究[J]. 表面技术, 2019, 48(5): 49
26 Chen W T, Fan S J, Chen L T, et al. Problem analysis and countermeasures of urea hydrdysis anmoia production system[J]. Clean Coal Technol., 2023, 29(suppl.2) : 103
26 陈文通, 樊帅军, 陈柳潼 等. 尿素水解制氨系统问题分析与对策[J]. 洁净煤技术, 2023, 29(): 103
27 Zhang B, Zhang X Y, Li M H, et al. Problem analysis for transportation of urea hydrolysis production gas for thermal power plants[J]. Therm. Power Gener., 2015, 44(11): 114
27 张 波, 张向宇, 李明浩 等. 火电厂尿素水解产品气输送问题分析[J]. 热力发电, 2015, 44(11): 114
28 Lu X. Modeling and pilot test of the urea hydrolysis to ammonia for gas denitration[D]. Beijing: North China Electric Power University (Beijing), 2016
28 陆 续. 尿素水解制氨过程模型与实验研究[D]. 北京: 华北电力大学(北京), 2016
29 National Energy Administration. SY/T 5329-2012 Water quality standard and practice for analysis of oilfield injecting waters in clastic reservoirs[S]. Beijing: Petroleum Industry Press, 2012: 5
29 国家能源局. SY/T 5329-2012 碎屑岩油藏注水水质指标及分析方法[S]. 北京: 石油工业出版社, 2012: 5
30 Li M J. Analysis on equipment corrosion and its measures against it in Urea plant[J]. Mod. Chem. Ind., 2006, 26(11): 54
30 李民杰. 尿素设备腐蚀的影响因素分析及防腐措施[J]. 现代化工, 2006, 26(11): 54
31 Zhang Y J, Lyu N X, Shen D H, et al. Corrosion behavior of N80 steel in urea assisted heavy oil steam huff and puff environment[J]. Surf. Technol., 2023, 52(11): 269
31 张运军, 吕乃欣, 沈德煌 等. N80钢在尿素辅助稠油蒸汽吞吐环境中的腐蚀行为研究[J], 表面技术, 2023, 52(11): 269
32 Ji E Y, Li A K, Zhang Y H, et al. Effect of crude oils on corrosion behavior of N80 steel[J]. Mater. Prot., 2004, 37(5): 42
32 姬鄂豫, 李爱魁, 张银华 等. 原油对碳钢腐蚀行为影响的研究[J]. 材料保护, 2004, 37(5): 42
33 Sun C, Sun J B, Wang Y, et al. The effect of crude oil on the chemical properties of aqueous phase was studied by electrochemical method[A]. 2014 National Academic Exchange on Corrosion Electrochemistry and Test Methods Abstract Collection[C]. Harbin, 2014: 54
33 孙 冲, 孙建波, 王 勇 等. 电化学方法研究原油对水相化学性质的影响[A]. 2014年全国腐蚀电化学及测试方法学术交流会摘要集[C]. 哈尔滨, 2014: 54
[1] 白雪寒, 丁康康, 张彭辉, 范林, 张慧霞, 刘少通. AH36船用钢海水加速腐蚀试验研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 187-196.
[2] 冷文俊, 石西召, 辛永磊, 杨延格, 王利, 崔中雨, 侯健. 极地低温海洋大气环境下Ni-Cr-Mo-V钢腐蚀行为与室内外相关性研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 91-99.
[3] 王晓, 李明, 刘峰, 王忠平, 李相波, 李宁旺. 温度对B10铜镍合金管冲刷腐蚀行为影响规律研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1329-1338.
[4] 李强, 路程, 唐颖浩, 唐建峰, 刘炳成. 湿气管道积液区X70CO2 局部腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 837-846.
[5] 幸雪松, 范白涛, 朱新宇, 张俊莹, 陈长风. 低H2S和高CO2分压下超深井用P110SS油套管钢腐蚀特征研究[J]. 中国腐蚀与防护学报, 2023, 43(3): 611-618.
[6] 周志平, 吴大康, 张宏福, 张磊, 李明星, 张志鑫, 钟显康. 高温下L80钢的断裂机理及CO2/H2S模拟工况下的腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 601-610.
[7] 王晓, 刘峰, 李焰, 张威, 李相波. 静态和动态海水中B10铜镍合金管的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 119-126.
[8] 李晗, 刘元海, 赵连红, 崔中雨. 300M超高强度钢在模拟海洋环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 87-94.
[9] 王小红, 李子硕, 唐御峰, 谭浩, 蒋焰罡. CO2-H2S-Cl-共存的地层水环境中Cr含量对钢的腐蚀产物膜特性的影响[J]. 中国腐蚀与防护学报, 2022, 42(6): 1043-1050.
[10] 薛芳, 刘两雨, 谭龙. Q235钢在不同浓度碳酸氢钠溶液中的有氧腐蚀行为[J]. 中国腐蚀与防护学报, 2022, 42(5): 771-778.
[11] 王通, 孟惠民, 葛鹏飞, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. 2Cr-1Ni-1.2Mo-0.2V钢在NH4H2PO4溶液中的电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 551-562.
[12] 王家明, 杨昊东, 杜敏, 彭文山, 陈翰林, 郭为民, 蔺存国. B10铜镍合金在高浓度NH4+污染海水中腐蚀研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 609-616.
[13] 陈文娟, 方莲, 潘刚. O3/SO2复合大气环境中Q235B钢的腐蚀演化特性[J]. 中国腐蚀与防护学报, 2021, 41(4): 450-460.
[14] 张艺凡, 袁晓光, 黄宏军, 左晓姣, 程禹霖. 铜铝层状复合板中性盐雾腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 241-247.
[15] 白海涛, 杨敏, 董小卫, 马云, 王瑞. CO2腐蚀产物膜的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(4): 295-301.