Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (2): 365-371     CSTR: 32134.14.1005.4537.2023.174      DOI: 10.11902/1005.4537.2023.174
  研究报告 本期目录 | 过刊浏览 |
用于大气环境的电化学传感器的腐蚀性能研究
李婷玉1,2, 魏洁1(), 陈楠1, 万晔2(), 董俊华1
1.中国科学院金属研究所 沈阳 110016
2.沈阳建筑大学材料科学与工程学院 沈阳 110168
Corrosion Performance of Electrochemical Sensors for Atmospheric Environments
LI Tingyu1,2, WEI Jie1(), CHEN Nan1, WAN Ye2(), DONG Junhua1
1.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168, China
引用本文:

李婷玉, 魏洁, 陈楠, 万晔, 董俊华. 用于大气环境的电化学传感器的腐蚀性能研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 365-371.
Tingyu LI, Jie WEI, Nan CHEN, Ye WAN, Junhua DONG. Corrosion Performance of Electrochemical Sensors for Atmospheric Environments[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(2): 365-371.

全文: PDF(4997 KB)   HTML
摘要: 

构造了一种用于监测大气腐蚀的金属材料的电化学传感器,分别选用低合金钢和铜导电漆两种具有不同电位的金属材料,基于电偶腐蚀原理组成传感器的两个电极,两个电极之间以薄的有机硅绝缘膜相隔,传感器与大气薄液膜介质形成一个电化学腐蚀系统。在两个金属电极之间有液膜产成时,就会形成一个腐蚀电池,并产生电偶腐蚀电流,通过监测这种电偶电流以反映环境中材料的腐蚀状态。本文采用新型电化学传感器,同时借助电化学工作站和高精度电子天平,研究了绝缘膜厚度、液膜厚度、温度、相对湿度及阴阳极面积比等因素对电偶电流的影响规律,并证实了新型电化学传感器具有很高的灵敏度,可用于薄液膜下大气腐蚀的监测。

关键词 大气腐蚀传感器实时监测电偶电流    
Abstract

An electrochemical sensor for monitoring atmospheric corrosion of metallic materials was constructed. Two metallic materials with different corrosion potentials, i.e. low alloy steel and copper conductive paint, were chosen to form the two electrodes of the sensor based on the principle of galvanic corrosion. The two electrodes are separated by a thin silicone insulating film, and thus an electrochemical corrosion system may be established by the two electrodes while which was covered by a thin liquid film came from the atmosphere, correspondingly, galvanic corrosion current is generated. This galvanic current is monitored to reflect the corrosion state of the material in the environment. A new type of electrochemical sensor was used to study the influence of factors such as insulation film thickness, liquid film thickness, temperature, relative humidity, and cathode to anode area ratio on the galvanic current with the assistance of an electrochemical workstation and a high-precision electronic balance. It is confirmed that the new electrochemical sensor has high sensitivity and can be used for monitoring the atmospheric corrosion process under thin liquid film.

Key wordsatmospheric corrosion    sensor    real-time monitoring    galvanic current
收稿日期: 2023-05-23      32134.14.1005.4537.2023.174
ZTFLH:  TG172.3  
基金资助:辽宁省科技重大专项(2020JH1/10100001);国家科技基础资源调查专项(2019FY101401);国家科技基础资源调查专项(2019FY101402);中国科学院-泰国科技发展书名合作研究项目(174321KYSB20210004)
通讯作者: 魏洁,E-mail:jwei@imr.ac.cn,研究方向为混凝土结构中钢筋的腐蚀与防护;
万晔,E-mail:ywan@sjzu.edu.cn,研究方向为材料腐蚀与防护
Corresponding author: WEI Jie, E-mail: jwei@imr.ac.cn;
WAN Ye,E-mail: ywan@sjzu.edu.cn
作者简介: 李婷玉,女,1998年生,硕士生
图1  传感器示意图
图2  有机硅涂层的表面形貌及截面形貌
图3  铜覆盖层的表面形貌及截面形貌
图4  不同间距的电偶试样的电偶电流随腐蚀时间的变化
图5  液膜厚度随时间变化曲线
图6  传感器监测电偶电流随时间变化曲线
图7  不同相对湿度下温度对传感器电偶电流的影响
图8  不同温度下相对湿度对传感器腐蚀电流的影响
图9  不同阴阳极电极面积比时的电偶电流与电偶电位随时间变化曲线
1 Grøntoft T, Verney-Carron A, Tidblad J. Cleaning costs for European sheltered white painted steel and modern glass surfaces due to air pollution since the year 2000[J]. Atmosphere, 2019, 10: 167
doi: 10.3390/atmos10040167
2 Zhao Y T, Ding H L, Qiu K N, et al. Research progress on influencing factors and test methods of atmospheric corrosion of metals[J]. J. Shanghai Univ. Electric Power, 2022, 38: 527
2 赵悦彤, 丁红蕾, 邱凯娜 等. 金属大气腐蚀影响因素及实验方法研究综述[J]. 上海电力大学学报, 2022, 38: 527
3 Xu J W. Research on key corrosion factors and synergistic mechanism of Q345 steel in South China Sea[D]. Chongqing: Chongqing Jiaotong University, 2020
3 徐静雯. Q345钢南海环境关键腐蚀因子及其协同作用机理研究[D]. 重庆: 重庆交通大学, 2020
4 Pan J Q, Wu D, Yu F Z, et al. Research and application of atmospheric corrosion monitoring sensor[J]. Corros. Prot., 2021, 42(4): 58
4 潘建乔, 吴 迪, 余方召 等. 大气腐蚀监测传感器的研究与应用[J]. 腐蚀与防护, 2021, 42(4): 58
5 Zeng J J, Zhou X J, Wu J, et al. Correlation and life prediction of atmospheric corrosion tests on metallic materials current research status[J]. Corros. Sci. Prot. Technol., 2015, 27: 90
5 曾佳俊, 周学杰, 吴 军 等. 金属材料大气腐蚀试验相关性与寿命预测研究现状[J]. 腐蚀科学与防护技术, 2015, 27: 90
doi: 10.11903/1002.6495.2014.104
6 Li X G, Li Q, Pei Z B, et al. Latest developments on atmospheric corrosion monitoring technologies for steels[J]. Ansteel Technol., 2020, (6): 1
6 李晓刚, 李 清, 裴梓博 等. 钢铁大气腐蚀监测技术研究进展[J]. 鞍钢技术, 2020, (6): 1
7 Dravnieks A, Cataldi H A. Industrial applications of a method for measuring small amounts of corrosion without removal of corrosion products[J]. Corrosion, 1954, 10: 224
doi: 10.5006/0010-9312-10.7.224
8 Freedman A J, Troscinski E S, Dravnieks A. An electrical resistance method of corrosion monitoring in refinery equipment[J]. Corrosion, 1958, 14(4): 29
9 Zhang W L, Feng D C, Dong L, et al. Numerical simulation of correlation between resistance change and corrosion degree of bar resistance probe[J]. Corros. Prot., 2020, 41(4): 54
9 张文亮, 冯大成, 董 亮 等. 条形电阻探针电阻变化与腐蚀程度相关性的数值模拟[J]. 腐蚀与防护, 2020, 41(4): 54
10 Zhou M X, Wu J, Fan Z B, et al. Current situation and prospect of on-line monitoring technology for atmospheric corrosion testing of metallic materials[J]. J. Chin. Soc. Corros. Prot., 2023, 43: 38
10 周梦鑫, 吴 军, 樊志彬 等. 大气腐蚀在线监测技术研究现状与展望[J]. 中国腐蚀与防护学报, 2023, 43: 38
doi: 10.11902/1005.4537.2022.027
11 Wang J, Chen J J, Xie Y, et al. Evaluation of environmental factors related with atmosphere corrosivity in Hunan Province by atmospheric corrosion monitoring technique[J]. J. Chin. Soc. Corros. Prot., 2021, 41: 487
11 王 军, 陈军君, 谢 亿 等. 湖南地区大气腐蚀严酷性的环境因素与大气腐蚀监测仪评定[J]. 中国腐蚀与防护学报, 2021, 41: 487
12 Yuan H Y, Ma C F, Liu G M, et al. Applications of quartz crystal microbalance in polymer studies[J]. Acta Polym. Sin., 2021, 52: 806
12 袁海洋, 马春风, 刘光明 等. 石英晶体微天平在高分子研究中的应用[J]. 高分子学报, 2021, 52: 806
13 Zhang Z Z. A review on study state and progress of metal-corrosion electrochemical-noise measurement[J]. China Met. Bull., 2021, (9): 182
13 张中正. 金属腐蚀电化学噪声测量法的研究与进展[J]. 中国金属通报, 2021, (9): 182
14 Zhao J, Zhang B S. Study on corrosion detection method of bridge steel structure in air pollution environment[J]. Build. Technol. Dev., 2020, 47(18): 138
14 赵 健, 张保胜. 大气污染环境下桥梁钢结构腐蚀检测方法研究[J]. 建筑技术开发, 2020, 47(18): 138
15 Palani S, Hack T, Deconinck J, et al. Validation of predictive model for galvanic corrosion under thin electrolyte layers: An application to aluminium 2024-CFRP material combination[J]. Corros. Sci., 2014, 78: 89
doi: 10.1016/j.corsci.2013.09.003
16 Bellucci F. Galvanic corrosion between nonmetallic composites and metals: I effect of metal and of temperature[J]. Corrosion, 1991, 47: 808
doi: 10.5006/1.3585192
17 Zhao H L. Galvanic corrosion research of production tubing, production casing and packer materials in packer fluid[D]. Chengdu: Sichuan University, 2007
17 赵华莱. 油套管及封隔器用钢在封隔液环境下的电偶腐蚀行为研究[D]. 成都: 四川大学, 2007
18 Zhang W Y. Progress in research on galvanic corrosion behavior and protection[J]. Total Corros. Control, 2018, 32(12): 51
18 张文毓. 电偶腐蚀与防护的研究进展[J]. 全面腐蚀控制, 2018, 32(12): 51
19 Liu Y J, Wang Z Y, Wang B B, et al. Mechanism of galvanic corrosion of coupled 2024 Al-alloy and 316L stainless steel beneath a thin electrolyte film studied by real-time monitoring technologies[J]. J. Chin. Soc. Corros. Prot., 2017, 37: 261
19 刘艳洁, 王振尧, 王彬彬 等. 实时监测技术研究薄液膜下电偶腐蚀的机理[J]. 中国腐蚀与防护学报, 2017, 37: 261
doi: 10.11902/1005.4537.2016.038
20 Lu Y L, Du Y, Wang C, et al. Effect of nano-Al2O3 and -TiO2 modified silicone coatings on high temperature oxidation Resistance of 304 stainless steel[J]. Chin. J. Mater. Res., 2021, 35: 458
20 卢壹梁, 杜 瑶, 王成 等. 纳米Al2O3和TiO2改性有机硅涂层对304不锈钢高温氧化行为的影响[J]. 材料研究学报, 2021, 35: 458
doi: 10.11901/1005.3093.2020.258
21 Yao X, Cai C, Li J F, et al. Early stage galvanic corrosion of 5383 Al alloy coupled with 907 steel and aluminum bronze in 3.5%NaCl Solution[J]. Corros. Sci. Prot. Technol., 2015, 27: 419
21 姚 希, 蔡 超, 李劲风 等. 5383铝合金与907钢和铝青铜早期电偶腐蚀的平面分布[J]. 腐蚀科学与防护技术, 2015, 27: 419
22 Fu X X, Dong J H, Han E H, et al. Electrochemical impedance spectroscopy monitoring on mild steel Q235 in simulated industrial atmospheric corrosion environment[J]. Acta Metall. Sin., 2014, 50: 57
22 傅欣欣, 董俊华, 韩恩厚 等. 低碳钢Q235在模拟酸雨大气腐蚀条件下的电化学阻抗谱监测[J]. 金属学报, 2014, 50: 57
doi: 10.3724/SP.J.1037.2013.00278
23 Xiong X L, Wang Y Y, Li T, et al. Research progress of the galvanic corrosion between carbon fiber reinforced resin matrix composites and typical metal connections[J]. Mater. Prot., 2022, 55(7): 187
23 熊先炼, 王莹莹, 李 湉 等. 碳纤维增强树脂基复合材料与金属典型连接件电偶腐蚀的研究进展[J]. 材料保护, 2022, 55(7): 187
24 Cao X L, Xiao Y D, Lu Y, et al. Research of environmental sensitivity of Cu/Fe galvanic cell[J]. Equip. Environ. Eng., 2006, 3(4): 20
24 曹献龙, 萧以德, 卢 颖 等. Cu/Fe双电极原电池对环境敏感性的研究[J]. 装备环境工程, 2006, 3(4): 20
25 Huang Y L, Yang D, Xu Y, et al. Field study of weather conditions affecting atmospheric corrosion by an automobile-carried atmospheric corrosion monitor sensor[J]. J. Mater. Eng. Perform., 2020, 29: 5840
doi: 10.1007/s11665-020-05107-y
26 Xu Q, Liu Y P, Hu P F, et al. Analysis of galvanic corrosion behavior of stainless steel and hull steel in seawater[J]. Equip. Environ. Eng., 2022, 19(5): 126
26 徐 强, 刘亚鹏, 胡鹏飞 等. 不锈钢与船体钢在海水中的电偶腐蚀行为研究[J]. 装备环境工程, 2022, 19(5): 126
[1] 王靖羽, 周学杰, 王洪伦, 吴军, 陈昊, 郑鹏华. 碳钢和高强钢在南海大气环境中的初期腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 237-245.
[2] 孙硕, 代珈铭, 宋影伟, 艾彩娇. 挤压态EW75稀土镁合金在沈阳工业大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 141-150.
[3] 张勤号, 朱泽洁, 蔡浩冉, 李鑫冉, 孟宪泽, 李昊, 伍廉奎, 罗荘竹, 曹发和. Pt/IrO x -pH超微电化学传感器性能探究及其在铜/不锈钢电偶腐蚀研究中的应用[J]. 中国腐蚀与防护学报, 2023, 43(6): 1264-1272.
[4] 汪洋, 刘元海, 慕仙莲, 刘淼然, 王俊, 李秋平, 陈川. 海洋气候大气腐蚀过程环境因素对薄液膜内物质传递的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1015-1021.
[5] 白一涵, 张航, 朱泽洁, 王疆瑛, 曹发和. 缝隙腐蚀内部微区离子浓度监测的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(4): 828-836.
[6] 郝文魁, 陈新, 徐玲铃, 韩钰, 陈云, 黄路遥, 祝志祥, 杨丙坤, 王晓芳, 张强. 电网碳钢、镀锌钢大气腐蚀等级图绘制研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 795-802.
[7] 李乐民, 张洁, 卞亚飞, 缪春辉, 陈国宏, 汤文明. 安徽省内电网设备常用Q235和40Cr钢大气腐蚀特性及其规律[J]. 中国腐蚀与防护学报, 2023, 43(3): 535-543.
[8] 周梦鑫, 吴军, 樊志彬, 周学杰, 陈昊. 大气腐蚀在线监测技术研究现状与展望[J]. 中国腐蚀与防护学报, 2023, 43(1): 38-46.
[9] 樊志彬, 李辛庚, 王晓明, 王倩. 区域性大气腐蚀图绘制技术研究进展[J]. 中国腐蚀与防护学报, 2023, 43(1): 29-37.
[10] 夏晓健, 万芯瑗, 高燕, 王启伟, 严康骅, 陈云翔, 洪毅成, 张俊喜. 1050铝合金在通电工况下大气腐蚀的腐蚀特征[J]. 中国腐蚀与防护学报, 2022, 42(6): 1065-1069.
[11] 范益, 杨文秀, 王军, 蔡佳兴, 马宏驰. Q690qE桥梁钢在模拟滨海工业环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 669-674.
[12] 马小泽, 孟令东, 曹祥康, 肖松, 董泽华. 大气污染物硫酸铵和氯化钠混合盐粒沉降对电路板铜大气腐蚀的加速机制[J]. 中国腐蚀与防护学报, 2022, 42(4): 540-550.
[13] 崔中雨, 葛峰, 王昕. 几种苛刻海洋大气环境下的海工材料腐蚀机制[J]. 中国腐蚀与防护学报, 2022, 42(3): 403-409.
[14] 王志高, 海潮, 姜杰, 兰新生, 杜翠薇, 李晓刚. Q235钢在德阳大气环境中腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 871-876.
[15] 杨胜, 张慧杰, 向午渊, 欧阳涛, 肖芬, 周慧. 表面处理工艺对TC4钛合金微弧氧化膜层及电偶电流的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 905-908.