|
|
锅炉受热面的冲蚀磨损与防护综述 |
李海燕1, 刘欢1( ), 王阁义1, 张秀菊1, 陈同舟2, 俞云1, 姚洪1 |
1.华中科技大学能源与动力工程学院 武汉 430074 2.武汉材料保护研究所有限公司 武汉 430030 |
|
Review on Erosion-wear and Protection of Heat Exchange Surface in Power Station Boilers |
LI Haiyan1, LIU Huan1( ), WANG Geyi1, ZHANG Xiuju1, CHEN Tongzhou2, YU Yun1, YAO Hong1 |
1.School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China 2.Wuhan Research Institute of Materials Protection, Wuhan 430030, China |
引用本文:
李海燕, 刘欢, 王阁义, 张秀菊, 陈同舟, 俞云, 姚洪. 锅炉受热面的冲蚀磨损与防护综述[J]. 中国腐蚀与防护学报, 2023, 43(5): 957-970.
LI Haiyan,
LIU Huan,
WANG Geyi,
ZHANG Xiuju,
CHEN Tongzhou,
YU Yun,
YAO Hong.
Review on Erosion-wear and Protection of Heat Exchange Surface in Power Station Boilers. Journal of Chinese Society for Corrosion and protection, 2023, 43(5): 957-970.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2022.282
或
https://www.jcscp.org/CN/Y2023/V43/I5/957
|
1 |
National Bureau of Statistics. China Statistical Yearbook [M]. Beijing: China Statistics Press, 2019
|
1 |
国家统计局. 中国统计年鉴 [M]. 北京: 中国统计出版社, 2019
|
2 |
Hossain M N, Ghosh K, Manna N K. Two-phase thermo-hydraulic model of a 210 MW thermal power plant boiler for designing the riser-downcomer circuit [J]. Therm. Sci. Eng. Prog., 2020, 18: 100537
|
3 |
Zhang S P, Shen G Q, An L S, et al. Monitoring ash fouling in power station boiler furnaces using acoustic pyrometry [J]. Chem. Eng. Sci., 2015, 126: 216
doi: 10.1016/j.ces.2014.12.030
|
4 |
Hidalgo V H, Varela F J B, Menéndez A C, et al. A comparative study of high-temperature erosion wear of plasma-sprayed NiCrBSiFe and WC-NiCrBSiFe coatings under simulated coal-fired boiler conditions [J]. Tribol. Int., 2001, 34: 161
doi: 10.1016/S0301-679X(00)00146-8
|
5 |
Huttunen-Saarivirta E, Kinnunen H, Tuiremo J, et al. Erosive wear of boiler steels by sand and ash [J]. Wear, 2014, 317: 213
doi: 10.1016/j.wear.2014.06.007
|
6 |
Kang X Q. Studies on erosion resistance of high strength refractory castable at room temperature [D]. Xi’an: Xi’an University of Architecture and Technology, 2010
|
6 |
康晓庆. 高强耐火浇注料常温冲蚀磨损性能研究 [D]. 西安: 西安建筑科技大学, 2010
|
7 |
Li J J, Wu F F, Wu B. Erosion wear performance of AlCrN coating on titanium alloy substrate [J]. Surf. Technol., 2019, 48(2): 152
|
7 |
李巾杰, 吴凤芳, 吴 冰. 钛合金基体上AlCrN涂层的冲蚀磨损行为研究 [J]. 表面技术, 2019, 48(2): 152
|
8 |
Fan L H. Causes and preventive measures of economizer leakage in thermal power plant [J]. Chem. Enterpr. Manage., 2020, (10): 120
|
8 |
范立辉. 热电厂省煤器泄露的原因及预防措施 [J]. 化工管理, 2020, (10): 120
|
9 |
Wu W Y. Study on high temperature corrosion coupled erosion wear characteristics of fluidized bed boiler [D]. Wulumuqi: Xinjiang University, 2021
|
9 |
吴文亚. 流化床锅炉高温腐蚀耦合冲蚀磨损的特性研究 [D]. 乌鲁木齐: 新疆大学, 2021
|
10 |
Zhao X P, Sun J R, Zou H R. An experimental study on the hot flying ash erosion of 20 carbon steel [J]. Proc. CSEE, 2001, 21(6): 90
|
10 |
赵宪萍, 孙坚荣, 邹辉荣. 20碳钢热态飞灰冲刷磨损性能的试验研究 [J]. 中国电机工程学报, 2001, 21(6): 90
|
11 |
Hidalgo V H, Varela J B, Menéndez A C, et al. High temperature erosion wear of flame and plasma-sprayed nickel-chromium coatings under simulated coal-fired boiler atmospheres [J]. Wear, 2001, 247: 214
doi: 10.1016/S0043-1648(00)00540-8
|
12 |
Sun H. Study on thermal spraying Cr3C2-NiCr composite coating for power plant boiler pipeline [D]. Ma’anshan: Anhui University of Technology, 2018
|
12 |
孙 华. 电厂锅炉管道热喷涂Cr3C2-NiCr复合涂层的研究 [D]. 马鞍山: 安徽工业大学, 2018
|
13 |
Xue Y T. The wear mechanism and control measures of water cooling wall in circulating fluidized bed boiler [J]. Petrochem. Ind. Appl., 2018, 37(3): 141
|
13 |
薛永涛. 循环流化床锅炉水冷壁磨损机理及控制措施浅析 [J]. 石油化工应用, 2018, 37(3): 141
|
14 |
Zhong C Y. Preparing and properties research of wear resistance composite boiler tubes [D]. Baoding: North China Electric Power University, 2013
|
14 |
钟成圆. 高耐磨损复合锅炉管的制备及其特性研究 [D]. 保定: 华北电力大学, 2013
|
15 |
Chen L H, Jin J, Fan J R, et al. Study on the erosion protection technique for the boiler tube bundles of power plant [J]. Proc. CSEE, 1999, 19(7): 67
|
15 |
陈丽华, 金 军, 樊建人 等. 电站锅炉受热面管束防磨技术的研究 [J]. 中国电机工程学报, 1999, 19(7): 67
|
16 |
Wang L, Zhang Y Q. Municipal solid waste incinerators and erosion resistant refractory [J]. Power Equip., 2007, 21: 316
|
16 |
王 雷, 张运翘. 垃圾焚烧炉及耐火耐磨材料探讨 [J]. 发电设备, 2007, 21: 316
|
17 |
Liu J L, Li Y M, Yang L. Analysis of the wearing of water cooling wall pipe of CFB boiler and prevention measures [J]. China Plant Eng., 2004, (10): 34
|
17 |
刘吉亮, 厉彦明, 杨 雷. CFB锅炉水冷壁管磨损分析及防治对策 [J]. 中国设备工程, 2004, (10): 34
|
18 |
Sun W B, Feng Y X. Application of thin anti-wear tile for power station boiler smooth tube economizer [J]. Central China Electric Power, 1998, (2): 71
|
18 |
孙文波, 冯永新. 电站锅炉光管省煤器薄壁防磨瓦的应用 [J]. 华中电力, 1998, (2): 71
|
19 |
Pronobis M. Harmful phenomena in modernized boilers [A]. Environmentally Oriented Modernization of Power Boilers [M]. Amsterdam: Elsevier, 2020: 213
|
20 |
Xia Y F, Cheng L M, Yu C J, et al. Anti-wear beam effects on gas-solid hydrodynamics in a circulating fluidized bed [J]. Particuology, 2015, 19: 173
doi: 10.1016/j.partic.2014.05.011
|
21 |
Xu L J, Cheng L M, Ji J Q, et al. Effect of anti-wear beams on waterwall heat transfer in a CFB boiler [J]. Int. J. Heat Mass Transfer, 2017, 115: 1092
doi: 10.1016/j.ijheatmasstransfer.2017.08.085
|
22 |
Gao Z Q. Application of anti-wear beam in long period operation of power plant boiler [J]. Appl. Energy Technol., 2019, (8): 26
|
22 |
高自强. 防磨梁在电厂锅炉长周期运行中的应用 [J]. 应用能源技术, 2019, (8): 26
|
23 |
Wang J. Research on water wall abrasion and anti-wear of circulating fludized bed boiler [D]. Zibo: Shandong University of Technology, 2020
|
23 |
王 佳. 循环流化床锅炉水冷壁磨损与防磨研究 [D]. 淄博: 山东理工大学, 2020
|
24 |
Vicenzi J, Villanova D L, Lima M D, et al. HVOF-coatings against high temperature erosion (∼300 °C) by coal fly ash in thermoelectric power plant [J]. Mater. Des., 2006, 27: 236
doi: 10.1016/j.matdes.2004.10.008
|
25 |
Zhang C, Wu X H, Dai P Q. Erosive wear properties of FeCoCr0.5NiBSi x high-entropy alloy coating at high temperature [J]. Surf. Technol., 2019, 48(2): 166
|
25 |
张 冲, 吴旭晖, 戴品强. FeCoCr 0. 5NiBSix高熵合金涂层的高温冲蚀磨损性能 [J]. 表面技术, 2019, 48(2): 166
|
26 |
Li T J, Li W, Li Y, et al. Performance of HVOF NiCr cermets coating against high temperature sulfur corrosion and erosion [J]. Proc. CSEE, 2012, 32(20): 120
|
26 |
李太江, 李 巍, 李 勇 等. 超音速火焰喷涂制备NiCr金属陶瓷涂层的抗高温硫腐蚀与冲蚀磨损性能 [J]. 中国电机工程学报, 2012, 32(20): 120
|
27 |
Kang J X, Zhao W Z, Zhu J H. Erosion resistance of materials [J]. Mater. Prot., 2001, 34(10): 22
|
27 |
康进兴, 赵文轸, 朱金华. 材料抗冲蚀性的研究进展 [J]. 材料保护, 2001, 34(10): 22
|
28 |
Zhu Z X, Xu B S, Xu X Y, et al. High temperature erosion wear behavior and thermal spraying protection of utility boiler tubes [J]. Electric Power, 2001, 34(12): 16
|
28 |
朱子新, 徐滨士, 徐向阳 等. 电站锅炉管道高温冲蚀磨损和涂层防护技术 [J]. 中国电力, 2001, 34(12): 16
|
29 |
Mou J, Li J, Guo S Y, et al. Developments of researches on erosion of metallic and ceramic materials [J]. Mater. Sci. Eng., 1994, (2): 9
|
29 |
牟 军, 郦 剑, 郭绍义 等. 金属及陶瓷材料冲蚀研究的进展 [J]. 材料科学与工程, 1994, (2): 9
|
30 |
Xie W W, Deng J X, Zhou H M, et al. Development and prospect in numerical simulation of erosion [J]. Corros. Prot., 2012, 33: 601
|
30 |
谢文伟, 邓建新, 周后明 等. 材料冲蚀磨损的数值模拟研究现状及展望 [J]. 腐蚀与防护, 2012, 33: 601
|
31 |
Chen D, He D. Analysis of high temperature erosion wear and coating protection technology for utility boiler pipes [J]. Energy Conservat. Environ. Prot., 2020, (4): 54
|
31 |
陈 栋, 何 栋. 电站锅炉管道高温冲蚀磨损和涂层防护技术分析 [J]. 节能与环保, 2020, (4): 54
|
32 |
Suckling M, Allen C. The design of an apparatus to test wear of boiler tubes [J]. Wear, 1995, 186/187: 266
|
33 |
Shan X Y. Study on distribution and extraction characteristics of valuable elements in fly ash [D]. Taiyuan: Shanxi University, 2019
|
33 |
单雪媛. 粉煤灰中有价元素分布规律及浸出行为研究 [D]. 太原: 山西大学, 2019
|
34 |
Qiu Q L. Study on microwave-assisted hydrothermal disposal and product adsorption property of MSWI fly ash [D]. Hangzhou: Zhejiang University, 2019
|
34 |
邱琪丽. 垃圾焚烧飞灰的微波水热法无害化处置及产物吸附性能研究 [D]. 杭州: 浙江大学, 2019
|
35 |
Lu G. Investigation on water wall wear characteristics of circulating fluidized boiler [D]. Baoding: North China Electric Power University, 2005
|
35 |
卢 刚. 循环流化床锅炉水冷壁磨损特性研究 [D]. 保定: 华北电力大学, 2005
|
36 |
Guo L. An experimental study on the erosion mechanism in power station and the anti-erosion performance of materials [D]. Taiyuan: Taiyuan University of Technology, 2007
|
36 |
郭 雷. 电站锅炉冲蚀磨损机理及材料防磨性能的试验研究 [D]. 太原: 太原理工大学, 2007
|
37 |
Antonov M, Veinthal R, Huttunen-Saarivirta E, et al. Effect of oxidation on erosive wear behaviour of boiler steels [J]. Tribol. Int., 2013, 68: 35
doi: 10.1016/j.triboint.2012.09.011
|
38 |
Das S K, Godiwalla K M, Hegde S S, et al. A mathematical model to characterize effect of silica content in the boiler fly ash on erosion behaviour of boiler grade steel [J]. J. Mater. Process. Technol., 2008, 204: 239
doi: 10.1016/j.jmatprotec.2007.11.055
|
39 |
Liu Y. Study on high temperature corrosion behavior and life prediction of T92 steel used in power station boiler [D]. Guangzhou: South China University of Technology, 2017
|
39 |
刘 洋. 电站锅炉用T92钢高温腐蚀行为研究及寿命预测 [D]. 广州: 华南理工大学, 2017
|
40 |
Hong X S, Zhang J S, Wang J W, et al. The mechanism of the water wall erosion in a circulating fluidized bed boiler and its improvement [J]. Boiler Technol., 2007, 38(4): 19
|
40 |
侯祥松, 张建胜, 王进伟 等. 循环流化床锅炉中水冷壁的磨损原理及其预防 [J]. 锅炉技术, 2007, 38(4): 19
|
41 |
Ma K L. Analyze on cause of boiler tube leakage and prevent ion measures [J]. Boiler Technol., 2008, 39(6): 66
|
41 |
马克利. 锅炉炉管泄露的原因分析及防范措施 [J]. 锅炉技术, 2008, 39(6): 66
|
42 |
Finnie I. Erosion of surfaces by solid particles [J]. Wear, 1960, 3: 87
doi: 10.1016/0043-1648(60)90055-7
|
43 |
Bitter J G A. A study of erosion phenomena [J]. Wear, 1963, 6: 169
doi: 10.1016/0043-1648(63)90073-5
|
44 |
Yuan B Q. Study on erosion and deposition characteristics of heating surface based on gas-solid two-phase flow [D]. Ji’nan: Shandong University, 2018
|
44 |
袁宝强. 基于气固两相流的受热面磨损与沉积特性研究 [D]. 济南: 山东大学, 2018
|
45 |
Jing Y W, Liu S G. A study on erosion and protective methods of water wall tubes of CFB boilers [J]. J. Chin. Soc. Power Eng., 2005, 25: 747
|
45 |
景永伟, 刘少光. 流化床锅炉水冷壁管冲蚀磨损特性及防磨措施 [J]. 动力工程, 2005, 25: 747
|
46 |
Mathapati M, Ramesh M R, Doddamani M. High temperature erosion behavior of plasma sprayed NiCrAlY/WC-Co/cenosphere coating [J]. Surf. Coat. Technol., 2017, 325: 98
doi: 10.1016/j.surfcoat.2017.06.033
|
47 |
Gandhi M B, Vuthaluru R, Vuthaluru H, et al. CFD based prediction of erosion rate in large scale wall-fired boiler [J]. Appl. Therm. Eng., 2012, 42: 90
doi: 10.1016/j.applthermaleng.2012.03.015
|
48 |
Cui J K, Zhao J, Guo R N. Abrasion mechanism analysis and protection research on economizer of circulating fluidized bed boilers [J]. Energy Conservat. Technol., 2007, 25: 475
|
48 |
崔俊奎, 赵 军, 郭仁宁. 循环流化床锅炉省煤器磨损机理分析及防护改造 [J]. 节能技术, 2007, 25: 475
|
49 |
Ma Z G. Study on flow hydrodynamics, combustion and abrasion properties of CFB boiler burning anthracite [D]. Hangzhou: Zhejiang University, 2007
|
49 |
马志刚. 无烟煤循环流化床内流动、燃烧与磨损的研究 [D]. 杭州: 浙江大学, 2007
|
50 |
Shao H S, Qu J X, Xu Z D, et al. Friction and Wear [M]. Beijing: China Coal Industry Publishing House, 1992
|
50 |
邵荷生, 曲敬信, 许小棣 等. 摩擦与磨损 [M]. 北京: 煤炭工业出版社, 1992
|
51 |
Zhao Z F. Operating Technology of Circulating Fluidized Bed Boiler [M]. Beijing: China Electric Power Press, 2007
|
51 |
赵宗锋. 循环流化床锅炉运行技术 [M]. 北京: 中国电力出版社, 2007
|
52 |
Mbabazi J G, Sheer T J, Shandu R. A model to predict erosion on mild steel surfaces impacted by boiler fly ash particles [J]. Wear, 2004, 257: 612
doi: 10.1016/j.wear.2004.03.007
|
53 |
Lee B E, Tu J Y, Fletcher C A J. On numerical modeling of particle-wall impaction in relation to erosion prediction: Eulerian versus Lagrangian method [J]. Wear, 2002, 252: 179
doi: 10.1016/S0043-1648(01)00838-9
|
54 |
Oka Y I, Yoshida T. Practical estimation of erosion damage caused by solid particle impact, Part 2: Mechanical properties of materials directly associated with erosion damage [J]. Wear, 2005, 259: 102
doi: 10.1016/j.wear.2005.01.040
|
55 |
Oka Y I, Okamura K, Yoshida T. Practical estimation of erosion damage caused by solid particle impact, Part 1: Effects of impact parameters on a predictive equation [J]. Wear, 2005, 259: 95
doi: 10.1016/j.wear.2005.01.039
|
56 |
Ge C, Zhong W Q, Zhou G W, et al. Numerical experimental study and operation optimization on wear characteristics of division panel superheater of pulverized-coal boilers [J]. Proc. CSEE, 2021, 41: 8057
|
56 |
葛 闯, 钟文琪, 周冠文 等. 电站煤粉锅炉分隔屏过热器磨损特性数值试验研究及运行优化 [J]. 中国电机工程学报, 2021, 41: 8057
|
57 |
Zhou M W, Niu G P, Jia G R, et al. Numerical simulation of fly ash erosion on bolier tail flue channel [J]. Therm. Power Gener., 2019, 48(8): 62
|
57 |
周梦伟, 牛国平, 贾光瑞 等. 烟气飞灰对锅炉尾部烟道磨损数值模拟 [J]. 热力发电, 2019, 48(8): 62
|
58 |
Mansouri A, Arabnejad H, Shirazi S A, et al. A Combined CFD/experimental methodology for erosion prediction [J]. Wear, 2015, 332/333: 1090
|
59 |
Zhang L, Sazonov V, Kent J, et al. Analysis of boiler-tube erosion by the technique of acoustic emission: Part I. Mechanical erosion [J]. Wear, 2001, 250: 762
doi: 10.1016/S0043-1648(01)00714-1
|
60 |
Zhao K L. Distribution characteristics of rare earth elements in incineration fly ash from municipal solid waste [D]. Taiyuan: Shanxi Normal University, 2019
|
60 |
赵凯丽. 生活垃圾焚烧飞灰中稀土元素分布特征研究 [D]. 太原: 山西师范大学, 2019
|
61 |
Liebhard M, Levy A. The effect of erodent particle characteristics on the erosion of metals [J]. Wear, 1991, 151: 381
doi: 10.1016/0043-1648(91)90263-T
|
62 |
Liang J P, Zuo H B, Liu S H, et al. Study on 20 g erosion wear performance of dust-containing airflow [J]. J. Eng. Therm. Energy Power, 2020, 35: 208
|
62 |
梁佳鹏, 左海滨, 刘燊辉 等. 含尘气流对20 g冲蚀磨损性能的研究 [J]. 热能动力工程, 2020, 35: 208
|
63 |
Chen C H, Li Q T, Zhang L J, et al. High temperature erosion-wear behavior and mechanism of 304 stainless steel [J]. Mater. Prot., 2012, 45(7): 15
|
63 |
陈川辉, 李庆棠, 张林进 等. 不锈钢材料高温冲蚀磨损性能与机理 [J]. 材料保护, 2012, 45(7): 15
|
64 |
Misra A, Finnie I. On the size effect in abrasive and erosive wear [J]. Wear, 1981, 65: 359
doi: 10.1016/0043-1648(81)90062-4
|
65 |
Lee B H, Kim K M, Bae Y H, et al. Effect of bed particle size on the gas-particle hydrodynamics and wall erosion characteristics in a 550 MWe USC CFB boiler using CPFD simulation [J]. Energy, 2022, 254: 124263
doi: 10.1016/j.energy.2022.124263
|
66 |
Zhu Y Z, Wang Z C, Yang Z C, et al. Analysis on formation mechansim of large particle fly ash in utility boilers [J]. Therm. Power Gener., 2019, 48(12): 111
|
66 |
朱义洲, 王志超, 杨忠灿 等. 燃煤电站锅炉大颗粒飞灰成因分析 [J]. 热力发电, 2019, 48(12): 111
|
67 |
Qi L Q, Yuan Y T. Characteristics and the behavior in electrostatic precipitators of high-alumina coal fly ash from the Jungar power plant, Inner Mongolia, China [J]. J. Hazard. Mater., 2011, 192: 222
doi: 10.1016/j.jhazmat.2011.05.012
pmid: 21621327
|
68 |
Yan L, Wang Y F, Ma H Z, et al. Feasibility of fly ash-based composite coagulant for coal washing wastewater treatment [J]. J. Hazard. Mater., 2012, 203/204: 221
|
69 |
Deepak M S, Rohini S, Harini B S, et al. Influence of fly-ash on the engineering characteristics of stabilised clay soil [J]. Mater. Today: Proc., 2021, 37: 2014
|
70 |
Sahu S P, Satapathy A, Patnaik A, et al. Development, characterization and erosion wear response of plasma sprayed fly ash-aluminum coatings [J]. Mater. Des., 2010, 31: 1165
doi: 10.1016/j.matdes.2009.09.039
|
71 |
Kang S, Lloyd Z, Kim T, et al. Predicting the compressive strength of fly ash concrete with the particle model [J]. Cem. Concr. Res., 2020, 137: 106218
doi: 10.1016/j.cemconres.2020.106218
|
72 |
Xie K, Hu H Y, Cao J X, et al. A novel method for salts removal from municipal solid waste incineration fly ash through the molten salt thermal treatment [J]. Chemosphere, 2020, 241: 125107
doi: 10.1016/j.chemosphere.2019.125107
|
73 |
Hu H Y, Liu H, Shen W Q, et al. Comparison of CaO’s effect on the fate of heavy metals during thermal treatment of two typical types of MSWI fly ashes in China [J]. Chemosphere, 2013, 93: 590
doi: 10.1016/j.chemosphere.2013.05.077
|
74 |
Li W H, Sun Y J, Huang Y M, et al. Evaluation of chemical speciation and environmental risk levels of heavy metals during varied acid corrosion conditions for raw and solidified/stabilized MSWI fly ash [J]. Waste Manag., 2019, 87: 407
doi: 10.1016/j.wasman.2019.02.033
|
75 |
Li H. Erosion analysis and protective measures of water wall in CFB boiler [J]. China Plant Eng., 2019, (7): 81
|
75 |
李 辉. 循环流化床锅炉水冷壁的磨损原因分析及防磨措施 [J]. 中国设备工程, 2019, (7): 81
|
76 |
Mills D. Erosive wear [A]. Pneumatic Conveying Design Guide [M]. 3rd ed. Amsterdam: Elsevier, 2016: 617
|
77 |
Pronobis M, Wojnar W. The impact of biomass co-combustion on the erosion of boiler convection surfaces [J]. Energy Convers. Manage., 2013, 74: 462
doi: 10.1016/j.enconman.2013.06.059
|
78 |
Zhao X P, Sun J R. An experimental study on the hot flying-ash erosion of steel used in boilers of power station [J]. Proc. CSEE, 2005, 25(21): 117
|
78 |
赵宪萍, 孙坚荣. 电厂锅炉常用钢材热态飞灰磨损性能的试验研究 [J]. 中国电机工程学报, 2005, 25(21): 117
|
79 |
Meuronen V. Ash Particle Erosion on Steam Boiler Convective Section [M]. Lappeenranta: Lappeenranta University of Technology, 1997
|
80 |
Li J B, Wang P L, Cheng L. Characteristics of ash deposition on a novel heat transfer surface [J]. CIESC J., 2016, 67: 3598
doi: 10.11949/j.issn.0438-1157.20160232
|
80 |
李金波, 王沛丽, 程 林. 一种新型受热面飞灰颗粒的沉积特性 [J]. 化工学报, 2016, 67: 3598
doi: 10.11949/j.issn.0438-1157.20160232
|
81 |
Alam T, Islam M A, Farhat Z N. Slurry erosion of pipeline steel: effect of velocity and microstructure [J]. J. Tribol., 2016, 138: 021604
|
82 |
Xue L Y. Discussion about abrasion of convective heating surface in coal fired boiler [J]. Boiler Technol., 2017, 48(3): 62
|
82 |
薛凌云. 燃煤锅炉中对流受热面的磨损问题探讨 [J]. 锅炉技术, 2017, 48(3): 62
|
83 |
Dong G, Zhang J Y. Developments of research on the solid particle erosion of materials [J]. J. Mater. Sci. Eng., 2003, 21: 307
|
83 |
董 刚, 张九渊. 固体粒子冲蚀磨损研究进展 [J]. 材料科学与工程学报, 2003, 21: 307
|
84 |
Nguyen Q B, Nguyen V B, Lim C Y H, et al. Effect of impact angle and testing time on erosion of stainless steel at higher velocities [J]. Wear, 2014, 321: 87
doi: 10.1016/j.wear.2014.10.010
|
85 |
Wang Y, He Q, Yu F, et al. Numerical simulation of the erosion characteristics and structure optimization of elbows connection for gas-solid flow [J]. Proc. CSEE, 2018, 38: 832
|
85 |
王 宇, 何 琪, 于 飞 等. 组合弯头内气固两相流动磨损特性的数值模拟与结构优化 [J]. 中国电机工程学报, 2018, 38: 832
|
86 |
Parslow G I, Stephenson D J, Strutt J E, et al. Paint layer erosion resistance behaviour for use in a multilayer paint erosion indication technique [J]. Wear, 1997, 212: 103
doi: 10.1016/S0043-1648(97)00118-X
|
87 |
Arabnejad H, Mansouri A, Shirazi S A, et al. Development of mechanistic erosion equation for solid particles [J]. Wear, 2015, 332/333: 1044
|
88 |
Meuronen V. Erosion durability of steels in steam boiler heat exchanger tubes [J]. Wear, 2000, 240: 164
doi: 10.1016/S0043-1648(00)00346-X
|
89 |
Islam M A, Alam T, Farhat Z N, et al. Effect of microstructure on the erosion behavior of carbon steel [J]. Wear, 2015, 332-333: 1080
doi: 10.1016/j.wear.2014.12.004
|
90 |
Okonkwo P C, Mohamed A M A, Ahmed E. Influence of particle velocities and impact angles on the erosion mechanisms of AISI 1018 steel [J]. Adv. Mater. Lett., 2015, 6: 653
doi: 10.5185/amlett.2015.5645
|
91 |
Lindgren M, Perolainen J. Slurry pot investigation of the influence of erodent characteristics on the erosion resistance of austenitic and duplex stainless steel grades [J]. Wear, 2014, 319: 38
doi: 10.1016/j.wear.2014.07.006
|
92 |
Tylczak J H. Erosion-corrosion of iron and nickel alloys at elevated temperature in a combustion gas environment [J]. Wear, 2013, 302: 1633
doi: 10.1016/j.wear.2013.01.008
|
93 |
Huttunen-Saarivirta E, Antonov M, Veinthal R, et al. Influence of particle impact conditions and temperature on erosion-oxidation of steels at elevated temperatures [J]. Wear, 2011, 272: 159
doi: 10.1016/j.wear.2011.08.010
|
94 |
Singh J, Nath S K. Improved slurry erosion resistance of martensitic 13wt.% Cr-4wt.% Ni steel subjected to cyclic heat treatment [J]. Wear, 2020, 460/461: 203476
|
95 |
Gadhikar A A, Sharma A, Goel D B, et al. Effect of carbides on erosion resistance of 23-8-N steel [J]. Bull. Mater. Sci., 2014, 37: 315
doi: 10.1007/s12034-014-0656-3
|
96 |
Kumar A, Sharma A, Goel S K. Effect of heat treatment on microstructure, mechanical properties and erosion resistance of cast 23-8-N nitronic steel [J]. Mater. Sci. Eng., 2015, 637A: 56
|
97 |
Ma X C. Abrasion mechanism analysis and protection research on circulating fluidized bed boilers [J]. Technol. Innovat. Prod., 2022, (4): 142
|
97 |
马喜成. 循环流化床锅炉磨损机理分析及防磨研究 [J]. 科技创新与生产力, 2022, (4): 142
|
98 |
Li H Y, Liu H, Zhang X J, et al. Summary of improving erosion and corrosion resistance of heat exchange surfaces in boilers through HVOF technology [J]. CIESC J., 2021, 72: 1833
doi: 10.11949/0438-1157.20200985
|
98 |
李海燕, 刘 欢, 张秀菊 等. HVOF喷涂用于提高锅炉换热面耐磨损耐腐蚀性能综述 [J]. 化工学报, 2021, 72: 1833
doi: 10.11949/0438-1157.20200985
|
99 |
Zhang X J, Liu H, Chen T Z, et al. Application of coatings to alleviate fireside corrosion on heat transfer tubes during the combustion of low-grade solid fuels: a review [J]. Energy Fuels, 2020, 34: 11752
doi: 10.1021/acs.energyfuels.0c02145
|
100 |
Kumar M, Singh H, Singh N, et al. Erosion-corrosion behavior of cold-spray nanostructured Ni-20Cr coatings in actual boiler environment [J]. Wear, 2015, 332/333: 1035
|
101 |
Sadeghi E, Joshi S. Chlorine-induced high-temperature corrosion and erosion-corrosion of HVAF and HVOF-sprayed amorphous Fe-based coatings [J]. Surf. Coat. Technol., 2019, 371: 20
doi: 10.1016/j.surfcoat.2019.01.080
|
102 |
Ren Y, Zhao H J, Zhou H, et al. Effect of sand size and temperature on synergistic effect of erosion-corrosion for 20 steel in simulated oilfield produced fluid with sand [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 508
|
102 |
任 莹, 赵会军, 周 昊 等. 粒径和温度对20号钢冲刷腐蚀协同作用的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 508
|
103 |
Chen S P, Qin F, Sun X J, et al. Comparative study on waste heat boiler steam parameter of garbage burning power plant [J]. Heilongjiang Electric Power, 2010, 32: 204
|
103 |
陈善平, 秦 峰, 孙向军 等. 垃圾焚烧发电厂余热锅炉蒸汽参数的比较研究 [J]. 黑龙江电力, 2010, 32: 204
|
104 |
Sankar G, Kumar D S, Balasubramanian K R. Computational modeling of pulverized coal fired boilers-a review on the current position [J]. Fuel, 2019, 236: 643
doi: 10.1016/j.fuel.2018.08.154
|
105 |
Yue G X, Cai R X, Lu J F, et al. From a CFB reactor to a CFB boiler-The review of R&D progress of CFB coal combustion technology in China [J]. Powder Technol., 2017, 316: 18
doi: 10.1016/j.powtec.2016.10.062
|
106 |
Wang H B, Liu H Y. Analysis on the boiler type and grate of biomass direct combustion power station [J]. Sci. Technol. Inform., 2019, 17(34): 53
|
106 |
王海波, 刘海勇. 浅谈生物质能直燃发电站锅炉炉型和炉排 [J]. 科技资讯, 2019, 17(34): 53
|
107 |
Liu Z Q, Liu Z H, Li X L. Status and prospect of the application of municipal solid waste incineration in China [J]. Appl. Therm. Eng., 2006, 26: 1193
doi: 10.1016/j.applthermaleng.2005.07.036
|
108 |
Liu R M. CFD simulation study on combustion of municipal solid waste in the large-scale grate incinerator [D]. Hangzhou: Zhejiang University, 2017
|
108 |
刘瑞媚. 大型炉排炉垃圾焚烧过程的CFD模拟研究 [D]. 杭州: 浙江大学, 2017
|
109 |
Chen J J. Research on the structure and property of the new kind heat-resistant grate [D]. Guangzhou: South China University of Technology, 2012
|
109 |
陈家坚. 新型耐热炉排材质的组织和性能研究 [D]. 广州: 华南理工大学, 2012
|
110 |
Arjunwadkar A, Basu P, Acharya B. A review of some operation and maintenance issues of CFBC boilers [J]. Appl. Therm. Eng., 2016, 102: 672
doi: 10.1016/j.applthermaleng.2016.04.008
|
111 |
Liu S L. Research on operation adjustment and wear treatment of circulating fluidized bed boiler [J]. Mech. Electr. Inform., 2019, (32): 65
|
111 |
柳少龙. 循环流化床锅炉运行调整及磨损处理研究 [J]. 机电信息, 2019, (32): 65
|
112 |
Cheng L M, Xu L J, Xia Y F, et al. Key issues and solutions in development of the 600 MW CFB boiler [J]. Proc. CSEE, 2015, 35: 5520
|
112 |
程乐鸣, 许霖杰, 夏云飞 等. 600MW超临界循环流化床锅炉关键问题研究 [J]. 中国电机工程学报, 2015, 35: 5520
|
113 |
Liu X Y, Wang Y X, Xia H W. Analysis of CFB boiler economizer wear and protective measures [J]. Light Ind. Sci. Technol., 2012, 28(7): 60
|
113 |
刘贤英, 王义厢, 夏红伟. CFB锅炉省煤器磨损分析及防护措施 [J]. 轻工科技, 2012, 28(7): 60
|
114 |
Gong L H, Gong X L, Zheng H, et al. Application exploration of refractories for a 600MW supercritical CFB boiler [J]. Refractories, 2020, 54: 148
|
114 |
龚莲辉, 龚兴利, 郑 华 等. 600MW超临界CFB锅炉耐火材料应用探索 [J]. 耐火材料, 2020, 54: 148
|
115 |
Roy J, Chandra S, Maitra S. Nanotechnology in castable refractory [J]. Ceram. Int., 2019, 45: 19
doi: 10.1016/j.ceramint.2018.09.261
|
116 |
Liu J. Research on fatigue behavior and vibration damage of calcium Hexaluminate castable for catalytic gasifier [D]. Wuhan: Wuhan University of Science and Technology, 2019
|
116 |
刘 杰. 催化气化炉衬用六铝酸钙质浇注料疲劳行为及振动损毁研究 [D]. 武汉: 武汉科技大学, 2019
|
117 |
Peng X G, Sun J L, Li F S, et al. Effect of impacting parameter on abrasion resistance of alumina based refractories at room temperature [J]. Refractories, 2008, 42: 178
|
117 |
彭西高, 孙加林, 李福燊 等. 冲击参数对氧化铝基耐火材料常温耐磨性的影响 [J]. 耐火材料, 2008, 42: 178
|
118 |
Szymański K, Hernas A, Moskal G, et al. Thermally sprayed coatings resistant to erosion and corrosion for power plant boilers-a review [J]. Surf. Coat. Technol., 2015, 268: 153
doi: 10.1016/j.surfcoat.2014.10.046
|
119 |
Bala N, Singh H, Prakash S. Performance of cold sprayed Ni based coatings in actual boiler environment [J]. Surf. Coat. Technol., 2017, 318: 50
doi: 10.1016/j.surfcoat.2016.11.075
|
120 |
Wang B Q. Erosion-corrosion of thermal sprayed coatings in FBC boilers [J]. Wear, 1996, 199: 24
doi: 10.1016/0043-1648(96)06972-4
|
121 |
Matikainen V, Koivuluoto H, Vuoristo P. A study of Cr3C2-based HVOF- and HVAF-sprayed coatings: Abrasion, dry particle erosion and cavitation erosion resistance [J]. Wear, 2020, 446/447: 203188
|
122 |
Murthy J K N, Venkataraman B. Abrasive wear behaviour of WC-CoCr and Cr3C2-20(NiCr) deposited by HVOF and detonation spray processes [J]. Surf. Coat. Technol., 2006, 200: 2642
doi: 10.1016/j.surfcoat.2004.10.136
|
123 |
Thakur L, Arora N, Jayaganthan R, et al. An investigation on erosion behavior of HVOF sprayed WC-CoCr coatings [J]. Appl. Surf. Sci., 2011, 258: 1225
doi: 10.1016/j.apsusc.2011.09.079
|
124 |
Karaoglanli A C, Oge M, Doleker K M, et al. Comparison of tribological properties of HVOF sprayed coatings with different composition [J]. Surf. Coat. Technol., 2017, 318: 299
doi: 10.1016/j.surfcoat.2017.02.021
|
125 |
Zhang X Y, Li F Y, Li Y L, et al. Comparison on multi-angle erosion behavior and mechanism of Cr3C2-NiCr coatings sprayed by SPS and HVOF [J]. Surf. Coat. Technol., 2020, 403: 126366
doi: 10.1016/j.surfcoat.2020.126366
|
126 |
Espallargas N, Berget J, Guilemany J M, et al. Cr3C2-NiCr and WC-Ni thermal spray coatings as alternatives to hard chromium for erosion-corrosion resistance [J]. Surf. Coat. Technol., 2008, 202: 1405
doi: 10.1016/j.surfcoat.2007.06.048
|
127 |
Matthews S, James B, Hyland M. Erosion of oxide scales formed on Cr3C2-NiCr thermal spray coatings [J]. Corros. Sci., 2008, 50: 3087
doi: 10.1016/j.corsci.2008.08.032
|
128 |
Matikainen V, Peregrina S R, Ojala N, et al. Erosion wear performance of WC-10Co4Cr and Cr3C2-25NiCr coatings sprayed with high-velocity thermal spray processes [J]. Surf. Coat. Technol., 2019, 370: 196
doi: 10.1016/j.surfcoat.2019.04.067
|
129 |
Bansal A, Goyal D K, Singh P, et al. Erosive wear behaviour of HVOF-sprayed Ni-20Cr2O3 coating on pipeline materials [J]. Int. J. Refract. Met. Hard Mater., 2020, 92: 105332
doi: 10.1016/j.ijrmhm.2020.105332
|
130 |
Bhosale D G, Prabhu T R, Rathod W S, et al. High temperature solid particle erosion behaviour of SS 316L and thermal sprayed WC-Cr3C2-Ni coatings [J]. Wear, 2020, 462/463: 203520
|
131 |
Li S B, Xu L K, Shen C J, et al. Performance of erosion-resistant ceramic coatings deposited by plasma spraying [J]. J. Chin. Soc. Corros. Prot., 2011, 31: 196
|
131 |
李守彪, 许立坤, 沈承金 等. 等离子喷涂耐冲蚀陶瓷涂层的性能研究 [J]. 中国腐蚀与防护学报, 2011, 31: 196
|
132 |
Daniel J, Grossman J, Houdková Š, et al. Impact wear of the protective Cr3C2-based HVOF-sprayed coatings [J]. Materials, 2020, 13: 2132
doi: 10.3390/ma13092132
|
133 |
Janka L, Berger L M, Norpoth J, et al. Improving the high temperature abrasion resistance of thermally sprayed Cr3C2-NiCr coatings by WC addition [J]. Surf. Coat. Technol., 2018, 337: 296
doi: 10.1016/j.surfcoat.2018.01.035
|
134 |
Ding X, Cheng X D, Shi J, et al. Influence of WC size and HVOF process on erosion wear performance of WC-10Co4Cr coatings [J]. Int. J. Adv. Manuf. Technol., 2018, 96: 1615
doi: 10.1007/s00170-017-0795-y
|
135 |
Bhosale D G, Prabhu T R, Rathod W S. Sliding and erosion wear behaviour of thermal sprayed WC-Cr3C2-Ni coatings [J]. Surf. Coat. Technol., 2020, 400: 126192
doi: 10.1016/j.surfcoat.2020.126192
|
136 |
Matikainen V, Bolelli G, Koivuluoto H, et al. Sliding wear behaviour of HVOF and HVAF sprayed Cr3C2-based coatings [J]. Wear, 2017, 388/389: 57
|
137 |
Sidhu H S, Sidhu B S, Prakash S. Solid particle erosion of HVOF sprayed NiCr and Stellite-6 coatings [J]. Surf. Coat. Technol., 2007, 202: 232
doi: 10.1016/j.surfcoat.2007.05.035
|
138 |
Tailor S, Vashishtha N, Modi A, et al. Structural and mechanical properties of HVOF sprayed Cr3C2-25%NiCr coating and subsequent erosion wear resistance [J]. Mater. Res. Express, 2019, 6: 076435
|
139 |
Ksiazek M, Boron L, Tchorz A. Study on the microstructure, mechanical properties, and erosive wear behavior of HVOF sprayed Al2O3-15wt.%TiO2 coating with NiAl interlayer on Al-Si cast alloy [J]. Materials, 2020, 13: 4122
doi: 10.3390/ma13184122
|
140 |
Feng C Y, Xie Q, Yang L, et al. The resistance of TiN coatings to solid particle erosion using different deposition methods [J]. J. Fail. Anal. Prev., 2020, 20: 1615
doi: 10.1007/s11668-020-00957-z
|
141 |
Wood R J K. Tribology of thermal sprayed WC-Co coatings [J]. Int. J. Refract. Met. Hard Mater., 2010, 28: 82
doi: 10.1016/j.ijrmhm.2009.07.011
|
142 |
Lu S P, Kwon O Y, Guo Y. Wear behavior of brazed WC/NiCrBSi(Co) composite coatings [J]. Wear, 2003, 254: 421
doi: 10.1016/S0043-1648(03)00132-7
|
143 |
Panwar V, Grover N K, Chawla V. Wear behaviour of plasma sprayed WC-12%CΟ and Al2O3-13%TiO2 coatings on ASTM A36 steel used for I.D. fans in coal fired power plants [J]. Mater. Res. Express, 2019, 6: 1065b6
|
144 |
Wang Y X, Wang Y X, Chen C L, et al. Preparation of Zr/[Al(Si)N/CrN] coatings of stratified structure and their corrosion-wear performance in artificial seawater [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 345
|
144 |
王永欣, 汪艺璇, 陈春林 等. 具有“层中层”结构的Zr/[Al(Si)N/CrN]涂层制备及其在海水环境中腐蚀磨损特性 [J]. 中国腐蚀与防护学报, 2022, 42: 345
doi: 10.11902/1005.4537.2021.184
|
145 |
Lei Y H, Liu N X, Zhang Y L, et al. Preparation, corrosion- and wear-resistance of polymethyl methacrylate coating modified with particles of basalt/cerium oxide composite [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 597
|
145 |
类延华, 刘宁轩, 张玉良 等. 玄武岩/氧化铈改性PMMA涂层的防腐及耐磨性能的研究 [J]. 中国腐蚀与防护学报, 2022, 42: 597
doi: 10.11902/1005.4537.2021.186
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|