Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (2): 258-266    DOI: 10.11902/1005.4537.2021.062
  研究报告 本期目录 | 过刊浏览 |
铈离子修饰SiO2膜层在模拟深海条件下的腐蚀行为研究
窦建业, 屈少鹏(), 轩星雨
上海海事大学海洋科学与工程学院 上海 201306
Service Behavior of Cerium Ion Modified SiO2 Film Prepared by Different Methods in Artificial Deep Sea Environments
DOU Jianye, QU Shaopeng(), XUAN Xingyu
College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
全文: PDF(8748 KB)   HTML
摘要: 

在X80钢上分别用溶胶-凝胶法和电沉积法制备了铈离子修饰SiO2膜层,并研究了膜层在20 MPa下3.5%NaCl溶液中的腐蚀行为。利用高温高压电化学反应釜对试样的开路电位、电化学阻抗、极化曲线进行了测试,利用扫描电镜、能谱仪、X射线衍射仪、X射线光电子能谱仪以及接触角测试仪对试样腐蚀形貌、腐蚀产物相以及接触角进行了分析。结果显示,两种方法制备的膜层的抗腐蚀性能在深海均有下降,且电沉积膜层下降尤为显著。在20 MPa去离子水中浸泡后的膜层均未出现明显裂纹;在20 MPa盐水中浸泡后,电沉积膜层出现些许开裂,而溶胶-凝胶膜层仍较为完好;在20 MPa盐水中恒电位极化腐蚀后,电沉积膜层出现明显龟裂和脱落,而溶胶-凝胶膜层仅出现开裂。两种膜层腐蚀之前均表现亲水性,而腐蚀后接触角明显增大,呈现出疏水性。

关键词 膜层溶胶凝胶电沉积深海腐蚀    
Abstract

Two cerium ion modified SiO2 films were prepared on X80 steel by sol-gel method and electrodeposition method respectively, and the corrosion behavior of the two films in 20 MPa, 3.5%NaCl solution was studied. The corrosion behavior of the coated steel was assessed via a high-temperature and high-pressure electrochemical reactor with open circuit potential measurement, polarization curve measurement and electrochemical impedance spectroscopy. Before and after corrosion test, the coated steels were characterized by means of scanning electron microscope, energy disperse spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy and contact angle tester. The results show that the corrosion resistance of the films prepared by the two methods reduced in the artificial deep sea environment, especially the electrodeposited film; after immersion in 20 MPa deionized water, no obvious cracks appeared on the two films; however, after immersion in 20 MPa salt water, a few cracks emerged on the electrodeposited film, while the sol-gel film was still relatively intact; after potentiostatic polarization in 20 MPa salt water, significant cracking and peeling off could be observed for the electrodeposition film, but only cracking could be seen for the sol-gel film; both films are hydrophilic before corrosion, but the contact angle increases significantly after corrosion, showing hydrophobicity to certain extent.

Key wordsfilm    sol-gel    electrodeposition    deep sea    corrosion
收稿日期: 2021-03-26     
ZTFLH:  TG178  
基金资助:国家自然科学基金(51701115);中国科学院海洋新材料与应用技术重点实验室开放基金(2016K04)
通讯作者: 屈少鹏     E-mail: spqu@shmtu.edu.cn
Corresponding author: QU Shaopeng     E-mail: spqu@shmtu.edu.cn
作者简介: 窦建业,男,1996年生,硕士生

引用本文:

窦建业, 屈少鹏, 轩星雨. 铈离子修饰SiO2膜层在模拟深海条件下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 258-266.
Jianye DOU, Shaopeng QU, Xingyu XUAN. Service Behavior of Cerium Ion Modified SiO2 Film Prepared by Different Methods in Artificial Deep Sea Environments. Journal of Chinese Society for Corrosion and protection, 2022, 42(2): 258-266.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.062      或      https://www.jcscp.org/CN/Y2022/V42/I2/258

图1  溶胶-凝胶法和电沉积法制备膜层在测试前后的SEM形貌
SampleOSiFeClCe
Sol-gel, origin16.7810.0463.870.338.68
Sol-gel, 20 MPa, NaCl, immersion16.809.9264.500.648.14
Sol-gel, 20 MPa, NaCl polarization12.127.3168.231.0111.33
Electrodeposition, origin16.0513.9153.570.5415.93
Electrodeposition, 20 MPa, NaCl, immersion18.579.5758.291.7711.80
Electrodeposition, 20 MPa, NaCl polarization, A8.262.0289.100.310.31
Electrodeposition, 20 MPa, NaCl polarization, B14.98.3665.011.3210.41
表1  X80钢表面溶胶-凝胶法和电沉积法制备的膜层在测试前后的表面能谱分析结果
图2  两种膜层试样表面XRD和XPS分析结果
图3  溶胶-凝胶法和电沉积法制备膜层在测试前后的接触角测试结果
图4  溶胶-凝胶膜层和电沉积膜层在不同静水压3.5%NaCl溶液中的Nyquist和Bode图
图5  电化学阻抗拟合等效电路图
Sample

Rs

Ω·cm2

CPE2

R2

Ω·cm2

CPE1

R1

Ω·cm2

CPE3

Rt

Ω·cm2

Y2 / mS sn·cm-2n2Y1 / mS sn·cm-2n1Y3 / mS sn·cm-2n3
Sol-gel, 0.1 MPa9.365.3010.78210.4514.470.60812.670.0030.6961189.27
Sol-gel, 20 MPa7.5420.7320.71313.0678.5720.67719.850.3560.852823.32
Electrodeposition, 0.1 MPa8.910.0490.89316.230.2960.81420.990.1940.785954.41
Electrodeposition, 20 MPa8.822.7840.66215.492.5140.81313.7115.7750.771447.52
表2  X80钢表面溶胶-凝胶膜层和电沉积膜层在不同静水压3.5%NaCl溶液中的电化学阻抗拟合结果
图6  溶胶-凝胶膜层和电沉积膜层在不同静水压3.5% NaCl溶液中的极化曲线
SamplesEcorrVIcorrµA·cm-2βaV·dec-1βcV·dec-1
Sol-gel, 0.1 MPa-0.4341.580.09290.210
Sol-gel, 20 MPa-0.4346.570.08330.323
Electrodeposition, 0.1 MPa-0.5134.270.11090.158
Electrodeposition, 20 MPa-0.50417.480.06610.391
表3  X80钢上溶胶-凝胶膜层和电沉积膜层在不同静水压3.5%NaCl溶液中的腐蚀电化学参数
图7  在模拟深海条件下膜层失效过程示意图
1 Liu Y, Li Y, Li Q. Effect of cathodic polarization on hydrogen embrittlement susceptibility of X80 pipeline steel in simulated deep sea environment [J]. Acta Metall. Sin., 2013, 49: 1089
1 刘玉, 李焰, 李强. 阴极极化对X80管线钢在模拟深海条件下氢脆敏感性的影响 [J]. 金属学报, 2013, 49: 1089
2 Wang X L, Yu Q, Wang Y. Research status of deep sea materials and corrosion protection technology [J]. Total Corros. Contr., 2018, 32(10): 80
2 王勋龙, 于青, 王燕. 深海材料及腐蚀防护技术研究现状 [J]. 全面腐蚀控制, 2018, 32(10): 80
3 Zhou Y, Zhang H B, Du M, et al. Effect of cathodic potentials on hydrogen embrittlement of 1000 MPa grade high strength steel in simulated deep-sea environment [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 409
3 周宇, 张海兵, 杜敏等. 模拟深海环境中阴极极化对1000 MPa级高强钢氢脆敏感性的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 409
4 Cao J Y, Wang Z Q, Li L, et al. Failure mechanism of organic coating with modified graphene under simulated deep-sea alternating hydrostatic pressure [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 139
4 曹京宜, 王智峤, 李亮等. 深海压力交变加速条件下改性石墨烯有机涂层的失效机制 [J]. 中国腐蚀与防护学报, 2020, 40: 139
5 Xu L K, Li W J, Chen G Z. Deep sea corrosion test technique [J]. Mar. Sci., 2005, 29(7): 1
5 许立坤, 李文军, 陈光章. 深海腐蚀试验技术 [J]. 海洋科学, 2005, 29(7): 1
6 Traverso P, Canepa E. A review of studies on corrosion of metals and alloys in deep-sea environment [J]. Ocean Eng., 2014, 87: 10
7 Zhou J L, Li X G, Cheng X Q, et al. Research progress on corrosion of metallic materials in deep sea environment [J]. Corros. Sci. Prot. Technol., 2010, 22: 47
7 周建龙, 李晓刚, 程学群等. 深海环境下金属及合金材料腐蚀研究进展 [J]. 腐蚀科学与防护技术, 2010, 22: 47
8 Peng S S, Zhao W J, Zeng Z X, et al. Preparation of anticorrosion hybrid silica sol-gel coating using Ce(NO3)3 as catalyst [J]. J. Sol-Gel Sci. Technol., 2013, 66: 133
9 Gou J J, Ou X T, Liu L, et al. Si-Ce complex coating on 6063 aluminum alloy prepared by two-step sol-gel method [J]. China Sci. Paper, http://www.paper.edu.cn/releasepaper/content/201805-198, 2018
9 苟建军, 欧孝通, 刘雷等. 两步溶胶-凝胶工艺制备铝合金硅-铈复合膜 [J]. 中国科技论文在线, http://www.paper.edu.cn/releasepaper/content/201805-198, 2018)
10 Xie H. Study on optimum preparation process and performance of silane films on aluminum [D]. Changsha: Hunan University, 2012
10 谢荟. 铝表面硅烷膜制备工艺优化及膜层性能研究 [D]. 长沙: 湖南大学, 2012
11 Zhang T S, Liu F T, Liu X. Status of corrosion prevention film on alloy made by sol-gel [J]. Shandong Metall., 2007, 29(suppl.): 4
11 张同生, 刘福田, 刘鑫. 溶胶-凝胶法制备合金表面耐腐蚀涂层的研究进展 [J]. 山东冶金, 2007, 29(): 4
12 Zeng X G, Huang X, Peng J, et al. Research progress of super-hydrophobic coating prepared by electro-deposition [J]. Corros. Prot., 2020, 41(10): 1
12 曾宪光, 黄茜, 彭静等. 电沉积法制备超疏水涂层的研究进展 [J]. 腐蚀与防护, 2020, 41(10): 1
13 Cui Z F, Han Y C, Zhuang L J, et al. Corrosion behavior and mechanisms of metals in Cl- environment [J]. Corros. Prot. Petrochem. Ind., 2011, 28(4): 1
13 崔志峰, 韩一纯, 庄力健等. 在Cl-环境下金属腐蚀行为和机理 [J]. 石油化工腐蚀与防护, 2011, 28(4): 1
14 Sarma D D, Rao C N R. XPES studies of oxides of second- and third-row transition metals including rare earths [J]. J. Electron Spectros. Relat. Phenomena, 1980, 20: 25
15 Koel B E, Praline G, Lee H I, et al. X-ray photoelectron study of the reaction of water with cerium [J]. J. Electron Spectros. Relat. Phenomena, 1980, 21: 31
16 Paparazzo E, Ingo G M, Zacchetti N. X-ray induced reduction effects at CeO2 surfaces: An X-ray photoelectron spectroscopy study [J]. J. Vac. Sci. Technol., 1991, 9A: 1416
17 Yu X R, Hantsche H. Vertical differential charging in monochromatized small spot X-ray photoelectron spectroscopy [J]. Surf. Interface Anal., 1993, 20: 555
18 Jiang K, Liu J, Han Y X, et al. Effect of natural oxidation on floatability of pyrite and its mechanism [J]. Met. Mine, 2019, (2): 111
18 姜凯, 刘杰, 韩跃新等. 自然氧化对黄铁矿可浮性的影响及其机理研究 [J]. 金属矿山, 2019, (2): 111
19 Allen G C, Curtis M T, Hooper A J, et al. X-ray photoelectron spectroscopy of iron-oxygen systems [J]. J. Chem. Soc. Dalton Trans., 1974, (14): 1525
20 Carnot A, Frateur I, Zanna S, et al. Corrosion mechanisms of steel concrete moulds in contact with a demoulding agent studied by EIS and XPS [J]. Corros. Sci., 2003, 45(11): 2513
21 Zhao Z G. Contact angle and its application in surface chemistry research [J]. Chem. Res. Appl., 2000, 12: 370
21 赵振国. 接触角及其在表面化学研究中的应用 [J]. 化学研究与应用, 2000, 12: 370
22 Qu S P, Li C, Dong L H, et al. Influence of hydrostatic pressure on corrosion behavior of cerium conversion coating on X80 [J]. China Surf. Eng., 2019, 32(5): 95
22 屈少鹏, 李超, 董丽华等. 静水压对X80表面铈转化膜腐蚀行为的影响 [J]. 中国表面工程, 2019, 32(5): 95
23 Brug G J, van den Eeden A L G, Sluyters-Rehbach E M, et al. The analysis of electrode impedances complicated by the presence of a constant phase element [J]. J. Electroanal. Chem. Interfacial Electrochem., 1984, 176: 275
24 Cao C N. Principles of Electrochemistry of Corrosion [M]. 2nd ed. Beijing: Chemical Industry Press, 2004
24 曹楚南. 腐蚀电化学原理 [M]. 2版. 北京: 化学工业出版社, 2004
25 Liu Z Y, Wan H X, Li C, et al. Comparative study on corrosion of X65 pipeline steel welded joint in simulated shallow and deep sea environment [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 321
25 刘智勇, 万红霞, 李禅等. X65钢焊接接头在模拟浅表海水和深海环境中的腐蚀行为对比 [J]. 中国腐蚀与防护学报, 2014, 34: 321
[1] 王炳钦, 张晓莲, 雍兴跃, 周欢, 高新华. 舰船海水管系中紫铜/钢制管道耦接后电偶腐蚀的数值模拟研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 200-210.
[2] 吴家杰, 王艳丽. 熔盐堆用结构材料的热腐蚀及防护[J]. 中国腐蚀与防护学报, 2022, 42(2): 193-199.
[3] 李振欣, 吕美英, 杜敏. 海水环境中组合电位极化对铁氧化菌腐蚀的影响[J]. 中国腐蚀与防护学报, 2022, 42(2): 211-217.
[4] 王歧山, 李鸿瑾, 何川, 郑平, 陈旭. 加载波形对X65钢腐蚀疲劳裂纹萌生及扩展的影响[J]. 中国腐蚀与防护学报, 2022, 42(2): 227-234.
[5] 刘永强, 刘光明, 范文学, 甘鸿禹, 唐荣茂, 师超. 聚乙二醇-600对酸性Zn-Ni合金的电沉积行为及镀层耐蚀性影响的研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 235-242.
[6] 柳皓晨, 范林, 张海兵, 王莹莹, 唐鋆磊, 白雪寒, 孙明先. 钛合金深海应力腐蚀研究进展[J]. 中国腐蚀与防护学报, 2022, 42(2): 175-185.
[7] 王中琪, 许春香, 杨丽景, 田林海, 黄涛, 史义轩, 杨文甫. 医用可降解Mg-2Y-1Zn-xZr合金微观组织和耐蚀性能研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 113-119.
[8] 刘术辉, 刘斌, 徐大伟, 刘蔚, 陈凡伟, 刘思琪. 层状双金属氢氧化物防腐蚀涂层材料的研究进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 16-24.
[9] 邓佳丽, 闫茂成, 高博文, 张辉. 高铁动态交流干扰下管道钢的腐蚀行为试验研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 127-134.
[10] 王永祥, 何柏林, 李力. 超声冲击改善P355NL1钢焊接接头腐蚀疲劳性能研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 120-126.
[11] 丁聪, 张金玲, 于彦冲, 李烨磊, 王社斌. A572Gr.65钢在不同土壤模拟液中的腐蚀动力学[J]. 中国腐蚀与防护学报, 2022, 42(1): 149-155.
[12] 张赪栋, 刘斌, 石泽耀, 刘岩, 曹青敏, 蹇冬辉. 镍铝青铜合金海水腐蚀行为研究进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 25-33.
[13] 尹阳阳, 刘建峰, 缪克基, 王婷, 宁锴, 潘卫国, 袁斌霞, 尹诗斌. SO42-对不锈钢在含Cl-溶液中腐蚀影响的研究进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 34-38.
[14] 张建, 黄金, 许家鹏, 罗国强, 沈强. 金属Mo在500 ℃ LiF-LiCl-LiBr-Li熔盐中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 67-72.
[15] 刘冬, 刘静, 黄峰, 杜丽影, 彭文杰. 考虑应力比和门槛值的海水腐蚀疲劳裂纹扩展预测模型[J]. 中国腐蚀与防护学报, 2022, 42(1): 163-168.