中国腐蚀与防护学报, 2023, 43(5): 957-970 DOI: 10.11902/1005.4537.2022.282

综合评述

锅炉受热面的冲蚀磨损与防护综述

李海燕1, 刘欢,1, 王阁义1, 张秀菊1, 陈同舟2, 俞云1, 姚洪1

1.华中科技大学能源与动力工程学院 武汉 430074

2.武汉材料保护研究所有限公司 武汉 430030

Review on Erosion-wear and Protection of Heat Exchange Surface in Power Station Boilers

LI Haiyan1, LIU Huan,1, WANG Geyi1, ZHANG Xiuju1, CHEN Tongzhou2, YU Yun1, YAO Hong1

1.School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

2.Wuhan Research Institute of Materials Protection, Wuhan 430030, China

通讯作者: 刘欢,E-mail:huanliu@hust.edu.cn,研究方向为固废高效热转化技术

收稿日期: 2022-09-21   修回日期: 2022-10-22  

基金资助: 国家重点研发计划.  2018YFC1901302

Corresponding authors: LIU Huan, E-mail:huanliu@hust.edu.cn

Received: 2022-09-21   Revised: 2022-10-22  

Fund supported: National Key Research and Development Program of China.  2018YFC1901302

作者简介 About authors

李海燕,女,1997年生,博士生

摘要

电站锅炉是火力发电的关键设备,燃料燃烧过程中,烟气与飞灰的气固两相流冲击极易导致锅炉受热面发生冲蚀磨损破坏,威胁电厂的安全稳定运行。本文综述了锅炉受热面冲蚀磨损的原因、破坏机理和预测模型。基于此针对锅炉受热面的特异性环境,总结了飞灰特性、受热面材质、服役环境等因素对冲蚀磨损破坏的影响。进一步地,从缓解冲蚀磨损的角度,综述了换热面加装防磨构件和涂覆耐磨材料的研究现状,并提出通过流场模拟优化受热面结构、采用金属陶瓷涂层进行防护是主要的发展方向,为锅炉受热面的冲蚀磨损研究和防护措施的开发应用提供参考和指导。

关键词: 冲蚀磨损 ; 磨损机理 ; 磨损影响因素 ; 耐磨涂层 ; 电站锅炉 ; 受热面

Abstract

Power plant boilers are the key equipment for thermal power generation. During the combustion process, under the impact of the gas-solid two-phase flow of flue gas and fly ash, the heat exchange tubes of the boiler are prone to erosion-wear damage. The deterioration or even explosion of tubes seriously threatens the safe and stable operation of the power plant. In this paper, the causes of erosion, failure mechanism of heat exchange surfaces and prediction models of erosion rate were reviewed, including the cutting wear/deformation wear caused by fly ash in the furnace and the calculation model of the corrosion rate by considering various erosion parameters. Based on this, according to the specific environment of heat exchange surfaces in boilers, the influence of fly ash characteristics (shape, particle size and hardness), tube materials (carbon steel/alloy steel), and the service environment of heat exchange surfaces (the flow rate of flue gas in furnace, erosion speed/angle of fly ash, tube surface temperature) on the erosion-wear damage was summarized in detail. It is believed that erosion speed and tube surface temperature are the most important factors affecting erosion damage. Furthermore, from the perspective of alleviating erosion-wear, the research status of adding anti-erosion components and erosion-resistant coating materials on heat exchange surfaces was also reviewed. It was proposed that the main development directions of anti-erosion measures were to optimize the structure of heat exchange surfaces through flow field simulation and to apply WC-Co/Cr2C3-NiCr cermet coatings. At the same time, it was also pointed out that to clearly understand the relationship between the cost and protection effect of coatings, and further to optimize the coating preparation process, so that to reduce costs could provide an important economic guidance for the utilization of coatings. This review can provide a reference for the research on erosion-wear of heat exchange surfaces in boilers, as well as the development and application of protective measures.

Keywords: erosion ; abrasion mechanism ; factors affecting erosion ; anti-erosion coatings ; boiler ; heat exchange surface

PDF (5869KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

李海燕, 刘欢, 王阁义, 张秀菊, 陈同舟, 俞云, 姚洪. 锅炉受热面的冲蚀磨损与防护综述. 中国腐蚀与防护学报[J], 2023, 43(5): 957-970 DOI:10.11902/1005.4537.2022.282

LI Haiyan, LIU Huan, WANG Geyi, ZHANG Xiuju, CHEN Tongzhou, YU Yun, YAO Hong. Review on Erosion-wear and Protection of Heat Exchange Surface in Power Station Boilers. Journal of Chinese Society for Corrosion and Protection[J], 2023, 43(5): 957-970 DOI:10.11902/1005.4537.2022.282

电力已经成为人类生产和生活中不可或缺的能量利用形式。在我国,火力发电是最主要的电力生产方式。2018年我国火力发电装机容量为11.4亿千瓦,约占总发电装机容量的61%[1]。可见火力发电在我国的电力生产中具有极其重要的地位。锅炉是火力电站一种重要的能量转换设备,可以将煤、生物质或生活垃圾等燃料中的化学能转化为锅炉水或蒸汽等工质的热能[2, 3],进而推动汽轮机做功进行电力生产。煤、生物质及生活垃圾等固体燃料燃烧时,除可燃组分燃烧放出热量之外,不可燃组分及未燃尽部分仍会以底灰或飞灰等固体颗粒的形式存在,并对锅炉受热面造成冲蚀磨损[4]

冲蚀磨损是指固体小颗粒以一定速度和角度对材料表面进行冲击后造成的材料损耗现象或过程[5~7]。电站锅炉受热面的冲蚀磨损破坏主要发生在向火侧。在燃烧产生的高温烟气携带下,飞灰颗粒会冲刷受热面,引起表面材质的损耗,造成换热管管壁减薄[8]。长期的冲刷甚至可能引起管壁破损,工质泄漏,重则发生爆管现象[9, 10],从而影响锅炉的安全稳定运行。由冲蚀磨损导致工质泄漏及爆管而停炉维修占据总停炉时间的40%以上[11~13]。停炉不仅会影响居民生活的电力供应,还给电站造成巨大经济损失,单次停炉便会给电站造成数十万元甚至数百万元的经济损失[14, 15]

因此,采取有效的防护措施以减缓锅炉受热面的冲蚀磨损破坏,延长锅炉服役寿命对于提高电厂经济效益及安全效益具有重要意义。诸多学者开展了大量研究以开发有效的冲蚀磨损防护技术,高温耐火耐磨材料[16, 17]、加装防磨瓦[18, 19]、安装防磨横梁[20~23]、制备耐磨涂层[24~26]等多种技术已经在电站锅炉内得到一定的探索和应用。

针对磨损问题,前人综述了材料抗冲蚀特性[27]、耐磨防护中常见的涂层[28, 29]及冲蚀磨损数值模拟方法[30]等方面的研究,但缺乏针对锅炉环境的磨损分析及防护措施探讨。本文总结阐述了电站锅炉受热面的冲蚀磨损问题及破坏机理、影响因素,并对锅炉受热面的冲蚀磨损防护措施进行了综述。同时对电站锅炉冲蚀磨损的研究与防护技术开发做出了展望,为未来的磨损防护提供参考。

1 受热面的冲蚀磨损概述

1.1 受热面冲蚀磨损的原因

电站锅炉受热面的冲蚀磨损是一种气固两相流及金属摩擦理论方面的综合交叉问题[31]。燃料在炉膛内燃烧时,空气或氧气等会通过送风系统吹进炉膛助燃,燃烧后会产生粗颗粒灰、飞灰和烟气[32]。飞灰的粒径较小,通常在300 μm以下[33, 34]。其会在烟气的裹挟下以气固两相流的形式沿烟道向尾部流动。飞灰颗粒具有较高的流动速度,可达到12~40 m/s[35, 36]。飞灰主要由SiO2、Al2O3、Fe2O3和CaO等物质组成[33, 34, 37]。较高的流速以及SiO2、Al2O3等硬质颗粒的存在使得飞灰具有较强的冲蚀磨损能力。沿烟道流动的过程中,飞灰颗粒先后流经锅炉水冷壁及布置在烟道内的过热器、再热器及省煤器等部位。高速运动的硬质飞灰颗粒与各部位受热面金属管壁发生摩擦碰撞,大约20%的灰会对锅炉受热面产生冲蚀磨损作用[38]

刘洋[39]通过对3814例锅炉受热面失效案例进行分析,研究表明其中约50%是由磨损导致的,水冷壁、过热器及省煤器等是磨损较为严重的锅炉受热面。水冷壁通常直接布置在炉膛内部,其磨损主要受两方面影响。一方面,在送风口处,较高的风速导致该位置的灰颗粒具有较大的运动速度,因而更易于冲击碰撞水冷壁,造成磨损[14];另一方面,燃烧过程中灰颗粒会在烟气带动下向上运动,随着高度的增加,动能降低,部分灰颗粒会在重力作用下沿壁面向下运动,在下落的过程中遇见上升的气流,极易形成涡流,从而加剧水冷壁的磨损破坏[40]。此外不规则区域会对局部流场造成复杂扰动,极易导致水冷壁局部磨损[17]。过热器和再热器的磨损主要发生在烟气走廊和烟气流速突变的局部区域[41],局部烟气流速的增加是导致磨损的主要原因。空预器与省煤器相似,都布置于烟道尾部,由于温度的降低,飞灰颗粒的硬质程度提高[8],同时温度降低还容易引起露点腐蚀,降低受热面材质的强度,导致飞灰对受热面的冲蚀作用增强。省煤器还具有密集的管排,通流面积降低导致烟气流速较快,飞灰颗粒动能增加。除烟气流速的局部突变以外,多因素共同增强了飞灰颗粒的冲蚀磨损能力,加剧了受热面的磨损破坏。

1.2 冲蚀磨损破坏的机理

鉴于锅炉受热面冲蚀磨损的成因及其危害性,阐明受热面冲蚀磨损破坏的机理,对于有效缓解该问题、延长受热面服役年限具有重要意义。前人对冲蚀磨损的原理开展了大量研究,提出了微切削理论、变形磨损理论等来揭示冲蚀磨损的内在过程。

1958年,Finnie[42]提出颗粒冲击塑性材料的微切削理论,指出冲蚀磨损程度与冲蚀角度密切相关。Bitter[43]在微切削理论的基础上进一步提出变形磨损理论,将冲蚀磨损分为切削磨损和变形磨损。理想塑性材料主要发生切削磨损,理想脆性材料主要出现变形磨损。而高温金属材料的冲蚀磨损破坏则通常是这两种磨损过程叠加的结果[44]图1展示了两种冲蚀磨损的机理[45]。切削磨损主要是冲蚀颗粒冲击靶材,对其表面进行犁削或铲削等行为而造成材料损耗的过程,如图1a所示,颗粒撞击靶材产生切削作用,导致材料成块状或片状剥离。而图1b所示的变形磨损为颗粒多次撞击靶材导致其表面发生形变进而形成唇片脱落的过程。Mathapati等[46]在冲蚀磨损实验中对材料表面微观形貌的观察也验证了该机理。

图1

图1   冲蚀磨损机理示意图[45]

Fig.1   Schematic diagrams of erosion wear mechanism[45]: (a) cutting wear, (b) deformation wear


1.3 锅炉受热面冲蚀磨损机理及预测模型

从机理而言,飞灰对受热面的冲蚀磨损也主要包含切削磨损和变形磨损两种类型[47, 48]。切削磨损过程冲蚀角度较小,飞灰颗粒垂直于受热面方向的分速度会使它锲入受热面表层,而平行于受热面方向的分速度则致使颗粒沿受热面表层滑动,从而使受热面产生犁沟,导致表面材质的损耗。变形磨损则是由冲蚀角度较大的飞灰颗粒引起的。在烟气的携带下,飞灰颗粒以较高的速度撞击受热面表面,使其产生微小的形变,长期撞击下受热面表层会逐渐产生微裂纹并不断扩大形成唇片,最终导致表层碎片脱落[49]。此外,对于钢以及镍基高温合金换热面,其中的Cr、Al会形成脆性的Cr2O3或Al2O3层,脆性材料在飞灰粒子冲击下几乎不发生塑性变形,而是从有缺陷处产生裂纹,随后裂纹扩展形成碎片脱落,这种脆性材料冲击理论[50, 51]起步较晚,还需在研究和实践中加以完善。

针对锅炉受热面的冲蚀磨损问题,许多学者从理论和实际的角度分析提出了多种预测模型。如表1列出了几种常见的冲蚀磨损预测模型。从表中可以看到,冲蚀磨损的预测模型一般是依据靶材性质、粒子特性以及冲蚀磨损条件等方面开展的。其中预测模型3是以大量磨损实验的数据为基础,综合考虑冲蚀颗粒的主要影响因素建立起来的半经验预测模型[54, 55]。该模型能够较好的预测飞灰颗粒对烟道壁面以及受热面的冲击磨损情况,具有适应性强,准确度高的优点,因此被诸多学者用于锅炉受热面的磨损分析[56, 57]

表1   冲蚀磨损预测模型

Table 1  Prediction models of erosion and wear

NumberCalculation formulaMeaning of symbolsReferences
1E=Kx4.95ρmρp1/2V3sin3βHv3/2K: erosion constant; x: mass fraction of Si in the ash;ρm : density of mild steel; ρp : average density of ash particles; V: ash particle velocity; β: impingement angle;Hv : Vickers hardness number.[52]
2E=j=12KjCpjfβjUinjg(Dp)hThωjj=1, 2, represent polygon-shaped and spherical particles, respectively; K: erosion constant;Cp : particulate concentration; β: impact angle, Ui: impact velocity; Dp : particle size; Th : homologous temperature ratio; ω: chemical composition of fly-ash particles[53]
3

Eα=sin αn1(1+Hv1-sin α)n2E90

E90=K(aHv)k1b(vv')k2(DD')k3

α: impact angle; Hv : Vickers hardness number; n1、n2、K、k1k2、k3 : indices and constants determined by the target material hardness, particle characteristics and erosion conditions.[54, 55]

新窗口打开| 下载CSV


2 受热面冲蚀磨损破坏的影响因素

由于锅炉结构的复杂性,受热面服役环境会显著影响冲蚀磨损的程度。根据飞灰冲蚀磨损的过程,从飞灰的硬度、颗粒大小等自身特性到炉内流场对飞灰运动状态的影响,再到锅炉受热面自身的材质特点,本节对影响冲蚀磨损破坏的多种因素进行阐述。

2.1 飞灰特性

飞灰对金属材质受热面造成的磨损破坏与其自身的特性密切相关,如飞灰颗粒的形状、粒度、密度、硬度以及飞灰颗粒组成等[5, 58]

飞灰颗粒的形状有棒状、多角质状、类球状等[59]图2展示了飞灰的不同几何形貌,多呈现出不规则形状[60]。一般而言,具有棱角的不规则飞灰颗粒相较于类球状等规则颗粒,造成的冲蚀磨损更严重,Liebhard和Levy[61]研究表明带有棱角的颗粒造成的冲蚀磨损是球状颗粒的4倍。在高速撞击受热面瞬间,飞灰颗粒的棱角极易对表面材质产生切削,导致表面材质损耗形成犁沟。

图2

图2   飞灰颗粒的几何形貌

Fig.2   Geometrical morphologies of fly ash particles: (a) rod-shaped, (b) polygon-shaped, (c) near-spherical


飞灰的粒度对冲蚀磨损的影响是由两方面的作用共同导致的[62]。一方面,随着粒径的增加,在相同冲击速度的条件下,单个颗粒的动能增大,其对受热面表面的冲击作用增强,从而加重对表面材质的切削和撞击,受热面冲蚀磨损程度随之加剧;另一方面,在颗粒与受热面撞击的过程中,大粒径颗粒自身易于破裂,不易对受热面形成有效破坏,同时飞灰颗粒较大时,其对受热面的撞击率会降低。当颗粒粒径大到临界值后,经验值为100 μm,磨损量变化很小或甚至有所减低[40, 63, 64]。此外,在锅炉不同部位飞灰粒度的影响不一,如Lee等[65]采用CPFD模拟了床料粒径对550 MW循环流化床锅炉的冲蚀磨损,发现在炉膛30 m以下,中等颗粒和粗颗粒的磨损程度几乎相同,而在30 m以上时,冲蚀磨损程度随粒度减小而增强。

飞灰颗粒的硬度和密度与其组成密不可分。通常认为Si、Al、Fe含量较高的颗粒硬度与密度较大[66],对受热面的冲蚀磨损能力越强。当飞灰硬度接近或高于受热面材质硬度时,磨损会迅速增加[40]表2列出了燃煤飞灰和垃圾焚烧飞灰的成分,尽管其均以Al2O3、Fe2O3及CaO等金属氧化物和SiO2为主要成分,但不同组分的含量在不同灰中差异明显,在煤灰中SiO2和Al2O3的含量显著高于垃圾灰,而垃圾灰中的CaO含量高。由于具有高含量Si、Al的颗粒比具有较高含量Ca、S的颗粒更具磨蚀性[40, 75],因此,燃煤飞灰具有更强的冲蚀磨损能力,相同条件下,其会造成更严重的冲蚀磨损破坏。

表2   燃煤飞灰与垃圾焚烧飞灰的成分 (mass fraction / %)

Table 2  Compositions of coal fly ash and MSWI fly ash

SampleSiO2Al2O3Fe2O3CaOMgONa2OK2O
Coal fly ash[24, 67~71]25.2-69.017.7-55.02.3-19.31.1-32.50.2-9.30.2-12.60.6-4.4
MSWI fly ash[34, 72~74]3.0-340.5-16.30.5-9.114.8-48.30.4-8.12.2-12.61.8-15.9

新窗口打开| 下载CSV


2.2 飞灰冲蚀速度及角度

冲蚀是物料以一定速度和冲蚀角度对材料的冲击过程。在冲蚀速度方面,由于飞灰颗粒是在烟气的带动下运动的,因此烟气流速直接决定了飞灰冲蚀速度的大小。根据 式 (1) 所示,一般认为,材料冲蚀磨损量与速度的n次方成正比[19, 76~78]图3展示了冲蚀速度与磨损速率之间的关系[79],表明了 式 (1) 在30o和90o冲蚀角度下均适用。飞灰冲蚀速度的增加会引起冲蚀磨损过程的快速加剧。同时烟气流速的增加还会增加飞灰颗粒与管壁的碰撞次数[80]。因此,当送粉量过大或烟道变窄等原因导致烟气流速增大时,受热面面临的冲蚀磨损风险也会增加。

图3

图3   在30°和90°冲蚀条件下冲蚀率随流速的变化关系[79]

Fig.3   Variations of erosion rate with particle velocity during 30° erosion and 90° erosion[79]


E=C×Vn

式中,E为冲蚀磨损量,C为经验常数,V为冲蚀速度,指数n的数值介于0.34和4.83之间[81],与冲蚀颗粒和靶材的特性以及测试的条件等因素有关。

一般认为,换热管的磨损量与冲蚀速度的3~4次方成正比[82]。可见,降低烟气流速能够减轻受热面的冲蚀磨损,但流速过低时,受热面易出现严重的积灰现象,降低锅炉传热效率。因此,为了将飞灰对材料的冲蚀磨损程度控制在允许的范围内,同时又不引发严重的积灰,一般会根据燃料的折算灰分含量,将锅炉设计的最大允许烟气流速控制在几米每秒到十几米每秒的范围内,灰分折算含量越高,最大允许烟气流速就越低[82]。当锅炉超负荷运行或加大风量时,烟气流速将超过设计值,加速受热面的磨损失效。

在冲蚀角方面,冲蚀磨损程度随角度的变化而不同,最大冲蚀磨损量对应的角度与材料自身的性质有关。脆性材料的冲蚀磨损通常随角度的增加而加剧,在90°冲蚀角条件下磨损程度最严重;塑性材料的磨损量则在0°~90°范围内随冲蚀角的增加先增加后减小[76, 83]。金属材质的锅炉受热面一般表现为塑性材料,因而其通常在小冲蚀角下磨损破坏最为严重。锅炉受热面磨损最严重的冲蚀角度为20~60°,在接近90°冲蚀角条件下,具有较好的耐冲蚀磨损性能[19, 84, 85]

冲蚀速度和角度决定了颗粒撞击受热面的力度与方式,飞灰浓度则反映了单位时间里颗粒对锅炉受热面的撞击频率。在低浓度条件下,受热面的冲蚀磨损与飞灰的浓度成正比,随颗粒浓度增加,其撞击受热面的频率增加,磨损量也增加。而当颗粒的浓度达到一定值时,受热面的撞击会达到饱和,此时浓度继续提升受热面的冲蚀磨损情况几乎不变,甚至会减弱[86]

2.3 受热面材质

飞灰自身特性决定了物料冲蚀磨损能力,受热面的材质则决定了其耐冲蚀能力的大小。为获得耐冲蚀能力强的材料,前人开展了大量研究来对比评判不同材料的耐冲蚀磨损性能,并对其性能的差异进行了原因分析。

受热面的材质主要可以分为碳钢和合金钢两大类。学者们对两类材料的耐冲蚀磨损性能进行了对比研究。Arabnejad等[87]通过气固冲蚀实验探究了两种碳钢 (1018、4130)、两种不锈钢 (316、2205)、13铬双相钢等多种材料的耐冲蚀磨损性能,结果表明合金钢的耐磨性能明显优于碳钢。Meuronen[88]研究也得出了相同结论。因此合金钢可以达到较碳钢更好的耐冲蚀磨损性能,适用于较恶劣的环境。

从微观结构来看,碳钢内部的组织结构会影响耐磨性能,研究表明由于珠光体可增强碳钢的硬度,因此耐磨损性能呈现珠光体>珠光体-铁素体双相结构>铁素体的规律[89, 90]。与碳钢相似,合金钢的耐冲蚀磨损性能也受其微观结构的影响。Lindgren和Perolainen[91]通过实验探究了316L和904L两种奥氏体不锈钢及3种铁素体-奥氏体双相不锈钢的耐冲蚀磨损性能,铁素体-奥氏体双相不锈钢展示出了较奥氏体不锈钢更优异的性能,并提出铁素体-奥氏体的双相结构增强了不锈钢的韧性,从而提升了材料的耐冲蚀磨损能力。

除微观结构外,材料中的Cr具有提高硬度和耐磨性的作用。Tylczak[92]在模拟高温烟气环境中比较研究了Fe-2¼Cr-1Mo、304SS、310SS、Incoloy800、Haynes230以及Fe3Al等合金材料的冲蚀磨损行为,发现Cr含量高的材料耐冲蚀磨损性能更强。Huttunen-Saarivirta等[93]认为,奥氏体不锈钢304L等高Cr含量的材料在30o和90o冲蚀角条件下耐冲蚀性更好,而中等Cr含量的马氏体不锈钢T91在中间冲蚀角条件下耐冲蚀性能更好。可见,材料中的Cr含量与耐冲蚀性能不是简单的线性关系,针对不同应用环境研究最优Cr含量对耐磨不锈钢的开发应用具有重要指导作用。

上述结构和组分因素,都是通过改变材料的硬度或韧性进而影响其耐磨损性能。一般认为,耐冲蚀磨损性能随材料硬度的增加而提升[94]。然而对于硬度高而韧性较差的材料,在90o冲蚀角附近冲蚀磨损严重,增强韧性是提升其耐冲蚀磨损性能的有效途径。Gadhikar等[95]通过对23-8-N钢热处理前后的耐冲蚀磨损性能比较发现,尽管热处理过程导致材料的硬度降低,但热处理增强了材料的韧性从而提升了其耐冲蚀磨损性能。在Kumar等[96]的研究中也发现了类似的结果。因此,材料的耐冲蚀磨损性能受其硬度和韧性的综合影响,硬度相同时材料的耐冲蚀磨损性能随韧性增加而增强;韧性相同时材料的耐冲蚀磨损性能随硬度增加而增强。

2.4 受热面温度与氧化腐蚀环境

作为冲蚀磨损过程中的两个主要对象,飞灰颗粒和锅炉受热面的性质变化必然会影响冲蚀磨损情况。受热面服役的环境温度会影响材料性质,赵宪萍等[10]在200~550 oC的温度条件下对20碳钢开展了冲蚀实验,表明在330 oC到350 oC之间存在一个最小磨损量的临界温度。马喜成[97]研究表明,根据现场运行情况,循环流化床受热面的壁温在400 oC附近时,磨损程度的变化较为明显。临界温度存在的主要原因是,一方面,当温度升高时,材料表面生成硬度较高的氧化膜,起到了保护作用,但同时也使表面脆性增加,在临界温度之后,脆性氧化膜在高温下易于冲蚀剥落,失去了防护作用,造成冲蚀加剧[10];另一方面,高温下金属材质的锅炉受热面的延展性和韧性增强,但硬度有所下降,温度一旦超过临界值,硬度降低会导致更严重的冲蚀磨损问题[88]

此外,对于炉内环境而言,烟气中含有硫、氯以及碱金属等腐蚀性介质,高温条件下受热面极易发生氧化腐蚀。我们前期从腐蚀介质的释放、腐蚀反应过程及减缓腐蚀的方法等多个方面进行了详细的综述[98, 99]。Kumar等[100]在实际炉内环境中通过循环实验的方式探究了SA-516钢的冲蚀-腐蚀行为,发现试样的质量会发生周期性的失重。受热面氧化腐蚀生成的疏松氧化物会在飞灰冲蚀的作用下脱落,随后暴露的表面会再次生成氧化物,在持续的氧化腐蚀和冲蚀脱落的过程中,换热管管壁不断减薄。Sadeghi和Joshi[101]研究表明,材料表面存在KCl时,冲蚀磨损量明显提升,说明换热面沉积物中的碱金属盐等腐蚀性介质,会降低材料耐冲蚀磨损性能,因此在研究开发锅炉抗冲蚀腐蚀材料时,应尽可能考虑其所处烟气环境及沉积物的影响。

壁面温度不仅直接影响磨损速率,还会造成材料表面的腐蚀进而影响磨损速率[102]图4[103]展示了受热面的腐蚀速度与温度的关系,在高温腐蚀阶段,受热面的腐蚀速度基本上随温度的升高而增强,尤其在320~600 oC温度区间内,近乎成指数型增加,多数锅炉受热面的温度也正是在这一温度区间内。因此,伴随着温度的升高,受热面的冲蚀磨损也会随着氧化腐蚀的增强而加剧。

图4

图4   受热面腐蚀速度与温度的关系[103]

Fig.4   Correlation between erosion rate and wall temperature[103]


2.5 锅炉炉型

常见的电站锅炉炉型主要有煤粉炉、炉排炉 (又称层燃炉) 及循环流化床锅炉。在燃煤电站中通常以煤粉炉和循环流化床锅炉为主[104, 105],生物质燃烧电站和生活垃圾焚烧电站则多采用炉排炉和循环流化床锅炉[106, 107]

采用煤粉炉时,燃烧前需要采用磨煤机将燃煤磨制成粉状细微颗粒,然后通过“一次风”携带进入炉膛内部燃烧[88],由于燃料颗粒较小,灰颗粒易于被烟气携带,因而飞灰含量较大,对受热面冲蚀磨损的风险较高。在常见的四角切圆煤粉炉中,由于四角送风的作用,炉膛内部会形成环形流场,因而灰颗粒易于对水冷壁造成冲蚀磨损。在炉排炉中,固体燃料只需进行简单的破碎便可进入炉膛并在炉排上燃烧,燃料中不可燃的灰绝大多数会顺着炉排移动,并在炉排尾部冷却沉积。通常仅有少量灰颗粒会在给风作用下随烟气进入尾部烟道,飞灰量少[108, 109]。因而炉排炉锅炉受热面遭受飞灰冲蚀磨损的程度较轻。

循环流化床锅炉受热面磨损问题最为严重。与其他锅炉不同,循环流化床炉内除燃烧产生的灰颗粒以外还存在大量的床料。床料是一种惰性的不可燃固体颗粒,通常由石灰石、循环灰或SiO2等物质组成[110]。在灰颗粒和床料的共同作用下,烟气中固体颗粒的浓度大幅增加,甚至可以达到煤粉炉的几十倍到上百倍[111]。炉内大量处于流化状态的床料及飞灰在烟气的推动下自炉膛中部上升,随高度的增加物料的速度降低,大量物料在气流和重力的作用下从高处贴壁下行,与水冷壁接触发生冲蚀磨损,长期的磨损过程极易造成受热面严重破坏。

综上所述,从冲蚀机理而言,影响冲蚀磨损的因素主要为飞灰特性、冲蚀速度和角度;从被冲蚀材料而言,受热面材质、温度及氧化腐蚀环境是影响冲蚀磨损破坏的关键因素;锅炉炉型为影响冲蚀的客观因素,其本质也是通过改变前两类因素而对冲蚀产生作用。其中,冲蚀速度和壁面温度是影响磨损量的两个主要因素,其作用程度可呈现指数级增长,因此降低受热面区域的烟气流速是减缓冲蚀磨损的有效途径,对于不同部位的锅炉受热面,应根据其所服役的温度条件选择合适的耐磨材料。当温度较低时,可优先选择碳钢以降低经济成本,在高温条件下,则应选择耐热合金钢以满足服役需求。

3 不同部位受热面冲蚀磨损防护措施

为减轻冲蚀磨损对受热面的破坏作用,延长其服役寿命,采取有效的防护措施就显得尤为重要。锅炉受热面的冲蚀磨损防护主要有:一是通过加装防磨构件,采取新结构导流的方式疏导受热面区域的颗粒流动,从而降低颗粒对受热面的碰撞;二是通过在受热面上涂覆耐磨材料,通过将冲蚀颗粒与受热面隔离的方式避免固体颗粒与受热面的接触。

3.1 加装防磨构件

(1) 安装防磨横梁

防磨横梁技术是西安热工院针对循环流化床水冷壁冲蚀磨损破坏而提出的防护措施。在循环流化床锅炉水冷壁上安装多阶防磨横梁,对水冷壁能够起到有效的防护[112]。Xu等[21]通过数值模拟的方法探究了330MW的循环流化床锅炉水冷壁加装防磨横梁对炉内气固混合相的流动的影响,加装多级防磨横梁之后能够有效阻断固体颗粒沿水冷壁连续下降的过程,而只在两个防磨横梁之间形成低速的固体颗粒下降流。从而大大降低了颗粒速度沿壁面下降的流速,能够有效缓解水冷壁的冲蚀磨损问题。Xia等[20]采用实验的方法观察探究了防磨横梁对气固流动的影响,如图5所示,固体颗粒沿壁面下落至防磨横梁处时,流动方向会向炉膛中心偏转,远离受热面。同时由于防磨横梁的撞击阻挡,颗粒速度下降。二者的共同影响下,减缓了水冷壁受热面的冲蚀磨损。但也存在部分循环流化床锅炉加装防磨横梁后,出现了排烟温度上升、床温升高等问题,深入解析防磨横梁的防磨机理,对于该技术的进一步应用具有重要意义。

图5

图5   不同h0-hs-S (mm)下防磨横梁附近粒子速度矢量分布[20]

Fig.5   Velocity vector distributions of particles around the anti-wear beam at various h0-hs-S (mm): (a) 20-14-3; (b) 20-14-9; (c) 20-14-15 (h0-height of the anti-wear beam on the wall; hs-height of the anti-wear beam in the furnace; S-width of the anti-wear beam)[20]


(2) 加装防磨瓦

与水冷壁贴壁布置不同,过热器、再热器、省煤器以及空气预热器等多布置在烟道中部,与烟气进行对流换热,加装防磨瓦是其磨损防护常用的办法。防磨瓦加装在换热管的迎风面,用于阻挡飞灰颗粒对换热管冲蚀、扰动气流分散磨损。文献[19]介绍了4种不同类型的防磨瓦的截面[19]。防磨瓦通常也为金属材质,受最大冲蚀磨损量对应冲蚀角的影响。防磨瓦的应用能够有效减缓加瓦受热面的冲蚀磨损,但也容易导致烟气流道变窄,下排换热管冲蚀加剧[18]。防磨瓦持续遭受飞灰的冲蚀,其自身也极易发生破坏,在高温环境下,甚至会变形失效,需要定期检查更换。同时防磨瓦过多添加会影响换热,降低锅炉负荷,添加不足又无法实现有效防护,因此在防磨瓦的布置上也需要进行优化研究,以发挥防磨瓦的最大防护效果。

(3) 其他防磨构件

在换热器迎风方向通过错列布置增加两排假管,在烟气气流经过假管时,其原本对换热器管的磨损便会转为对假管的磨损,同时假管的存在能够起到均布烟气流的作用,增加了烟气流动的阻力,降低了烟气流经换热器管束时的速度[113],从而减低换热器管束的冲蚀磨损。在贴炉墙及弯头处等易磨损部位安装护帘或防护罩,能够对上述易磨损部位起到有效的保护[48]。但长期的冲刷也会造成护帘等防护件磨穿,因此需要定期对该类部件进行检查,及时维护或更换损坏部件。

加装各类防磨构件是当前实际锅炉环境中常用的防磨手段,然而防磨构件的安装可能会影响锅炉的原有设计参数,造成锅炉出力降低、电厂自用能耗增加等新的问题出现。因此防磨构件的安装需要兼顾防磨和最小程度影响锅炉效率等综合效益。同时,通常而言防磨构件抵抗了冲击受热面的冲蚀磨损,受热面磨损减轻,但防磨构件磨损风险依然很大,考虑到烟气的腐蚀,需要研究应用高性能耐磨耐腐蚀材料,以提高防磨构件的应用寿命。此外,对于空预器而言,还可采用直径较大的防磨孔板,增加通流面积以降低流速,缓解冲蚀磨损。

3.2 涂覆耐磨材料

(1) 浇筑耐火材料

水冷壁布置在炉膛内部,在火焰燃烧和气流扰动的作用下,其下部受热面易于发生高温变形和冲蚀磨损破坏,在该部位浇筑耐火材料能够对水冷壁起到保护作用[114]。通常采用的耐火材料有磷酸盐、碳化硅、刚玉以及氮化硅等单一或复合材料制备的耐火砖或浇注料[115~117]。但由于飞灰颗粒浓度高,速度快,对材料的冲蚀剧烈,在实验室的检测和锅炉的实际使用中,上述耐火材料也会出现耐磨性能差、抗压抗折强度低等问题[6]

(2) 制备耐磨涂层

涂层防护是指通过喷涂、堆焊等方法在基材表面制备防护材料以实现对基材的保护,该技术是材料领域常见的防护应用技术,目前在锅炉受热面的防护方面也有一定研究和应用[13]图6展示了换热管的冲蚀破坏和涂层的防护效果[118],可以看到涂层在换热管表面可以起到显著的磨损防护作用。对于防磨涂层的应用,尽管已有部分电厂尝试将防磨涂层应用于实际锅炉环境的情况,涂层的防护效果也初步得到体现,但由于涂层材料和涂层制备技术的多样性以及锅炉环境的复杂性,耐磨涂层在锅炉中的应用仍处于探索阶段,尚缺乏针对不同锅炉环境的耐磨涂层选择的参考和指导。

图6

图6   换热管冲蚀磨损破坏的壁面及FMI-3涂层(FeAlCrB)运行13 a后的上表面形貌[118]

Fig.6   Morphologies of heat exchange tubes: (a) the damaged wall by erosion; (b) top surface of FMI-3 coating (FeAlCrB) after 13 a period of exposure[118]


为筛选高性能的防磨涂层,国内外诸多学者仍在实验条件下比较评估不同涂层材料及涂层技术制备涂层的耐磨损性能。Bala等[119]采用冷喷涂技术在SA516钢上制备了三种镍基涂层,在实际锅炉过热器部位评估了涂层的冲蚀-腐蚀防护能力,结果表明防护性能Ni-20Cr-TiC-Re>Ni-20Cr-TiC>Ni-20Cr,稀土元素Re的添加增强了涂层的耐冲蚀磨损性能。Kumar等[100]研究表明,纳米Ni-20Cr涂层耐冲蚀磨损性能显著优于基体材料,且性能同时优于微米Ni-20Cr涂层。可以看到,通过稀土金属或纳米材料的加入,能够提高涂层材料的耐冲蚀-腐蚀性能,增强涂层在换热器等高温环境下的可应用性能。Wang[120]在模拟水冷壁部位的环境下比较探究了金属涂层、陶瓷涂层和金属陶瓷涂层等多种涂层的性能,结果表明超音速火焰喷涂的Cr3C2-NiCr金属陶瓷涂层表现出最好的耐冲蚀磨损性能,而陶瓷涂层90Cr2O3-6SiO2-4Al2O3易于产生裂纹,导致涂层失效。这一结果展现了Cr3C2-NiCr类金属陶瓷材料在受热面防护应用的优越性。

通过总结国内外文献[4, 11, 24, 121~143],对目前国内外学者研究的涂层材料和涂层制备技术进行了分析。图7展示了防磨涂层材料与制备技术占比分布,从图7a可以看到,目前研究的耐磨涂层主要可以分为三大类:金属陶瓷涂层、金属涂层以及陶瓷涂层。其中金属陶瓷涂层是最为主流的涂层类型,占比超过80%,而金属涂层和陶瓷涂层仅分别占10%,充分体现了金属陶瓷涂层在耐磨防护中的优越性,金属-陶瓷涂层 (WC-Co等) 兼具金属涂层和陶瓷涂层的双重属性,具有较高的硬度,耐磨效果好,同时能够与基体良好结合,改善了陶瓷涂层抗热疲劳性能。同时,在金属陶瓷涂层中,WC-Co系列涂层以及Cr2C3-NiCr系列涂层是研究最多的涂层材料,分别占比31.43%和24.29%,可见这两种系列的涂层材料在受热面耐磨防护领域具有广阔的应用前景。此外,对于服役温度相对较低的省煤器和空预器而言,聚四氟乙烯或搪瓷材料等也可起到良好的防磨作用,同时二者均能够对低温条件下的露点腐蚀起到有效防护。图7b则展示了制备耐磨涂层常用的涂层技术,在诸多的涂层制备技术中,超音速火焰喷涂技术的应用占比达到了71.43%,远远高于等离子喷涂、爆炸喷涂等其他涂层制备技术,是制备耐磨涂层的主流技术,充分体现了学者们对超音速火焰喷涂技术在防磨领域应用的认可。在实际的锅炉耐磨涂层制备过程中,应当优先尝试探索超音速火焰喷涂技术制备涂层的可应用性。

图7

图7   防磨涂层的材料与制备技术占比分布[4, 11, 24, 121~143]

Fig.7   Proportions of materials and preparation techno-logies of anti-wear coatings: (a) materials; (b) technologies[4, 11, 24, 121~143]


毋庸置疑,将换热管包覆于耐磨涂覆材料之中避免了换热管直接应对颗粒冲蚀的风险,对炉内流场的影响有限,能够较好的保持锅炉设计参数。同时涂覆材料在炉内环境中也遭受着冲蚀和腐蚀,涂覆材料的耐磨耐腐蚀性能是影响其使用寿命的决定性因素,开发应用高性能耐磨耐腐蚀材料是提升换热管耐磨防护效果的重要方向。同时,换热管作为锅炉换热的关键部件,其换热效果的好坏直接影响着锅炉的出力情况,这就要求涂覆材料还应具有较好的导热性,兼具耐磨耐腐蚀高导热的材料是防磨涂覆材料的最优选择,也是防磨涂覆材料研究开发需要重点关注的方向[144, 145]

4 总结与展望

在飞灰颗粒的长期冲蚀作用下,冲蚀磨损破坏已经成为电站锅炉受热面常见的失效形式。受热面在切削磨损和变形磨损二者共同作用下,受热面极易出现管壁减薄、工质泄漏,甚至爆管等问题,威胁电站锅炉的安全稳定运行。

飞灰颗粒的自身特性、冲蚀速度和角度、受热面材质、受热面温度和氧化腐蚀环境、锅炉的炉型结构均是影响受热面冲蚀磨损的重要因素。一般而言,烟气流速、服役温度对受热面的冲蚀磨损影响更大,前者影响冲蚀过程中粒子的碰撞速度,后者则影响被冲蚀材料的强度。锅炉受热面的冲蚀磨损防护措施主要有加装防磨构件和涂覆耐磨材料两大类。防磨构件常见有防磨横梁、防磨瓦以及假管等。而涂覆耐磨材料的防护途径有浇筑耐火材料和制备耐磨涂层两种。前者主要是针对水冷壁的防护,而制备耐磨涂层则是不同部位受热面磨损防护的通用技术。

尽管当前的防护措施能够一定程度缓解受热面的冲蚀磨损破坏,但仍存在受热面的结构不够合理、涂层材料相对单一、涂层对不同锅炉环境适用性不明确、涂层应用成本较高等问题和困难,仍可从以下方向开展进一步的研究:

(1) 冲蚀过程数值模拟研究

在实验室内采用控制颗粒速度、冲蚀角度等手段,可以实现对不用材料耐冲蚀磨损性能的初步判定,但实际锅炉中不同部位的冲蚀与烟气流场密切相关,采用流场模拟 (计算流体力学) 及实验探究相结合的手段,可以模拟预测飞灰冲蚀速度、颗粒运动路径、冲蚀角度、锅炉温度分度等多参数下不同部位的冲蚀磨损情况,进而指导锅炉的流场或结构优化。

(2) 结合服役环境的磨损研究

建立贴近实际受热面冲蚀环境的实验方法和系统,综合考虑锅炉不同受热面壁面温度、烟气组分、换热面沉积物特性等因素对冲蚀的影响,系统性评估多种材料在不同锅炉环境下的适用性,明确材料冲蚀失效的机理,有利于针对性地选择防护材料,并为材料开发提供参考。

(3) 防磨材料开发及工艺优化

涂层技术易于对已应用受热面进行升级改造及全新受热面的强化。通过纳米粒子添加、细化材料颗粒等途径开发新型金属陶瓷涂层、复合涂层及纳米涂层等高性能耐磨涂层材料,同时比较探究涂层应用成本及防护效果,进一步优化制备工艺降低应用成本,可以对涂层的应用提供工程和经济指导。

参考文献

National Bureau of Statistics. China Statistical Yearbook [M]. Beijing: China Statistics Press, 2019

[本文引用: 1]

国家统计局. 中国统计年鉴 [M]. 北京: 中国统计出版社, 2019

[本文引用: 1]

Hossain M N, Ghosh K, Manna N K.

Two-phase thermo-hydraulic model of a 210 MW thermal power plant boiler for designing the riser-downcomer circuit

[J]. Therm. Sci. Eng. Prog., 2020, 18: 100537

[本文引用: 1]

Zhang S P, Shen G Q, An L S, et al.

Monitoring ash fouling in power station boiler furnaces using acoustic pyrometry

[J]. Chem. Eng. Sci., 2015, 126: 216

DOI      URL     [本文引用: 1]

Hidalgo V H, Varela F J B, Menéndez A C, et al.

A comparative study of high-temperature erosion wear of plasma-sprayed NiCrBSiFe and WC-NiCrBSiFe coatings under simulated coal-fired boiler conditions

[J]. Tribol. Int., 2001, 34: 161

DOI      URL     [本文引用: 4]

Huttunen-Saarivirta E, Kinnunen H, Tuiremo J, et al.

Erosive wear of boiler steels by sand and ash

[J]. Wear, 2014, 317: 213

DOI      URL     [本文引用: 2]

Kang X Q.

Studies on erosion resistance of high strength refractory castable at room temperature

[D]. Xi’an: Xi’an University of Architecture and Technology, 2010

[本文引用: 1]

康晓庆.

高强耐火浇注料常温冲蚀磨损性能研究

[D]. 西安: 西安建筑科技大学, 2010

[本文引用: 1]

Li J J, Wu F F, Wu B.

Erosion wear performance of AlCrN coating on titanium alloy substrate

[J]. Surf. Technol., 2019, 48(2): 152

[本文引用: 1]

李巾杰, 吴凤芳, 吴 冰.

钛合金基体上AlCrN涂层的冲蚀磨损行为研究

[J]. 表面技术, 2019, 48(2): 152

[本文引用: 1]

Fan L H.

Causes and preventive measures of economizer leakage in thermal power plant

[J]. Chem. Enterpr. Manage., 2020, (10): 120

[本文引用: 2]

范立辉.

热电厂省煤器泄露的原因及预防措施

[J]. 化工管理, 2020, (10): 120

[本文引用: 2]

Wu W Y.

Study on high temperature corrosion coupled erosion wear characteristics of fluidized bed boiler

[D]. Wulumuqi: Xinjiang University, 2021

[本文引用: 1]

吴文亚.

流化床锅炉高温腐蚀耦合冲蚀磨损的特性研究

[D]. 乌鲁木齐: 新疆大学, 2021

[本文引用: 1]

Zhao X P, Sun J R, Zou H R.

An experimental study on the hot flying ash erosion of 20 carbon steel

[J]. Proc. CSEE, 2001, 21(6): 90

[本文引用: 3]

赵宪萍, 孙坚荣, 邹辉荣.

20碳钢热态飞灰冲刷磨损性能的试验研究

[J]. 中国电机工程学报, 2001, 21(6): 90

[本文引用: 3]

Hidalgo V H, Varela J B, Menéndez A C, et al.

High temperature erosion wear of flame and plasma-sprayed nickel-chromium coatings under simulated coal-fired boiler atmospheres

[J]. Wear, 2001, 247: 214

DOI      URL     [本文引用: 4]

Sun H.

Study on thermal spraying Cr3C2-NiCr composite coating for power plant boiler pipeline

[D]. Ma’anshan: Anhui University of Technology, 2018

孙 华.

电厂锅炉管道热喷涂Cr3C2-NiCr复合涂层的研究

[D]. 马鞍山: 安徽工业大学, 2018

Xue Y T.

The wear mechanism and control measures of water cooling wall in circulating fluidized bed boiler

[J]. Petrochem. Ind. Appl., 2018, 37(3): 141

[本文引用: 2]

薛永涛.

循环流化床锅炉水冷壁磨损机理及控制措施浅析

[J]. 石油化工应用, 2018, 37(3): 141

[本文引用: 2]

Zhong C Y.

Preparing and properties research of wear resistance composite boiler tubes

[D]. Baoding: North China Electric Power University, 2013

[本文引用: 2]

钟成圆.

高耐磨损复合锅炉管的制备及其特性研究

[D]. 保定: 华北电力大学, 2013

[本文引用: 2]

Chen L H, Jin J, Fan J R, et al.

Study on the erosion protection technique for the boiler tube bundles of power plant

[J]. Proc. CSEE, 1999, 19(7): 67

[本文引用: 1]

陈丽华, 金 军, 樊建人 .

电站锅炉受热面管束防磨技术的研究

[J]. 中国电机工程学报, 1999, 19(7): 67

[本文引用: 1]

Wang L, Zhang Y Q.

Municipal solid waste incinerators and erosion resistant refractory

[J]. Power Equip., 2007, 21: 316

[本文引用: 1]

王 雷, 张运翘.

垃圾焚烧炉及耐火耐磨材料探讨

[J]. 发电设备, 2007, 21: 316

[本文引用: 1]

Liu J L, Li Y M, Yang L.

Analysis of the wearing of water cooling wall pipe of CFB boiler and prevention measures

[J]. China Plant Eng., 2004, (10): 34

[本文引用: 2]

刘吉亮, 厉彦明, 杨 雷.

CFB锅炉水冷壁管磨损分析及防治对策

[J]. 中国设备工程, 2004, (10): 34

[本文引用: 2]

Sun W B, Feng Y X.

Application of thin anti-wear tile for power station boiler smooth tube economizer

[J]. Central China Electric Power, 1998, (2): 71

[本文引用: 2]

孙文波, 冯永新.

电站锅炉光管省煤器薄壁防磨瓦的应用

[J]. 华中电力, 1998, (2): 71

[本文引用: 2]

Pronobis M.

Harmful phenomena in modernized boilers

[A]. Environmentally Oriented Modernization of Power Boilers [M]. Amsterdam: Elsevier, 2020: 213

[本文引用: 5]

Xia Y F, Cheng L M, Yu C J, et al.

Anti-wear beam effects on gas-solid hydrodynamics in a circulating fluidized bed

[J]. Particuology, 2015, 19: 173

DOI      URL     [本文引用: 4]

Xu L J, Cheng L M, Ji J Q, et al.

Effect of anti-wear beams on waterwall heat transfer in a CFB boiler

[J]. Int. J. Heat Mass Transfer, 2017, 115: 1092

DOI      URL     [本文引用: 1]

Gao Z Q.

Application of anti-wear beam in long period operation of power plant boiler

[J]. Appl. Energy Technol., 2019, (8): 26

高自强.

防磨梁在电厂锅炉长周期运行中的应用

[J]. 应用能源技术, 2019, (8): 26

Wang J.

Research on water wall abrasion and anti-wear of circulating fludized bed boiler

[D]. Zibo: Shandong University of Technology, 2020

[本文引用: 1]

王 佳.

循环流化床锅炉水冷壁磨损与防磨研究

[D]. 淄博: 山东理工大学, 2020

[本文引用: 1]

Vicenzi J, Villanova D L, Lima M D, et al.

HVOF-coatings against high temperature erosion (∼300 °C) by coal fly ash in thermoelectric power plant

[J]. Mater. Des., 2006, 27: 236

DOI      URL     [本文引用: 5]

Zhang C, Wu X H, Dai P Q.

Erosive wear properties of FeCoCr0.5NiBSi x high-entropy alloy coating at high temperature

[J]. Surf. Technol., 2019, 48(2): 166

张 冲, 吴旭晖, 戴品强.

FeCoCr 0. 5NiBSix高熵合金涂层的高温冲蚀磨损性能

[J]. 表面技术, 2019, 48(2): 166

Li T J, Li W, Li Y, et al.

Performance of HVOF NiCr cermets coating against high temperature sulfur corrosion and erosion

[J]. Proc. CSEE, 2012, 32(20): 120

[本文引用: 1]

李太江, 李 巍, 李 勇 .

超音速火焰喷涂制备NiCr金属陶瓷涂层的抗高温硫腐蚀与冲蚀磨损性能

[J]. 中国电机工程学报, 2012, 32(20): 120

[本文引用: 1]

Kang J X, Zhao W Z, Zhu J H.

Erosion resistance of materials

[J]. Mater. Prot., 2001, 34(10): 22

[本文引用: 1]

康进兴, 赵文轸, 朱金华.

材料抗冲蚀性的研究进展

[J]. 材料保护, 2001, 34(10): 22

[本文引用: 1]

Zhu Z X, Xu B S, Xu X Y, et al.

High temperature erosion wear behavior and thermal spraying protection of utility boiler tubes

[J]. Electric Power, 2001, 34(12): 16

[本文引用: 1]

朱子新, 徐滨士, 徐向阳 .

电站锅炉管道高温冲蚀磨损和涂层防护技术

[J]. 中国电力, 2001, 34(12): 16

[本文引用: 1]

Mou J, Li J, Guo S Y, et al.

Developments of researches on erosion of metallic and ceramic materials

[J]. Mater. Sci. Eng., 1994, (2): 9

[本文引用: 1]

牟 军, 郦 剑, 郭绍义 .

金属及陶瓷材料冲蚀研究的进展

[J]. 材料科学与工程, 1994, (2): 9

[本文引用: 1]

Xie W W, Deng J X, Zhou H M, et al.

Development and prospect in numerical simulation of erosion

[J]. Corros. Prot., 2012, 33: 601

[本文引用: 1]

谢文伟, 邓建新, 周后明 .

材料冲蚀磨损的数值模拟研究现状及展望

[J]. 腐蚀与防护, 2012, 33: 601

[本文引用: 1]

Chen D, He D.

Analysis of high temperature erosion wear and coating protection technology for utility boiler pipes

[J]. Energy Conservat. Environ. Prot., 2020, (4): 54

[本文引用: 1]

陈 栋, 何 栋.

电站锅炉管道高温冲蚀磨损和涂层防护技术分析

[J]. 节能与环保, 2020, (4): 54

[本文引用: 1]

Suckling M, Allen C.

The design of an apparatus to test wear of boiler tubes

[J]. Wear, 1995, 186/187: 266

[本文引用: 1]

Shan X Y.

Study on distribution and extraction characteristics of valuable elements in fly ash

[D]. Taiyuan: Shanxi University, 2019

[本文引用: 2]

单雪媛.

粉煤灰中有价元素分布规律及浸出行为研究

[D]. 太原: 山西大学, 2019

[本文引用: 2]

Qiu Q L.

Study on microwave-assisted hydrothermal disposal and product adsorption property of MSWI fly ash

[D]. Hangzhou: Zhejiang University, 2019

[本文引用: 3]

邱琪丽.

垃圾焚烧飞灰的微波水热法无害化处置及产物吸附性能研究

[D]. 杭州: 浙江大学, 2019

[本文引用: 3]

Lu G.

Investigation on water wall wear characteristics of circulating fluidized boiler

[D]. Baoding: North China Electric Power University, 2005

[本文引用: 1]

卢 刚.

循环流化床锅炉水冷壁磨损特性研究

[D]. 保定: 华北电力大学, 2005

[本文引用: 1]

Guo L.

An experimental study on the erosion mechanism in power station and the anti-erosion performance of materials

[D]. Taiyuan: Taiyuan University of Technology, 2007

[本文引用: 1]

郭 雷.

电站锅炉冲蚀磨损机理及材料防磨性能的试验研究

[D]. 太原: 太原理工大学, 2007

[本文引用: 1]

Antonov M, Veinthal R, Huttunen-Saarivirta E, et al.

Effect of oxidation on erosive wear behaviour of boiler steels

[J]. Tribol. Int., 2013, 68: 35

DOI      URL     [本文引用: 1]

Das S K, Godiwalla K M, Hegde S S, et al.

A mathematical model to characterize effect of silica content in the boiler fly ash on erosion behaviour of boiler grade steel

[J]. J. Mater. Process. Technol., 2008, 204: 239

DOI      URL     [本文引用: 1]

Liu Y.

Study on high temperature corrosion behavior and life prediction of T92 steel used in power station boiler

[D]. Guangzhou: South China University of Technology, 2017

[本文引用: 1]

刘 洋.

电站锅炉用T92钢高温腐蚀行为研究及寿命预测

[D]. 广州: 华南理工大学, 2017

[本文引用: 1]

Hong X S, Zhang J S, Wang J W, et al.

The mechanism of the water wall erosion in a circulating fluidized bed boiler and its improvement

[J]. Boiler Technol., 2007, 38(4): 19

[本文引用: 4]

侯祥松, 张建胜, 王进伟 .

循环流化床锅炉中水冷壁的磨损原理及其预防

[J]. 锅炉技术, 2007, 38(4): 19

[本文引用: 4]

Ma K L.

Analyze on cause of boiler tube leakage and prevent ion measures

[J]. Boiler Technol., 2008, 39(6): 66

[本文引用: 1]

马克利.

锅炉炉管泄露的原因分析及防范措施

[J]. 锅炉技术, 2008, 39(6): 66

[本文引用: 1]

Finnie I.

Erosion of surfaces by solid particles

[J]. Wear, 1960, 3: 87

DOI      URL     [本文引用: 1]

Bitter J G A.

A study of erosion phenomena

[J]. Wear, 1963, 6: 169

DOI      URL     [本文引用: 1]

Yuan B Q.

Study on erosion and deposition characteristics of heating surface based on gas-solid two-phase flow

[D]. Ji’nan: Shandong University, 2018

[本文引用: 1]

袁宝强.

基于气固两相流的受热面磨损与沉积特性研究

[D]. 济南: 山东大学, 2018

[本文引用: 1]

Jing Y W, Liu S G.

A study on erosion and protective methods of water wall tubes of CFB boilers

[J]. J. Chin. Soc. Power Eng., 2005, 25: 747

[本文引用: 3]

景永伟, 刘少光.

流化床锅炉水冷壁管冲蚀磨损特性及防磨措施

[J]. 动力工程, 2005, 25: 747

[本文引用: 3]

Mathapati M, Ramesh M R, Doddamani M.

High temperature erosion behavior of plasma sprayed NiCrAlY/WC-Co/cenosphere coating

[J]. Surf. Coat. Technol., 2017, 325: 98

DOI      URL     [本文引用: 1]

Gandhi M B, Vuthaluru R, Vuthaluru H, et al.

CFD based prediction of erosion rate in large scale wall-fired boiler

[J]. Appl. Therm. Eng., 2012, 42: 90

DOI      URL     [本文引用: 1]

Cui J K, Zhao J, Guo R N.

Abrasion mechanism analysis and protection research on economizer of circulating fluidized bed boilers

[J]. Energy Conservat. Technol., 2007, 25: 475

[本文引用: 2]

崔俊奎, 赵 军, 郭仁宁.

循环流化床锅炉省煤器磨损机理分析及防护改造

[J]. 节能技术, 2007, 25: 475

[本文引用: 2]

Ma Z G.

Study on flow hydrodynamics, combustion and abrasion properties of CFB boiler burning anthracite

[D]. Hangzhou: Zhejiang University, 2007

[本文引用: 1]

马志刚.

无烟煤循环流化床内流动、燃烧与磨损的研究

[D]. 杭州: 浙江大学, 2007

[本文引用: 1]

Shao H S, Qu J X, Xu Z D, et al. Friction and Wear [M]. Beijing: China Coal Industry Publishing House, 1992

[本文引用: 1]

邵荷生, 曲敬信, 许小棣 . 摩擦与磨损 [M]. 北京: 煤炭工业出版社, 1992

[本文引用: 1]

Zhao Z F. Operating Technology of Circulating Fluidized Bed Boiler [M]. Beijing: China Electric Power Press, 2007

[本文引用: 1]

赵宗锋. 循环流化床锅炉运行技术 [M]. 北京: 中国电力出版社, 2007

[本文引用: 1]

Mbabazi J G, Sheer T J, Shandu R.

A model to predict erosion on mild steel surfaces impacted by boiler fly ash particles

[J]. Wear, 2004, 257: 612

DOI      URL     [本文引用: 1]

Lee B E, Tu J Y, Fletcher C A J.

On numerical modeling of particle-wall impaction in relation to erosion prediction: Eulerian versus Lagrangian method

[J]. Wear, 2002, 252: 179

DOI      URL     [本文引用: 1]

Oka Y I, Yoshida T.

Practical estimation of erosion damage caused by solid particle impact, Part 2: Mechanical properties of materials directly associated with erosion damage

[J]. Wear, 2005, 259: 102

DOI      URL     [本文引用: 2]

Oka Y I, Okamura K, Yoshida T.

Practical estimation of erosion damage caused by solid particle impact, Part 1: Effects of impact parameters on a predictive equation

[J]. Wear, 2005, 259: 95

DOI      URL     [本文引用: 2]

Ge C, Zhong W Q, Zhou G W, et al.

Numerical experimental study and operation optimization on wear characteristics of division panel superheater of pulverized-coal boilers

[J]. Proc. CSEE, 2021, 41: 8057

[本文引用: 1]

葛 闯, 钟文琪, 周冠文 .

电站煤粉锅炉分隔屏过热器磨损特性数值试验研究及运行优化

[J]. 中国电机工程学报, 2021, 41: 8057

[本文引用: 1]

Zhou M W, Niu G P, Jia G R, et al.

Numerical simulation of fly ash erosion on bolier tail flue channel

[J]. Therm. Power Gener., 2019, 48(8): 62

[本文引用: 1]

周梦伟, 牛国平, 贾光瑞 .

烟气飞灰对锅炉尾部烟道磨损数值模拟

[J]. 热力发电, 2019, 48(8): 62

[本文引用: 1]

Mansouri A, Arabnejad H, Shirazi S A, et al.

A Combined CFD/experimental methodology for erosion prediction

[J]. Wear, 2015, 332/333: 1090

[本文引用: 1]

Zhang L, Sazonov V, Kent J, et al.

Analysis of boiler-tube erosion by the technique of acoustic emission: Part I. Mechanical erosion

[J]. Wear, 2001, 250: 762

DOI      URL     [本文引用: 1]

Zhao K L.

Distribution characteristics of rare earth elements in incineration fly ash from municipal solid waste

[D]. Taiyuan: Shanxi Normal University, 2019

[本文引用: 1]

赵凯丽.

生活垃圾焚烧飞灰中稀土元素分布特征研究

[D]. 太原: 山西师范大学, 2019

[本文引用: 1]

Liebhard M, Levy A.

The effect of erodent particle characteristics on the erosion of metals

[J]. Wear, 1991, 151: 381

DOI      URL     [本文引用: 1]

Liang J P, Zuo H B, Liu S H, et al.

Study on 20 g erosion wear performance of dust-containing airflow

[J]. J. Eng. Therm. Energy Power, 2020, 35: 208

[本文引用: 1]

梁佳鹏, 左海滨, 刘燊辉 .

含尘气流对20 g冲蚀磨损性能的研究

[J]. 热能动力工程, 2020, 35: 208

[本文引用: 1]

Chen C H, Li Q T, Zhang L J, et al.

High temperature erosion-wear behavior and mechanism of 304 stainless steel

[J]. Mater. Prot., 2012, 45(7): 15

[本文引用: 1]

陈川辉, 李庆棠, 张林进 .

不锈钢材料高温冲蚀磨损性能与机理

[J]. 材料保护, 2012, 45(7): 15

[本文引用: 1]

Misra A, Finnie I.

On the size effect in abrasive and erosive wear

[J]. Wear, 1981, 65: 359

DOI      URL     [本文引用: 1]

Lee B H, Kim K M, Bae Y H, et al.

Effect of bed particle size on the gas-particle hydrodynamics and wall erosion characteristics in a 550 MWe USC CFB boiler using CPFD simulation

[J]. Energy, 2022, 254: 124263

DOI      URL     [本文引用: 1]

Zhu Y Z, Wang Z C, Yang Z C, et al.

Analysis on formation mechansim of large particle fly ash in utility boilers

[J]. Therm. Power Gener., 2019, 48(12): 111

[本文引用: 1]

朱义洲, 王志超, 杨忠灿 .

燃煤电站锅炉大颗粒飞灰成因分析

[J]. 热力发电, 2019, 48(12): 111

[本文引用: 1]

Qi L Q, Yuan Y T.

Characteristics and the behavior in electrostatic precipitators of high-alumina coal fly ash from the Jungar power plant, Inner Mongolia, China

[J]. J. Hazard. Mater., 2011, 192: 222

DOI      PMID      [本文引用: 1]

In China, flue gases emitted by coal-fired power plants are mainly cleaned using electrostatic precipitators (ESPs). However, based on observations, there is a decrease in the collection efficiency of ESPs in some power plants after burning Jungar coal in Inner Mongolia. In order to find the mechanism of coal fly ash escaping from ESPs, the size distribution, resistivity, and cohesive force of particulate matter samples from Jungar coal-fired power plants in China were measured using a Bahco centrifuge, a dust electrical resistivity test instrument, and a cohesive force test apparatus invented by the authors. Experiments were carried out to determine the chemical composition and current-voltage curve of fly ash under operating ESPs. The Al(2)O(3) content in fly ash was found to reach more than 50%, with the size distribution showing a higher content of PM2.5 and PM10 in high-alumina coal fly ash than in other coal fly ashes. The resistivity of high-alumina coal fly ash was recorded at over 10(12)Ω cm, but this did not result in a clear back corona. The cohesive force of high-alumina coal fly ash was very little. It was sensitive to smoke speed in the electric field, facilitating dust re-entrainment.Copyright © 2011 Elsevier B.V. All rights reserved.

Yan L, Wang Y F, Ma H Z, et al.

Feasibility of fly ash-based composite coagulant for coal washing wastewater treatment

[J]. J. Hazard. Mater., 2012, 203/204: 221

Deepak M S, Rohini S, Harini B S, et al.

Influence of fly-ash on the engineering characteristics of stabilised clay soil

[J]. Mater. Today: Proc., 2021, 37: 2014

Sahu S P, Satapathy A, Patnaik A, et al.

Development, characterization and erosion wear response of plasma sprayed fly ash-aluminum coatings

[J]. Mater. Des., 2010, 31: 1165

DOI      URL    

Kang S, Lloyd Z, Kim T, et al.

Predicting the compressive strength of fly ash concrete with the particle model

[J]. Cem. Concr. Res., 2020, 137: 106218

DOI      URL     [本文引用: 1]

Xie K, Hu H Y, Cao J X, et al.

A novel method for salts removal from municipal solid waste incineration fly ash through the molten salt thermal treatment

[J]. Chemosphere, 2020, 241: 125107

DOI      URL     [本文引用: 1]

Hu H Y, Liu H, Shen W Q, et al.

Comparison of CaO’s effect on the fate of heavy metals during thermal treatment of two typical types of MSWI fly ashes in China

[J]. Chemosphere, 2013, 93: 590

DOI      URL    

Li W H, Sun Y J, Huang Y M, et al.

Evaluation of chemical speciation and environmental risk levels of heavy metals during varied acid corrosion conditions for raw and solidified/stabilized MSWI fly ash

[J]. Waste Manag., 2019, 87: 407

DOI      URL     [本文引用: 1]

Li H.

Erosion analysis and protective measures of water wall in CFB boiler

[J]. China Plant Eng., 2019, (7): 81

[本文引用: 1]

李 辉.

循环流化床锅炉水冷壁的磨损原因分析及防磨措施

[J]. 中国设备工程, 2019, (7): 81

[本文引用: 1]

Mills D.

Erosive wear

[A]. Pneumatic Conveying Design Guide [M]. 3rd ed. Amsterdam: Elsevier, 2016: 617

[本文引用: 2]

Pronobis M, Wojnar W.

The impact of biomass co-combustion on the erosion of boiler convection surfaces

[J]. Energy Convers. Manage., 2013, 74: 462

DOI      URL    

Zhao X P, Sun J R.

An experimental study on the hot flying-ash erosion of steel used in boilers of power station

[J]. Proc. CSEE, 2005, 25(21): 117

[本文引用: 1]

赵宪萍, 孙坚荣.

电厂锅炉常用钢材热态飞灰磨损性能的试验研究

[J]. 中国电机工程学报, 2005, 25(21): 117

[本文引用: 1]

Meuronen V. Ash Particle Erosion on Steam Boiler Convective Section [M]. Lappeenranta: Lappeenranta University of Technology, 1997

[本文引用: 3]

Li J B, Wang P L, Cheng L.

Characteristics of ash deposition on a novel heat transfer surface

[J]. CIESC J., 2016, 67: 3598

DOI      [本文引用: 1]

<p>A novel structure with rhombus heat transfer surface used in the waste heat boiler was researched. Numerical simulation and experimental investigation were conducted to obtain characteristics of ash distribution and deposition. A deposition model was built to predict the stick, rebound and shedding of an ash particle, and the simulation results were compared with traditional staggered and aligned tubes arrangement. The results indicated that the rhombic surface showed obvious advantages in the heat transfer and ash deposition. The deposits were mainly concentrated on the upper left side. Particle deposited on windward side due to the inertial impaction and on leeward side because of pipe wall vortex. The deposition amount of windward side was higher than that of the leeward side. The deposition increased firstly and then decreased with the increase of the particle size under the same velocity. When the gas velocity was 3 m&middot;s<sup>-1</sup> and particle diameter was 5 &mu;m, the ash particle deposition rate was up to 9.49%. For particles of the same size, the deposition rate decreased gradually with increasing velocity.</p>

李金波, 王沛丽, 程 林.

一种新型受热面飞灰颗粒的沉积特性

[J]. 化工学报, 2016, 67: 3598

DOI      [本文引用: 1]

以一种余热锅炉中新型的受热面为研究对象,采用实验研究和数值模拟的方法研究其飞灰沉积特性。建立了菱形受热面飞灰颗粒的沉积模型,对飞灰颗粒的反弹、黏附及脱落过程进行预测,并与叉排管束和顺排管束的含灰烟气流的速度场、温度场和飞灰颗粒沉积率进行比较。结果表明,菱形受热面在换热和飞灰沉积方面优势明显。沉积主要集中于受热面左上部,颗粒由于惯性碰撞在迎风侧沉积。相同速度下,随颗粒粒径增加沉积率先增大后减小,在3 m&middot;s<sup>-1</sup>的烟气流速下颗粒直径为5 &mu;m时飞灰颗粒沉积率最高,为9.49%。保持粒径不变,随速度增大沉积率逐渐降低。

Alam T, Islam M A, Farhat Z N.

Slurry erosion of pipeline steel: effect of velocity and microstructure

[J]. J. Tribol., 2016, 138: 021604

[本文引用: 1]

Xue L Y.

Discussion about abrasion of convective heating surface in coal fired boiler

[J]. Boiler Technol., 2017, 48(3): 62

[本文引用: 2]

薛凌云.

燃煤锅炉中对流受热面的磨损问题探讨

[J]. 锅炉技术, 2017, 48(3): 62

[本文引用: 2]

Dong G, Zhang J Y.

Developments of research on the solid particle erosion of materials

[J]. J. Mater. Sci. Eng., 2003, 21: 307

[本文引用: 1]

董 刚, 张九渊.

固体粒子冲蚀磨损研究进展

[J]. 材料科学与工程学报, 2003, 21: 307

[本文引用: 1]

Nguyen Q B, Nguyen V B, Lim C Y H, et al.

Effect of impact angle and testing time on erosion of stainless steel at higher velocities

[J]. Wear, 2014, 321: 87

DOI      URL     [本文引用: 1]

Wang Y, He Q, Yu F, et al.

Numerical simulation of the erosion characteristics and structure optimization of elbows connection for gas-solid flow

[J]. Proc. CSEE, 2018, 38: 832

[本文引用: 1]

王 宇, 何 琪, 于 飞 .

组合弯头内气固两相流动磨损特性的数值模拟与结构优化

[J]. 中国电机工程学报, 2018, 38: 832

[本文引用: 1]

Parslow G I, Stephenson D J, Strutt J E, et al.

Paint layer erosion resistance behaviour for use in a multilayer paint erosion indication technique

[J]. Wear, 1997, 212: 103

DOI      URL     [本文引用: 1]

Arabnejad H, Mansouri A, Shirazi S A, et al.

Development of mechanistic erosion equation for solid particles

[J]. Wear, 2015, 332/333: 1044

[本文引用: 1]

Meuronen V.

Erosion durability of steels in steam boiler heat exchanger tubes

[J]. Wear, 2000, 240: 164

DOI      URL     [本文引用: 3]

Islam M A, Alam T, Farhat Z N, et al.

Effect of microstructure on the erosion behavior of carbon steel

[J]. Wear, 2015, 332-333: 1080

DOI      URL     [本文引用: 1]

Okonkwo P C, Mohamed A M A, Ahmed E.

Influence of particle velocities and impact angles on the erosion mechanisms of AISI 1018 steel

[J]. Adv. Mater. Lett., 2015, 6: 653

DOI      URL     [本文引用: 1]

Lindgren M, Perolainen J.

Slurry pot investigation of the influence of erodent characteristics on the erosion resistance of austenitic and duplex stainless steel grades

[J]. Wear, 2014, 319: 38

DOI      URL     [本文引用: 1]

Tylczak J H.

Erosion-corrosion of iron and nickel alloys at elevated temperature in a combustion gas environment

[J]. Wear, 2013, 302: 1633

DOI      URL     [本文引用: 1]

Huttunen-Saarivirta E, Antonov M, Veinthal R, et al.

Influence of particle impact conditions and temperature on erosion-oxidation of steels at elevated temperatures

[J]. Wear, 2011, 272: 159

DOI      URL     [本文引用: 1]

Singh J, Nath S K.

Improved slurry erosion resistance of martensitic 13wt.% Cr-4wt.% Ni steel subjected to cyclic heat treatment

[J]. Wear, 2020, 460/461: 203476

[本文引用: 1]

Gadhikar A A, Sharma A, Goel D B, et al.

Effect of carbides on erosion resistance of 23-8-N steel

[J]. Bull. Mater. Sci., 2014, 37: 315

DOI      URL     [本文引用: 1]

Kumar A, Sharma A, Goel S K.

Effect of heat treatment on microstructure, mechanical properties and erosion resistance of cast 23-8-N nitronic steel

[J]. Mater. Sci. Eng., 2015, 637A: 56

[本文引用: 1]

Ma X C.

Abrasion mechanism analysis and protection research on circulating fluidized bed boilers

[J]. Technol. Innovat. Prod., 2022, (4): 142

[本文引用: 1]

马喜成.

循环流化床锅炉磨损机理分析及防磨研究

[J]. 科技创新与生产力, 2022, (4): 142

[本文引用: 1]

Li H Y, Liu H, Zhang X J, et al.

Summary of improving erosion and corrosion resistance of heat exchange surfaces in boilers through HVOF technology

[J]. CIESC J., 2021, 72: 1833

DOI      [本文引用: 1]

Thermal power generation is main power generation method in China. When burning solid fuels such as coal and biomass, it will face erosion and wear or corrosion problems on the heating exchange surface of the boiler, causing pipeline failure and shutdown of the boiler, seriously affecting the safe and stable operation of the power plant. As one kind of thermal spraying technology, high velocity oxy-fuel (HVOF) spraying can alleviate the erosion and corrosion problem by adding protective coatings on the surface of the heat exchange tubes. Coatings prepared by HVOF spraying have good applicability under erosion and corrosion environment in boilers since their excellent characteristics such as high bonding strength and low porosity. The development of HVOF technology, the spraying process and coating characteristics were reviewed in this article, and common anti-erosion/anti-corrosion coatings and environmental factors needed to be considered when applying different coating materials were summarized. According to various literatures, the adopted anti-erosion HVOF coatings are mainly NiCr alloys, stellite alloys, WC-Co, Cr3C2-NiCr and other metal or cermet coatings. Comprehensive consideration of fly ash composition, erosion angle, and erosion temperature is needed when selecting coating materials in boilers. The adopted anti-corrosion coating materials are mainly Ni-based or Fe-based alloys, of which Ni-based materials are particularly dominant. The tube wall temperature and corrosive substances are the main environmental factors affecting the application of anti-corrosion coatings. Different from various options in literatures, coating materials used in actual boilers are quite simple, mainly Cr3C2-NiCr and Inconel 625 for erosion and corrosion protection respectively. Moreover, HVOF is not a common coating preparation technology mainly due to its high cost. To bridge the gap between researches and practical applications of HVOF coatings, spraying process optimization, progress in coating materials and experimental method innovation is prospected in this article.

李海燕, 刘 欢, 张秀菊 .

HVOF喷涂用于提高锅炉换热面耐磨损耐腐蚀性能综述

[J]. 化工学报, 2021, 72: 1833

DOI      [本文引用: 1]

火力发电是我国的主要发电方式,在燃用煤、生物质等固体燃料时会面临锅炉换热面的冲蚀磨损或腐蚀问题,导致管道失效停炉,严重影响了电厂的安全稳定运行。超声速火焰(HVOF)喷涂作为热喷涂工艺的一种,可以通过在换热管道表面添加防护涂层来缓解磨损或腐蚀问题。因其制备的涂层具有与基体结合强度高、孔隙率低等优异的特点,在锅炉换热面的耐磨损耐腐蚀方面研究及应用前景广阔。综述了HVOF喷涂的发展、工艺流程以及涂层的特性,并重点总结了用于提升锅炉换热面耐磨损耐腐蚀性能的HVOF涂层材料,以及不同材料应用时需要考虑的环境因素。最后从工艺优化、材料进步以及实验方法创新三个方面对HVOF工艺在锅炉换热面上的应用做出展望。

Zhang X J, Liu H, Chen T Z, et al.

Application of coatings to alleviate fireside corrosion on heat transfer tubes during the combustion of low-grade solid fuels: a review

[J]. Energy Fuels, 2020, 34: 11752

DOI      URL     [本文引用: 1]

Kumar M, Singh H, Singh N, et al.

Erosion-corrosion behavior of cold-spray nanostructured Ni-20Cr coatings in actual boiler environment

[J]. Wear, 2015, 332/333: 1035

[本文引用: 2]

Sadeghi E, Joshi S.

Chlorine-induced high-temperature corrosion and erosion-corrosion of HVAF and HVOF-sprayed amorphous Fe-based coatings

[J]. Surf. Coat. Technol., 2019, 371: 20

DOI      URL     [本文引用: 1]

Ren Y, Zhao H J, Zhou H, et al.

Effect of sand size and temperature on synergistic effect of erosion-corrosion for 20 steel in simulated oilfield produced fluid with sand

[J]. J. Chin. Soc. Corros. Prot., 2021, 41: 508

[本文引用: 1]

任 莹, 赵会军, 周 昊 .

粒径和温度对20号钢冲刷腐蚀协同作用的影响

[J]. 中国腐蚀与防护学报, 2021, 41: 508

[本文引用: 1]

Chen S P, Qin F, Sun X J, et al.

Comparative study on waste heat boiler steam parameter of garbage burning power plant

[J]. Heilongjiang Electric Power, 2010, 32: 204

[本文引用: 3]

陈善平, 秦 峰, 孙向军 .

垃圾焚烧发电厂余热锅炉蒸汽参数的比较研究

[J]. 黑龙江电力, 2010, 32: 204

[本文引用: 3]

Sankar G, Kumar D S, Balasubramanian K R.

Computational modeling of pulverized coal fired boilers-a review on the current position

[J]. Fuel, 2019, 236: 643

DOI      [本文引用: 1]

Computational modeling of pulverized coal fired boilers has made considerable advances in the past 5 decades. Modeling the furnace of a coal-fired boiler is a complex task. Even though bulk of the heat transfer to the furnace water walls is by radiation, it is complicated by the presence of ash and other tri-atomic gases that participate in radiation. It is also necessary to accurately capture the kinetics of the devolatilization, char combustion and volatile combustion processes. The phenomenon of fluid flow is equally important since considerable amount of turbulence is involved. Any model developed for the prediction of critical performance parameters like furnace outlet gas temperature and pollutant emission levels will need to capture this multifarious nature of combustion inside a boiler furnace. While computationally expensive CFD codes are available in plenty, researchers have also developed simpler but effective reactor network models. This review explains the current research position in the computational modeling of pulverized coal fired boilers from the following perspectives i) Coal combustion modeling ii) Radiation modeling iii) Overall furnace model development.

Yue G X, Cai R X, Lu J F, et al.

From a CFB reactor to a CFB boiler-The review of R&D progress of CFB coal combustion technology in China

[J]. Powder Technol., 2017, 316: 18

DOI      URL     [本文引用: 1]

Wang H B, Liu H Y.

Analysis on the boiler type and grate of biomass direct combustion power station

[J]. Sci. Technol. Inform., 2019, 17(34): 53

[本文引用: 1]

王海波, 刘海勇.

浅谈生物质能直燃发电站锅炉炉型和炉排

[J]. 科技资讯, 2019, 17(34): 53

[本文引用: 1]

Liu Z Q, Liu Z H, Li X L.

Status and prospect of the application of municipal solid waste incineration in China

[J]. Appl. Therm. Eng., 2006, 26: 1193

DOI      URL     [本文引用: 1]

Liu R M.

CFD simulation study on combustion of municipal solid waste in the large-scale grate incinerator

[D]. Hangzhou: Zhejiang University, 2017

[本文引用: 1]

刘瑞媚.

大型炉排炉垃圾焚烧过程的CFD模拟研究

[D]. 杭州: 浙江大学, 2017

[本文引用: 1]

Chen J J.

Research on the structure and property of the new kind heat-resistant grate

[D]. Guangzhou: South China University of Technology, 2012

[本文引用: 1]

陈家坚.

新型耐热炉排材质的组织和性能研究

[D]. 广州: 华南理工大学, 2012

[本文引用: 1]

Arjunwadkar A, Basu P, Acharya B.

A review of some operation and maintenance issues of CFBC boilers

[J]. Appl. Therm. Eng., 2016, 102: 672

DOI      URL     [本文引用: 1]

Liu S L.

Research on operation adjustment and wear treatment of circulating fluidized bed boiler

[J]. Mech. Electr. Inform., 2019, (32): 65

[本文引用: 1]

柳少龙.

循环流化床锅炉运行调整及磨损处理研究

[J]. 机电信息, 2019, (32): 65

[本文引用: 1]

Cheng L M, Xu L J, Xia Y F, et al.

Key issues and solutions in development of the 600 MW CFB boiler

[J]. Proc. CSEE, 2015, 35: 5520

[本文引用: 1]

程乐鸣, 许霖杰, 夏云飞 .

600MW超临界循环流化床锅炉关键问题研究

[J]. 中国电机工程学报, 2015, 35: 5520

[本文引用: 1]

Liu X Y, Wang Y X, Xia H W.

Analysis of CFB boiler economizer wear and protective measures

[J]. Light Ind. Sci. Technol., 2012, 28(7): 60

[本文引用: 1]

刘贤英, 王义厢, 夏红伟.

CFB锅炉省煤器磨损分析及防护措施

[J]. 轻工科技, 2012, 28(7): 60

[本文引用: 1]

Gong L H, Gong X L, Zheng H, et al.

Application exploration of refractories for a 600MW supercritical CFB boiler

[J]. Refractories, 2020, 54: 148

[本文引用: 1]

龚莲辉, 龚兴利, 郑 华 .

600MW超临界CFB锅炉耐火材料应用探索

[J]. 耐火材料, 2020, 54: 148

[本文引用: 1]

Roy J, Chandra S, Maitra S.

Nanotechnology in castable refractory

[J]. Ceram. Int., 2019, 45: 19

DOI      [本文引用: 1]

In recent times nanotechnology has drawn significant attention in the field of refractory research. Different nano powders and colloidal suspensions have been utilized to improve the properties of refractory castables. Various studies have been carried out worldwide with nano scaled binders; such as, hydratable alumina (HA), colloidal alumina (CA), colloidal silica (CS), micro silica, etc.; to improve the thermo mechanical properties of refractory materials. Nano scaled additives are also being applied to reduce the energy consumption and to improve the densification process at lower temperatures. In this paper, the contributions of nanotechnology in selection of raw materials, the binders and choice of additives to improve the quality of refractory materials, and the future of nanotechnology in refractory research are reviewed.

Liu J.

Research on fatigue behavior and vibration damage of calcium Hexaluminate castable for catalytic gasifier

[D]. Wuhan: Wuhan University of Science and Technology, 2019

刘 杰.

催化气化炉衬用六铝酸钙质浇注料疲劳行为及振动损毁研究

[D]. 武汉: 武汉科技大学, 2019

Peng X G, Sun J L, Li F S, et al.

Effect of impacting parameter on abrasion resistance of alumina based refractories at room temperature

[J]. Refractories, 2008, 42: 178

[本文引用: 1]

彭西高, 孙加林, 李福燊 .

冲击参数对氧化铝基耐火材料常温耐磨性的影响

[J]. 耐火材料, 2008, 42: 178

[本文引用: 1]

Szymański K, Hernas A, Moskal G, et al.

Thermally sprayed coatings resistant to erosion and corrosion for power plant boilers-a review

[J]. Surf. Coat. Technol., 2015, 268: 153

DOI      URL     [本文引用: 3]

Bala N, Singh H, Prakash S.

Performance of cold sprayed Ni based coatings in actual boiler environment

[J]. Surf. Coat. Technol., 2017, 318: 50

DOI      URL     [本文引用: 1]

Wang B Q.

Erosion-corrosion of thermal sprayed coatings in FBC boilers

[J]. Wear, 1996, 199: 24

DOI      URL     [本文引用: 1]

Matikainen V, Koivuluoto H, Vuoristo P.

A study of Cr3C2-based HVOF- and HVAF-sprayed coatings: Abrasion, dry particle erosion and cavitation erosion resistance

[J]. Wear, 2020, 446/447: 203188

[本文引用: 3]

Murthy J K N, Venkataraman B.

Abrasive wear behaviour of WC-CoCr and Cr3C2-20(NiCr) deposited by HVOF and detonation spray processes

[J]. Surf. Coat. Technol., 2006, 200: 2642

DOI      URL    

Thakur L, Arora N, Jayaganthan R, et al.

An investigation on erosion behavior of HVOF sprayed WC-CoCr coatings

[J]. Appl. Surf. Sci., 2011, 258: 1225

DOI      URL    

Karaoglanli A C, Oge M, Doleker K M, et al.

Comparison of tribological properties of HVOF sprayed coatings with different composition

[J]. Surf. Coat. Technol., 2017, 318: 299

DOI      URL    

Zhang X Y, Li F Y, Li Y L, et al.

Comparison on multi-angle erosion behavior and mechanism of Cr3C2-NiCr coatings sprayed by SPS and HVOF

[J]. Surf. Coat. Technol., 2020, 403: 126366

DOI      URL    

Espallargas N, Berget J, Guilemany J M, et al.

Cr3C2-NiCr and WC-Ni thermal spray coatings as alternatives to hard chromium for erosion-corrosion resistance

[J]. Surf. Coat. Technol., 2008, 202: 1405

DOI      URL    

Matthews S, James B, Hyland M.

Erosion of oxide scales formed on Cr3C2-NiCr thermal spray coatings

[J]. Corros. Sci., 2008, 50: 3087

DOI      URL    

Matikainen V, Peregrina S R, Ojala N, et al.

Erosion wear performance of WC-10Co4Cr and Cr3C2-25NiCr coatings sprayed with high-velocity thermal spray processes

[J]. Surf. Coat. Technol., 2019, 370: 196

DOI      URL    

Bansal A, Goyal D K, Singh P, et al.

Erosive wear behaviour of HVOF-sprayed Ni-20Cr2O3 coating on pipeline materials

[J]. Int. J. Refract. Met. Hard Mater., 2020, 92: 105332

DOI      URL    

Bhosale D G, Prabhu T R, Rathod W S, et al.

High temperature solid particle erosion behaviour of SS 316L and thermal sprayed WC-Cr3C2-Ni coatings

[J]. Wear, 2020, 462/463: 203520

Li S B, Xu L K, Shen C J, et al.

Performance of erosion-resistant ceramic coatings deposited by plasma spraying

[J]. J. Chin. Soc. Corros. Prot., 2011, 31: 196

李守彪, 许立坤, 沈承金 .

等离子喷涂耐冲蚀陶瓷涂层的性能研究

[J]. 中国腐蚀与防护学报, 2011, 31: 196

采用等离子喷涂工艺在高锰铝青铜基体上制备了 Al<sub>2</sub>O<sub>3</sub>-13%TiO<sub>2</sub>和 Cr<sub>2</sub>O<sub>3</sub>&bull;5SiO<sub>2</sub>&bull;3TiO<sub>2</sub>两种耐冲2</sub>O<sub>3</sub>&bull;5SiO<sub>2</sub>&bull;3TiO<sub>2</sub> 涂层组织致密,无明显层状结构;陶瓷涂层在3.5%NaCl溶液中的电化学腐蚀行为主要取决于涂层的孔隙率;Cr<sub>2</sub>O<sub>3</sub>&bull; 5SiO<sub>2</sub>&bull;3TiO<sub>2</sub>涂层试样在动态海水中的冲刷腐蚀失重约为基体试样的1/9,表现出较Al<sub>2</sub>O<sub>3</sub>-13%TiO2涂层更优异的耐海水冲刷腐蚀性能。

Daniel J, Grossman J, Houdková Š, et al.

Impact wear of the protective Cr3C2-based HVOF-sprayed coatings

[J]. Materials, 2020, 13: 2132

DOI      URL    

High velocity oxygen-fuel (HVOF) prepared CrC-based hardmetal coatings are generally known for their superior wear, corrosion, and oxidation resistance. These properties make this coating attractive for application in industry. However, under some loading conditions and in aggressive environments, the most commonly used NiCr matrix is not sufficient. The study is focused on the evaluation of dynamic impact wear of the HVOF-sprayed Cr3C2-25%NiCr and Cr3C2-50%NiCrMoNb coatings. Both coatings were tested by an impact tester with a wide range of impact loads. The Wohler-like dependence was determined for both coatings’ materials. It was shown that, due to the different microstructure and higher amount of tough matrix, the impact lifetime of the Cr3C2-50%NiCrMoNb coating was higher than the lifetime of the Cr3C2-25%NiCr coating. Differences in the behavior of the coatings were the most pronounced at high impact loads.

Janka L, Berger L M, Norpoth J, et al.

Improving the high temperature abrasion resistance of thermally sprayed Cr3C2-NiCr coatings by WC addition

[J]. Surf. Coat. Technol., 2018, 337: 296

DOI      URL    

Ding X, Cheng X D, Shi J, et al.

Influence of WC size and HVOF process on erosion wear performance of WC-10Co4Cr coatings

[J]. Int. J. Adv. Manuf. Technol., 2018, 96: 1615

DOI      URL    

Bhosale D G, Prabhu T R, Rathod W S.

Sliding and erosion wear behaviour of thermal sprayed WC-Cr3C2-Ni coatings

[J]. Surf. Coat. Technol., 2020, 400: 126192

DOI      URL    

Matikainen V, Bolelli G, Koivuluoto H, et al.

Sliding wear behaviour of HVOF and HVAF sprayed Cr3C2-based coatings

[J]. Wear, 2017, 388/389: 57

Sidhu H S, Sidhu B S, Prakash S.

Solid particle erosion of HVOF sprayed NiCr and Stellite-6 coatings

[J]. Surf. Coat. Technol., 2007, 202: 232

DOI      URL    

Tailor S, Vashishtha N, Modi A, et al.

Structural and mechanical properties of HVOF sprayed Cr3C2-25%NiCr coating and subsequent erosion wear resistance

[J]. Mater. Res. Express, 2019, 6: 076435

Ksiazek M, Boron L, Tchorz A.

Study on the microstructure, mechanical properties, and erosive wear behavior of HVOF sprayed Al2O3-15wt.%TiO2 coating with NiAl interlayer on Al-Si cast alloy

[J]. Materials, 2020, 13: 4122

DOI      URL    

Alumina oxide coatings are widely used in many industrial applications to improve corrosion protection, wear and erosion resistances, and thermal insulation of metallic surfaces. The paper presents study of the microstructure, mechanical, and wear properties of HVOF (high velocity oxy-fuel process) sprayed of Al2O3-15 wt.% TiO2 coating with the NiAl interlayer on the surface of Al-Si alloy castings. The microstructure of Al2O3-15 wt.% TiO2/NiAl coating was characterized by light microscopy, X-ray diffraction (XRD), scanning electron microscope (SEM), and energy dispersive X-ray spectroscopy (EDS). The analysis of the microstructure showed the formation of coating with low porosity, compact structure, good adhesion to the substrate with typical lamellar structure composed of a solid phase consisting of compounds included in the coating material and their phase variations. For analysis of the adhesion of coatings to the substrate, the scratch test was applied. An assessment of the erosive wear resistance of coatings was also carried out, confirming the significant impact of the interlayer as well as the microstructure and phase composition of the oxide coating on the wear resistance of the tested coating system. Moreover, the results were discussed in relation to the bending strength test, including cracks and delamination in the system of the Al2O3-15 wt.% TiO2/NiAl/Al-Si alloy as microhardness and erosion resistance of the coating. It was found that the introduction of the NiAl metallic interlayer significantly increased resistance to cracking and wear behavior in the studied system.

Feng C Y, Xie Q, Yang L, et al.

The resistance of TiN coatings to solid particle erosion using different deposition methods

[J]. J. Fail. Anal. Prev., 2020, 20: 1615

DOI     

Wood R J K.

Tribology of thermal sprayed WC-Co coatings

[J]. Int. J. Refract. Met. Hard Mater., 2010, 28: 82

DOI      URL    

Lu S P, Kwon O Y, Guo Y.

Wear behavior of brazed WC/NiCrBSi(Co) composite coatings

[J]. Wear, 2003, 254: 421

DOI      URL    

Panwar V, Grover N K, Chawla V.

Wear behaviour of plasma sprayed WC-12%CΟ and Al2O3-13%TiO2 coatings on ASTM A36 steel used for I.D. fans in coal fired power plants

[J]. Mater. Res. Express, 2019, 6: 1065b6

[本文引用: 3]

Wang Y X, Wang Y X, Chen C L, et al.

Preparation of Zr/[Al(Si)N/CrN] coatings of stratified structure and their corrosion-wear performance in artificial seawater

[J]. J. Chin. Soc. Corros. Prot., 2022, 42: 345

[本文引用: 1]

王永欣, 汪艺璇, 陈春林 .

具有“层中层”结构的Zr/[Al(Si)N/CrN]涂层制备及其在海水环境中腐蚀磨损特性

[J]. 中国腐蚀与防护学报, 2022, 42: 345

DOI      [本文引用: 1]

采用多弧离子镀技术制备了不同调制比的交替多元多层Zr/CrAlSiN复合涂层,通过交替沉积与间歇性接近不同靶材相结合的方法获得了Zr/[Al(Si)N/CrN] “层中层”结构,并对复合涂层的力学性能、无腐蚀时的摩擦磨损性能、无摩擦磨损时的腐蚀性能及海水环境中的腐蚀磨损性能进行了研究。结果表明:该结构设计对涂层生长缺陷具有明显的抑制和修复作用;随着CrAlSiN层厚度比例增大,调制比为1∶6时Zr/[Al(Si)N/CrN]涂层的综合力学性能最佳;由于CrAlSiN层具有多层Al(Si)N/CrN结构,增加CrAlSiN层厚度比例增加了复合涂层横向界面,从而提升了涂层腐蚀性环境中的阻隔作用,因此CrAlSiN层厚度比例的增加既可以提升无摩擦磨损时涂层的耐腐蚀性能,又可提升涂层摩擦开动后的耐腐蚀性能,并进一步降低涂层腐蚀和磨损的相互促进作用;当调制比为1∶6和1∶8时,Zr/[Al(Si)N/CrN]涂层在海水环境中展现出了较好的抗腐蚀磨损性能。

Lei Y H, Liu N X, Zhang Y L, et al.

Preparation, corrosion- and wear-resistance of polymethyl methacrylate coating modified with particles of basalt/cerium oxide composite

[J]. J. Chin. Soc. Corros. Prot., 2022, 42: 597

[本文引用: 1]

类延华, 刘宁轩, 张玉良 .

玄武岩/氧化铈改性PMMA涂层的防腐及耐磨性能的研究

[J]. 中国腐蚀与防护学报, 2022, 42: 597

DOI      [本文引用: 1]

在X70钢上构建了含有玄武岩/氧化铈粒子的聚甲基丙烯酸甲酯涂层 (PMMA),并研究了添加量对涂层防腐耐磨性能的影响。利用X射线衍射、扫描电镜/能谱仪、接触角测试仪分析了未添加和添加玄武岩/氧化铈粒子涂层的相与元素组成、表面形貌及亲疏水性,同时对改性后涂层进行了电化学阻抗谱、极化曲线、摩擦磨损测试。结果表明,玄武岩/氧化铈复合材料改性涂层展现出更明显的疏水性以及更为优异的耐蚀性和耐摩擦性能。

/