Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (4): 896-902     CSTR: 32134.14.1005.4537.2022.262      DOI: 10.11902/1005.4537.2022.262
  研究报告 本期目录 | 过刊浏览 |
5,5-二甲基乙内酰脲配位体系中银的电沉积行为研究
陈惠敏1, 王帅星1(), 张骐2, 詹中伟2, 杜楠1
1.南昌航空大学材料科学与工程学院 南昌 330063
2.中国航发北京航空材料研究院 航空材料先进腐蚀与防护航空科技重点实验室 北京 100095
Electrodeposition Behavior of Silver in an Alkaline DMH Plating Bath with 5,5-Dimethylhydantoin as Complexing Agent
CHEN Huimin1, WANG Shuaixing1(), ZHANG Qi2, ZHAN Zhongwei2, DU Nan1
1.School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
2.Aviation Key Laboratory of Science and Technology on Advanced Corrosion and Protection for Aviation Material, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(2337 KB)   HTML
摘要: 

选用5,5-二甲基乙内酰脲 (DMH) 作为配位剂进行电镀银,通过计时电位曲线、阴极极化曲线、电化学阻抗谱等分析了碱性DMH镀银体系中银的阴极还原过程,采用循环伏安曲线、计时电流法研究了银的成核/生长机制,综合探讨了碱性DMH镀银体系中银的电沉积行为。结果表明,碱性DMH镀银体系中,银配离子的主要存在形式为[Ag(C5H7N2O2)2]-,并且通过前置转化反应生成[Ag(C5H7N2O2)]在阴极上直接放电。该体系中银的电沉积过程是由扩散控制的不可逆电极反应,且经历了晶核形成过程,并遵循三维瞬时成核生长机理。

关键词 5,5-二甲基乙内酰脲电沉积形核机理    
Abstract

Electroplating silver is carried out in an alkaline DMH plating bath with 5,5-dimethylhydantoin (DMH) as complexing agent. The cathodic reduction process of silver from alkaline DMH plating bath is analyzed by chronopotentiometry, cathodic polarization curve and electrochemical impedance spectroscopy (EIS), meanwhile, the nucleation/growth mechanism of silver are also studied by cyclic voltammetry and chronoamperometry, finally the electrodeposition behavior of silver in alkaline DMH complex system is comprehensively discussed. The results show that the main form of silver complex ions in the alkaline DMH plating system is [Ag(C5H7N2O2)2]-, which is converted to [Ag(C5H7N2O2)] through a preceding reaction and discharged directly on the cathode. The electrodeposition process of silver in this system is an irreversible electrode reaction controlled by diffusion step. Besides, the electrodeposition of silver undergoes a nucleation process and follows a three-dimensional transient nucleation mechanism.

Key words5,5-dimethylhydantoin    silver    electrodeposition    nucleation mechanism
收稿日期: 2022-08-27      32134.14.1005.4537.2022.262
ZTFLH:  TG179  
基金资助:江西省主要学科学术和技术带头人培养计划(20204BCJL23033);中国航空发动机集团产学研合作项目(HFZL2020CXY026);江西省研究生创新基金(YC2021-S654)
通讯作者: 王帅星,E-mail: wsxxpg@126.com,研究方向为航空材料表面处理及电化学加工   
Corresponding author: WANG Shuaixing, E-mail: wsxxpg@126.com   
作者简介: 陈惠敏,女,1998年生,硕士生

引用本文:

陈惠敏, 王帅星, 张骐, 詹中伟, 杜楠. 5,5-二甲基乙内酰脲配位体系中银的电沉积行为研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 896-902.
CHEN Huimin, WANG Shuaixing, ZHANG Qi, ZHAN Zhongwei, DU Nan. Electrodeposition Behavior of Silver in an Alkaline DMH Plating Bath with 5,5-Dimethylhydantoin as Complexing Agent. Journal of Chinese Society for Corrosion and protection, 2023, 43(4): 896-902.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.262      或      https://www.jcscp.org/CN/Y2023/V43/I4/896

图1  平衡电势Ee与lnc (C5H7N2O2-)的关系曲线
图2  碱性DMH体系中银电沉积的计时电位曲线
图3  Iτ1/2~i关系曲线
图4  不同DMH含量下镀液的阴极极化曲线
图5  -0.50 V电位条件下lnI与ln[c(C5H7N2O )]的关系曲线
图6  玻碳电极上Ag沉积的循环伏安曲线
ν / mV·s-1ipc / mAEpc / V
501.278-1.052
300.852-1.033
200.710-0.989
100.568-0.968
表1  不同扫描速度下的循环伏安曲线数据
图7  不同沉积电位下银沉积过程的电化学阻抗谱
图8  碱性DMH体系中银电沉积的电流密度-时间暂态曲线
图9  电流-时间暂态曲线的无因次曲线图
1 Zhou Y L, Huo Y J. The comparison of electrochemical migration mechanism between electroless silver plating and silver electroplating [J]. J. Mater. Sci. Mater. Electron., 2016, 27: 931
doi: 10.1007/s10854-015-3836-z
2 Ren F Z, Yin L T, Wang S S, et al. Cyanide-free silver electroplating process in thiosulfate bath and microstructure analysis of Ag coatings [J]. Trans. Nonferrous. Met. Soc. China, 2013, 23: 3822
doi: 10.1016/S1003-6326(13)62935-0
3 Satpathy B, Jena S, Das S, et al. A comparative study of electrodeposition routes for obtaining silver coatings from a novel and environment-friendly thiosulphate-based cyanide-free electroplating bath [J]. Surf. Coat. Technol., 2021, 424: 127680
doi: 10.1016/j.surfcoat.2021.127680
4 Hubin A, Vereecken J. Electrochemical reduction of silver thiosulphate complexes Part II Mechanism and kinetics [J]. J. Appl. Electrochem., 1994, 24: 396
5 Wei L A. Cleaner production technology of non-cyanide silver plating [J]. Electroplat. Finish., 2004, 23(5) : 27
5 魏立安. 无氰镀银清洁生产技术 [J]. 电镀与涂饰, 2004, 23(5): 27
6 Liu A M, Ren X F, Zhang J, et al. A composite additive used for an excellent new cyanide-free silver plating bath [J]. New J. Chem., 2015, 39: 2409
doi: 10.1039/C4NJ02060J
7 Bai Z X, Huang S R. Non-cyanide bright silver plating [J]. Electroplat. Pollut. Control, 2001, 21(1): 21
7 白祯遐, 黄锁让. 无氰光亮镀银 [J]. 电镀与环保, 2001, 21(1): 21
8 Gan H Y, Liu G M, Huang C H, et al. The influence of pH and current density for nano-silver electrodeposited in cyanide-free succinimide bath [J]. Surf. Interf., 2021, 27: 101487
9 Bi C, Liu D F, Zeng Q Y. Research on additives for succinimide cyanide-free silver electroplating [J]. Electroplat. Finish., 2016, 35(3): 131
9 毕 晨, 刘定富, 曾庆雨. 丁二酰亚胺体系无氰镀银添加剂的研究 [J]. 电镀与涂饰, 2016, 35(3): 131
10 Gan H Y, Liu G M, Huang C H, et al. Effect of auxiliary complexant on properties of silver coatings electroplated from cyanide-free succinimide bath [J]. Electroplat. Finish., 2020, 39: 1457
10 甘鸿禹, 刘光明, 黄超华 等. 辅助配位剂对丁二酰亚胺无氰镀银层性能的影响 [J]. 电镀与涂饰, 2020, 39: 1457
11 Liu A M, Ren X F, Wang B, et al. Complexing agent study via computational chemistry for environmentally friendly silver electrodeposition and the application of a silver deposit [J]. RSC Adv., 2014, 4: 40930
doi: 10.1039/C4RA05869K
12 Song W X, Li T T, Ma J Y, et al. Effect of current density on silver electroplating in nicotinic acid system [J]. Electroplat. Finish., 2018, 37: 201
12 宋伟星, 李涛涛, 马进宇 等. 电流密度对烟酸体系电镀银的影响 [J]. 电镀与涂饰, 2018, 37: 201
13 Liu A M, Ren X F, Wang C, et al. DMH and NA-based cyanide-free silver electroplating bath: a promising alternative to cyanide ones in microelectronics [J]. Ionics, 2021, 27: 417
doi: 10.1007/s11581-020-03541-5
14 Hajiahmadi Z, Tavangar Z. Proposing a new complexing agent for cyanide-free silver electroplating through a comprehensive computational study of dimethyl hydantoin [J]. Mol. Simulat., 2021, 47: 619
doi: 10.1080/08927022.2021.1895436
15 Liu A M, Ren X F, Jie Z, et al. Complexing agent study for environmentally friendly silver electrodeposition (II): electrochemical behavior of silver complex [J]. RSC Adv., 2016, 6: 7348
doi: 10.1039/C5RA23766A
16 Oyaizu K, Ohtani Y, Shiozawa A, et al. Highly stable gold (III) complex with a hydantoin ligand in alkaline media [J]. Inorg. Chem., 2005, 44: 6915
doi: 10.1021/ic050515x
17 Pizzetti F, Salvietti E, Giurlani W, et al. Cyanide-free silver electrodeposition with polyethyleneimine and 5,5-dimethylhydantoin as organic additives for an environmentally friendly formulation [J]. J. Electroanal. Chem., 2022, 911: 116196
doi: 10.1016/j.jelechem.2022.116196
18 Zhu Y P, Wang W. Effects of concentration of 5,5-dimethylhydantoin as complexing agent and pH value of plating bath on electrodeposition of Silver [J]. Mater. Prot., 2015, 48(1): 1
18 朱雅平, 王 为. 银的电沉积过程与5,5-二甲基乙内酰脲配位剂浓度及pH值的关系 [J]. 材料保护, 2015, 48(1): 1
19 Lu J. Non-cyanide silver electroplating using DMH as complexing agent and investigation on electrodeposition behaviors [D]. Harbin: Harbin Institute of Technology, 2007
19 卢俊峰. 基于DMH为配位剂的无氰电镀银工艺及电沉积行为研究 [D]. 哈尔滨: 哈尔滨工业大学, 2007
20 Pavlovich G Z, Luthy R G. Complexation of metals with hydantoins [J]. Water Res., 1988, 22: 327
doi: 10.1016/S0043-1354(88)90160-1
21 Liao C F, Fang M Z, Wang X, et al. Chronoamperometry and chronopotentiometry curves of NaCl-KCl-Na2WO4 eutectic system [J]. Chin. J. Rare Met., 2016, 40: 784
21 廖春发, 房孟钊, 王 旭 等. NaCl-KCl-Na2WO4共融体系的计时电流与计时电位曲线分析 [J]. 稀有金属, 2016, 40: 784
22 Yang Y F, Gong Z Q, Li Q G. Electrochemical deposition of trivalent chromium [J]. J. Cent. South Univ. (Sci. Technol.), 2008, 39: 112
22 杨余芳, 龚竹青, 李强国. 三价铬的电化学沉积 [J]. 中南大学学报 (自然科学版), 2008, 39: 112
23 Li Y Y, Du N, Shu W F, et al. Electrodeposition behavior of zine in alkaline zincate electrolyte [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 89
23 李园园, 杜 楠, 舒伟发 等. 碱性锌酸盐体系中Zn的电沉积行为研究 [J]. 中国腐蚀与防护学报, 2014, 34: 89
doi: 10.11902/1005.4537.2013.059
24 Liu Y Q, Liu G M, Fan W X, et al. Effect of polyethylene glycol-600 on acidic Zn-Ni alloy electroplating and its corrosion resistance [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 235
24 刘永强, 刘光明, 范文学 等. 聚乙二醇-600对酸性Zn-Ni合金的电沉积行为及镀层耐蚀性影响的研究 [J]. 中国腐蚀与防护学报, 2022, 42: 235
doi: 10.11902/1005.4537.2021.084
25 Bonou L, Eyraud M, Crousier J. Nucleation and growth of copper on glassy carbon and steel [J]. J. Appl. Electrochem., 1994, 24: 906
doi: 10.1007/BF00348780
26 Cao C N, Zhang J Q. An Introduction to Electrochemical Impedance Spectroscopy [M]. Beijing: Science Press, 2002
26 曹楚南, 张鉴清. 电化学阻抗谱导论 [M]. 北京: 科学出版社, 2002
27 Peng W J, Wang Y Y. Mechanism of zinc electroplating in alkaline zincate solution [J]. J. Cent. South Univ. Technol., 2007, 14(1): 37
doi: 10.1007/s11771-007-0008-1
28 Scharifker B, Hills G. Theoretical and experimental studies of multiple nucleation [J]. Electrochim. Acta, 1983, 28: 879
doi: 10.1016/0013-4686(83)85163-9
[1] 黄志凤, 雍奇文, 房蕊, 谢治辉. AZ31镁合金表面超疏水耐腐蚀镍基复合涂层[J]. 中国腐蚀与防护学报, 2023, 43(4): 755-764.
[2] 刘永强, 刘光明, 范文学, 甘鸿禹, 唐荣茂, 师超. 聚乙二醇-600对酸性Zn-Ni合金的电沉积行为及镀层耐蚀性影响的研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 235-242.
[3] 窦建业, 屈少鹏, 轩星雨. 铈离子修饰SiO2膜层在模拟深海条件下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 258-266.
[4] 张陈扬, 刘慧丛, 韩东晓, 朱立群, 李卫平. 微米级SiC/Ni-Co-P复合镀层的制备及影响因素[J]. 中国腐蚀与防护学报, 2021, 41(5): 579-584.
[5] 包任, 周根树, 李宏伟. 恒电位脉冲电沉积高锡青铜耐蚀镀层工艺研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[6] 赵博儒, 孙志, 赵健伟, 陈智栋. 正十六硫醇分子在Ag表面的自组装动力学及其保护作用[J]. 中国腐蚀与防护学报, 2020, 40(3): 281-288.
[7] 杨寅初,傅秀清,刘琳,马文科,沈莫奇. 喷射电沉积Ni-P-BN(h)-Al2O3复合镀层的耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 57-62.
[8] 蒋斌, 曾利兰, 梁涛, 潘浩波, 乔岩欣, 张竞, 赵颖. 316L不锈钢表面超疏水微纳镍镀层定向电沉积工艺优化研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 438-446.
[9] 周琼宇,王小芬,钟庆东,王操,胡一峰. 镀液pH值对电沉积Ni-W合金镀层结构及其耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(5): 457-462.
[10] 骆立立, 费敬银, 王磊, 林西华, 王少兰. 组分调制Cu/Ni多层膜的合金化及其合金化镀层的耐蚀特性[J]. 中国腐蚀与防护学报, 2014, 34(6): 523-531.
[11] 李园园, 杜楠, 舒伟发, 王帅星, 赵晴. 碱性锌酸盐体系中Zn的电沉积行为研究[J]. 中国腐蚀与防护学报, 2014, 34(1): 89-94.
[12] 张午花, 费敬银, 骆立立, 林西华. 脉冲电沉积高速Ni工艺研究[J]. 中国腐蚀与防护学报, 2013, 33(4): 317-324.
[13] 陈叶,费敬银,王磊,万冰华. 脉冲电沉积法制备高P镍基合金镀层[J]. 中国腐蚀与防护学报, 2012, 32(6): 501-506.
[14] 万冰华,费敬银,冯光勇,张午花,王少兰. Zn-Co-TiO2纳米复合镀层的光生阴极保护特性[J]. 中国腐蚀与防护学报, 2012, 32(4): 327-332.
[15] 杨青松,李纯,王杰,杨仲年,张昭,张鉴清. 阳极电沉积制备CeO2薄膜[J]. 中国腐蚀与防护学报, 2012, 32(1): 34-38.